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Effect of Ferromagnetic Spin Correlations on Superconductivity in Ferromagnetic Metals
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We study the renormalization of quasiparticle properties in weak ferromagnetic metals due to spin
fluctuations, away from the quantum critical point for small magnetic moment. We explain the
origin of the s-wave superconducting instability in the ferromagnetic phase and find that the vertex
corrections are small and that Migdal’s theorem is satisfied away from the quantum critical point.
[S0031-9007(98)08130-7]
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More than 30 years ago, Doniach [1] and Berk an
Schrieffer [2] showed that, in the paramagnetic phase, t
phonon-induced,s-wave superconductivity in exchange-
enhanced transition metals is suppressed by ferromagn
spin fluctuations, in the neighborhood of the Curie tem
perature. At the same time a theory of superconductivi
coexisting with long-range ferromagnetic order was de
veloped by Larkin and Ovchinnikov [3], and by Fulde
and Ferrell [4] for magnetic-impurity-induced ferromag
netism in metals. Without experimental evidence for th
coexistence of superconductivity and ferromagnetism, th
theory has been of academic interest only. It is genera
accepted that ferromagnetism suppresses superconduc
ity and the apparent contradiction between the above tw
pictures has not been clarified.

On the experimental side, recent advances have allow
for the investigation of the quantum critical region in
correlation-induced, weak ferromagnetic metals [5] a
well as in some heavy-fermion compounds [6]. Whe
hydrostatic pressure is applied on a transition met
compound such as MnSi or ZrZn2, the Curie temperature
can be driven down to zero at a critical pressure. In th
neighborhood of this critical pressure the paramagnet
ferromagnetic phase transition is driven by quantu
critical fluctuations. So far, experiments have failed t
find superconductivity in the paramagnetic phase of the
compounds and as we argue below, the physics close
the phase transition is not well understood.

These experiments have motivated us to study theferro-
magneticregime relatively close to the critical point which
is described as a highly correlated but weakly ferroma
netic metal. In this investigation we extend the Doniach
Berk-Schrieffer (DBS) theory into theferromagnetic phase
of the transition metal compounds. We develop a m
croscopic theory of the ferromagnetic state, based on t
interactions mediated by spin fluctuations between th
fermions, and explain the microscopic origin of the un
expecteds-wave superconductivity recently predicted by
us [7] on the basis of phenomenological consideration
In doing so, we find that, in contrast to the paramagnet
case, ferromagnetic fluctuationsenhancepairing correla-
tions—resolving the longstanding dilemma referred to i
the opening paragraph.
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Our starting point is the Stoner state which is a Hartre
Fock solution of some Hamiltonian, below the mean-fie
ferromagnetic instability [8]. This state is a product o
two Slater determinants with an electron mass possib
renormalized by the band structure. At this level of a
proximation the correlations do not renormalize the ma
Although the Stoner state has nonzero magnetization, i
known that the Hartree-Fock approximation overestimat
the exchange. However, we will assume that fluctu
tions about this mean-field saddle point do not complete
destroy the ferromagnetic order. We cannot overemph
size that this starting point isnot perturbatively connected
to the paramagnetic Fermi-liquid state. The next step
to include the correlations which produce weakly inte
acting quasiparticles with renormalized massmp near the
Fermi surface. The renormalization in the neighborho
of the two Fermi surfaces is described by the single pa
ticle Green’s function

Gss $p, vd ­
z

v 2 yFsj $pj 2 psd 1 idsf $pg
1 Ginc

(1)

which is diagonal with the quantization axis parallel to th
z axis. Here $p is the three-dimensional momentum o
the particle,ps (s ­", #) is the Fermi momentum of the
spin-s electrons,yF is the Fermi velocity, anddsf $pg ;
d 3 signsj $pj 2 psd, with d an infinitesimal real number.
The quasiparticle properties are hidden in the quasiparti
residuez , 1 and the effective mass. In principle the
Fermi velocity and the quasiparticle residue also depe
on the spin index, but in the neighborhood of the pha
transition,p" 2 p# ø p", p# and they are equal. In the
case of weak ferromagnetic metals the incoherent part
the Green’s function describing the physics away fro
the Fermi surface is a smooth function of$p and v

which renormalizes the properties at the Fermi surfa
and introduces no new physics. The Green’s functi
describes a system of quasiparticles with spontaneo
magnetization given by Dzyaloshinskii’s theorem [9]

m0 ­
1

12p2 sp3
" 2 p3

# d ­
n" 2 n#

2
, (2)
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wherem0 is the uniform, static magnetization, andns is
the density of spin-s particles. For weak ferromagnets th
magnetizationm0 is proportional to the exchange splitting
D ­ p" 2 p#. Here we have assumed that all particles a
in an eigenstate of thez component of the spin operator an
for definiteness we will assume thatp" . p#. The low-
energy excitations of the system described by this Gree
function are quasiparticle excitations in the neighborho
of the two Fermi surfaces as well as collective sp
excitations. The spontaneously broken SU(2) symme
guarantees the existence of a massless Goldstone m
[10] described by the propagator

DGs $q, vd ­ 2
DNs0dyF

2
vss $qd

sv 1 idd2 2 v2
s s $qd

, (3)

Ns0d is the density of states at the Fermi surface.
the case of a ferromagnetic metal the magnetization
a conserved quantity and the spin-wave dispersion
vss $qd ­ Dj $qj2 whereD ­ yFDyp2

F is the spin stiffness.
The longitudinal response of the system is described by
propagator [11]

Dls $q, vd ­ 2
Ns0dp2

F

2
1

j22 1 j $qj2 2 ipp2
Fvy2yF j $qj

,

(4)

wherej , m21
0 is the correlation length. The interaction

of the quasiparticles with these collective spin excitatio
can be described by the interaction [12]

Hsf ­ g0

X
$k $qab

c
y
$ka

$sabc$k1 $qb
$S2 $q , (5)

where g0 is the bare momentum-independent couplin
constant,c

y
$ka

andc$ka are the anticommuting, quasiparticle
creation and annihilation operators respectively,$sab are
the Pauli matrices, and$S2 $q ­ k

P
$pgd c

y
$pg $sgdc $p2 $qdl is the

three component spin fluctuation field. The vector fie
$S2 $q is the average magnetization at a particular wa
vector. In the ferromagnetic phase this average is differe
from zero, while in the paramagnetic phase it is strict
zero. Nevertheless, it has been used to describe magn
cally enhanced paramagnetic metals, although it can
mathematically justified only in the ferromagnetic phase

Recently we have shown [7], ignoring the vertex co
rections, that the self-energy leading to the exact Gree
function, Eq. (2) is local and leads to logarithmic depe
dence of the quasiparticle residue on the magnetizati
When the magnetization approaches the quantum criti
point the quasiparticle residue vanishes and the Ferm
liquid theory breaks down. At finite temperatures in th
neighborhood of the Curie temperature the spin fluctu
tions lead to a non-Fermi-liquid specific heatCyT , ln T
consistent with recent experiments on MnSi and ZrZn2 as
well as on some of the heavy-fermion compounds [5,6].

Weak ferromagnetic metals are very interesting b
cause the gapless Goldstone mode coexists with the l
gitudinal excitations which are gaped. The longitudin
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spin-fluctuation propagator Eq. (4) is similar to the mode
susceptibility [peaked at the$Q ­ sp, pd nesting vector]
used in the theory of antiferromagnetic metals. Howeve
in our case the expression for the susceptibility is rigo
ous, following from the poles of the four-point vertex at
small momentum transfer [11].

The first vertex corrections to the three-point vertex i
the weak ferromagnetic metal, Fig. 1, are

L
s1d
"" sp, p 1 kd ­ L

s1d
""l 1 L

s1d
""G , (6)

L
s1d
"# sp, p 1 kd ­ L

s1d
"#l 1 L

s1d
"#G , (7)

where

L
s1d
""l ­ ig2

0

Z
dq G"sqdDlsq 2 pdG"sq 1 kd ,

L
s1d
""G ­ ig2

0

Z
dq G"sqdDGsq 2 pdG#sq 1 kd ,

L
s1d
"#l ­ ig2

0

Z
dq G#sqdDlsq 2 pdG"sq 1 kd ,

L
s1d
"#G ­ ig2

0

Z
dq G#sqdDGsq 2 pdG#sq 1 kd ,

dq ;
d4q

s2pd4 . (8)

Here we have assumed an expansion of the full vertex

zLabsp, p 1 kd ­ 1 1 L
s1d
ab 1 . . . , (9)

andp, q, andk are four-vectors.
It is important to distinguish the order of the smal

momentum-transfer and energy-transfer limits. In the lim
which defines the Fermi-liquid parameters through th
four-point vertex, the Ward identity

lim
v!0

lim
$q!0

Labsp, p 1 qd ­

√
1 2

≠S

≠v

!

dab ­
1
z

dab , (10)

FIG. 1. The phase diagram of a weak ferromagnetic meta
The non-Fermi-liquid crossover region and the scale set by t
temperatureTp ­ T 2

c yeF are explained in the text.



VOLUME 82, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 4 JANUARY 1999

on

-
.

, a
g
r-
.

ral
shows that the vertex is proportional to the inverse qua
particle residue. The effective pairing potential in princ
ple can be constructed from the three-point vertex with th
requirement that the triplet scattering amplitude is zero.
second order perturbation theory, however, the momentu
independence of the self-energy and the vanishing of t
triplet scattering amplitude are incompatible, and so far w
have not been able to construct a pairing potential with t
above properties. Nevertheless, one can see that the
glet scattering amplitude is attractive leading to a pairin
instability in the singlet channel [7]. Physically, the Pau
exclusion principle keeps quasiparticles with the same sp
apart, leading to a negative charge depletion between the
This charge distribution attracts another quasiparticle wi
the opposite spin leading to the singlet pairing.

The Ward identity which we mentioned earlier show
that the effective pairing is enhanced for small magne
izations sincez21 , ln m0 and this enhancement is due to
the longitudinal collective mode.

In the physical limit where energy is conserved, th
corresponding Ward identity is

lim
$q!0

lim
v!0

Labsp, p 1 qd ­
yF

z
dpa

dm
sz

ab , (11)
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z
ab is the Pauli matrix,y0

F is the Fermi velocity of
the noninteracting Fermi gas, and there is no summati
over repeated indexes.

In calculating the vertex corrections we first set the fre
quency to zero and then take the limit for the momentum
Because, we are working in the broken symmetry phase
distinction must be made for vertex corrections involvin
particles on one of the two Fermi surfaces and vertex co
rections involving particles on different Fermi surfaces
In the former case the limit

Lsssj $pj ! ps , j $pj ! psd , (12)

while in the latter the limit

Lss0sj $pj ! ps , j $pj ! ps0 1 Dd (13)

must be taken. In both cases we use the spect
representation for the propagatorsDlyG

DlyGs $q, vd ­
2
p

Z `

0

z Im DlyGs $q, zd
z2 2 v2 2 id

. (14)

Using that
Gss $p 1 $q, e 1 vdGs0s $p 1 $q 1 $k, e 1 vd ­
z

yF

Gss $p 1 $q, e 1 vd 2 Gs0s $p 1 $q 1 $k, e 1 vd
j $p 1 $qj 2 j $p 1 $q 1 $kj 2 sps 2 ps0d

, (15)

it is not difficult to obtain the expansion

zLss;lsps , psd ­ 1 1
g2

0N2s0dz2

16ps

ln
p2p4

s 1 4D4

p2p4
s 1 4sD2 1 p2

c d2 1 . . . (16)

and

zLss;Gsps , psd ­ 1 1
g2

0N2s0dz2

4
ln

√
1 1

Dpc

p2
F

!
1 . . . . (17)
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We have used a momentum cutoffpc reflecting the
different physics at very small distances. Very simil
logarithmic behavior can be seen in the vertex expans
of Lss0;lyGsps , p0

s 1 Dd. This implies that the self-
energy is weakly momentum dependent close to the ph
transition. Therefore a local ferromagnetic Fermi-liqu
theory [15] can be used to describe weak ferromagn
metals in a regime where the magnetization is sufficien
small, but away from criticality (since the fluctuations
the critical regime are beyond the scope of Fermi-liqu
theory). This confirms thes-wave pairing instability [7]
in the ferromagnetic phase.

The above adiabaticity is a consequence of the sm
ness of the exchange splittingD compared to the Ferm
momentumpF ; sp" 1 p#dy2 and the smallness of the
maximum spin wave velocityvG compared to the Ferm
energyeF and leads to the validity of Migdal’s theorem
[16] for weak ferromagnetic metals.

In the DBS theory of spin-fluctuation-enhanced pa
magnetic metals it is argued that the sharply peaked st
spin susceptibility
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xs0, 0d ­
xp

1 2 Ns0dVc
(18)

close to the Curie point suppresses thes-wave pairing, be-
cause ferromagnetic spin fluctuations act as an effective
pulsive force between electrons with opposite spins. He
the xp is the Pauli susceptibility andVc is a pseudopo-
tential. To see why the spin fluctuations have an oppos
effect in the ferromagnetic phase it is convenient to writ
the factor1 2 Ns0dVc in the denominator of the spin sus-
ceptibility in terms of the Landau Fermi-liquid paramete
Fa

0 . Then in both paramagnetic and ferromagnetic phas
the static spin susceptibility is positive and in the ferro
magnetic phase is [7]

xs0, 0d ­
Ns0dy2

j1 1 Fa
0 j

, (19)

while in the paramagnetic phase is

xs0, 0d ­
Ns0d

1 1 Fa
0

. (20)
135
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In approaching the quantum critical point from the par
magnetic sideFa

0 approaches the value21 from above,
while approaching from the ferromagnetic sideFa

0 ap-
proaches21 from below. The different sign of1 2

Ns0dVc , 1 1 Fa
0 has a dramatic effect on the sign of th

spin-fluctuation mediated quasiparticle interaction on t
singlet channel which can be seen in thet matrix [2]

ts0, 0d ­ Vc 1
N21s0d sFa

0 d2

1 1 Fa
0

. (21)

In the paramagnetic phase the second term is positi
while in the ferromagnetic it is negative leading tos-wave
pairing.

What is the physics in the neighborhood of the quantu
critical point in weak ferromagnetic metals is still an ope
question. Another interesting point is that the BCS theo
of superconductivity cannot give a quantum critical poin
because as the critical temperature approaches zero
does the pairing interaction. Whether a different typ
of superconductivity exists or a different phase exists
the neighborhood of the quantum critical point on th
paramagnetic side of the phase diagram is still an op
question.

In Fig. 1 we represent a schematic phase diagram
a “typical” weak ferromagnetic metal. Because the e
ergy scaleTp ­ T2

c yeF below which the superconducting
instability occurs vanishes, thes-wave superconducting
state must also vanish at the quantum phase transition.
the paramagnetic side thep-wave superconducting state is
expected as predicted by the DBS theory. At finite tem
peratures close to the ferromagnetic phase transition
the ferromagnetic side, the spin fluctuations renormali
the physical quantities leading to a non-Fermi-liquid sp
cific heatC , T ln T , and in Fig. 1 we have shown the
crossover between the Fermi-liquid and the non-Ferm
liquid state. We also expect thep-wave superconducting
state in the paramagnetic phase to vanish at the quan
critical point. Another possibility is that it remains finite
as we go through the phase transition at finite Curie te
perature. However, the superconducting transition te
perature must be less than the Fermi-liquid scale set
Tp which vanishes at the quantum phase transition, a
this implies the vanishing of thep-wave paired state.

The s-wave superconducting state in the ferromagne
phase is unusual and is a generalization of the Lark
Ovchinnikov-Fulde-Ferrell (LOFF) state [3,4] studied i
the 1960s in metals with magnetic impurities. Th
difference between this generalized LOFF state and
one originally studied is that the magnetic moment
the former is caused by the quasiparticles which al
participate in the pairing, while in the latter the magnet
field is external to the quasiparticle system. Therefore t
response of the two systems to an external magnetic fi
must be quite different. The understanding of how th
spin fluctuations are modified by the superfluid density
an interesting question which can shed light on the natu
136
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of this state. Another interesting possibility is that this
state has an odd-gap close to half filling induced by th
presence of magnon excitations. The details of this sta
are beyond the scope of the current paper and will b
investigated in a future publication.

In conclusion, in this paper we described the physics o
a weak ferromagnetic metal from microscopic principles
We have shown that the vertex corrections in the physic
limit are small and that the self-energy is local. In the
limit of small momentum transfer the vertex function
enhances the effective coupling between the quasiparticl
in the neighborhood of the quantum phase transitio
leading to ans-wave superconducting instability.
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