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Magneto-optical Sum Rules Close to the Mott Transition
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We derive new sum rules for the real and imaginary parts of the frequency-dependent Hall constant
and Hall conductivity. As an example, we discuss their relevance to the doped Mott insulator
that we describe within the dynamical mean-field theory of strongly correlated electron systems.
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The ac Hall effect can provide valuable insights into . 5
the dynamics of an electronic medium. This has recently 7vu(®) = ie”P ]700 T e —&)  ° @
been demonstrated in the case of highsuperconductors )
[1,2]: Various theoretical models based on different scat- _ — . . :
ere, P indicates principal-value integration. From time

tering mechanisms agree that the anomalous frequené—| versal invariance. homogeneity of time. and the Her-
and temperature dependences of the Hall effect are cIoseﬁ. i ’ 9 Y '
iticity of the current operators, we may deduce the fol-

intertwined, but they differ in their predictions about these, " ) i
dependences [3]. So far, experiments cannot discriminaﬂgwmgI symmetry properties [7];

between these models, but they will possibly be able to do x" (w) = odd and real (3)
so in the future [3].

The magneto-optical response of charge carriers can
be probed by the frequency-dependent Hall conductivity,
Hall constant, or Hall angle. Recently, a sum rule for thewhere Eq. (4) holds to first order in the magnetic field.
Hall angle has been derived [4] that is similar to the well-Equations (3) and (4) imply that the real partscof, (w)
known f-sum rule for the optical conductivity [5]. In this ando,,(w) are even while their imaginary ones are odd.
paper, we derive new sum rules for the real and imaginaryVe also see that the dc Hall conductivity is finite only if
parts of the two other magnetotransport probes. Such "
sum rules are useful: First, they help elucidating how Xxy(0) =0, ()
the corresponding spectral weight is redistributed upomngd derive the first couple of sum rules:
changing the temperature or the doping level. Second, "
they provide exact constraints on the interdependence of [ dwReo,(0) =0, (6)
Hall effect—related quantities and thus help interpreting 0 :
experimental data. For example, the sum rules for the
ac Hall constant relate its low-frequency behavior to ” wlmoy(e) . .
its infinite-frequency limit. This can be useful because ],w do ——"— = —ilJx. 3] ()

experimentally, only the microwave domain and the far ) )
g10 prove Eq. (6), we close the path of integration along a

y'semicircle at infinity in the upper-half complex-frequency
in the high-frequency limit [6]. (z) plane and apply Cauchy’s theorem. The integral on
We shall first derive the sum rules for the Hall the semicircle does not contribute since the leading high-

conductivity and Hall constant quite generally. Then, tofféduency behavior o (z) is 1/z2. The sum rule (7) is

illustrate their application, we shall discuss some aspectimilar to thef-sum rule of the optical conductivity,

of the magneto-c_)ptica_ll response of_(_:orrelated electrons * Reo (@) .5 51 _ o

close to the density-driven Mott transition. fﬂc do——">— =ilUuPh=x" (8

We start by considering the ac conductivities. In terms )

of the dissipative part of the current-current correlationwhere P, is the polarization operator satisfying

function, J(t) = aP(t)/ot, and x° = [do x!(0)/7mw is
the static current-current correlation function, which is

Tde Xpp®) 5 xi(@)

X.y (@) = even and wholly imaginary 4)

A BN N : positive definite. To interpret the right-hand sides of
12 _ . iwt
Xvu(®) = ffw dt ) (Lo (@), T (0)he™, (1) Egs. (7) and (8), we first note that the Hall frequency
wy = —i{[J,,J,])/x° is the generalization of the cy-
the conductivity tensor reads clotron frequency to the lattice [4,7]. Its sign determines

0031-900799/82(6)/1317(4)$15.00 © 1999 The American Physical Society 1317



VOLUME 82, NUMBER 6 PHYSICAL REVIEW LETTERS 8 EBRUARY 1999

that of the infinite-frequency Hall constant, relation. The sum rules (11) and (12) are interesting
because they relate the Hall constant at low frequencies to
Ry, = lim op (9) its infinite-frequency limit. The low-frequency regime is
H=0 ex°H attainable in experiments [2], whereas the high-frequency
which was considered by Shastet al.[6]. Here, N  limitis much easier to handle theoretically. The sum rule
denotes the total number of Iatticezz/ sites. Second, théll) ;mP“efS thatR Clan'f'Ot go over frl(l)m its dc value to
. _ /AT _ Its infinite-frequency limit monotonically.

Drude-theory expressionr = 7 yields y° = )

Y exp wle) = 1= X Finally, we quote a sum rule for the Hall angle

2 2 i
w,/4me”, wheree is the charge of an electron and, t11(w) = tanf(w) — 0y (w)/ o (w) that was derived
the plasma frequency. In general, howeve?, and wy in Ref. [4]:

depend on all external and model parameters such as
temperature, band filling, and correlation strength. “dw _

Before proceeding, we compare the sum rules (7) and = Rery(w) = wp . (13)
(8). In both cases, the contribution of a baatk) to
the right-hand side can be represented as a weighted ay,
erage of the momentum-distribution functiom, ., over
the Brillouin zone (BZ), where the weight function is de-
termined by the inverse mass tensor [6i{[J,,J,]) =
He):, de(egﬂ)n,ga and x° = 3, €"ny,. Here, up-
per indices indicate differentiation with respect to ag
component of the Bloch vector, such as in, sa§/,=

NwH

—o0

By contrast to thef-sum rule in Eq. (8), none of

r sum rules involves a positive definite integrand. As
a consequence, we expect our sum rules to become
fully useful only in conjunction with some theoretical
understanding of the problem involved.

We now apply the above-mentioned sum rules to the
oped Mott insulator, which we describe by the single-

X A \ . band Hubbard model with bare bandwi@b and on-site
de;/ok.. H is the magnetic field and is assumed to pointen isionty. We are primarily interested in the physics
in the z direction, andv, 4 = x,y. In many semiconduc- ¢jose to half filling,d = 1 — n < 1, wheren denotes
tors, only Bloch states close to the minima of the conduc he average occupancy per lattice site. In the limit of
tion band or the maxima of the valence band contributéininite spatial dimensions, all vertex corrections of the
Then, one can replace the inverse mass tensor by its Va"é%nductivity tensor vanish which implies [8]

at the respective band edge. Thus, the sum rules (7) and

(8) are seen to relate hard-to-obtain experimental infor- o 2ie? w2 Glntm — Giln

mation to, first, the number of carriers and, second, to the 7 ({@m) = NB Z(El?) Giln » - (14
mass tensor at a band edge which can be measured in a kn

cyclotron-resonance experiment. In a strongly correlated SH el €

system, on the other hand, the momentum-distribution oylioy,) = —Z y x W ‘

function receives contributions from the entire BZ, and ) NB in | i€ €k

the above-mentioned BZ averages may no longer be easy > Ginsm = Giln—nm

to determine experimentally [6]. X G, . (195)

. . iw
Next, we investigate the ac Hall constant. In Ref. [7], "
it has been decomposed into its infinite-frequency limitin each equation, a spin factor 2 has been taken into

(9) and a memory-function contribution which can beaccount and3 = 1/T is the inverse temperatureiw,

represented in terms of a spectral functida ): and iw,, are fermionic and bosonic Matsubara frequen-
o K@) pies,_ respective_l%/. The single-particle Green’s function
Ry(w) = RZ(] + f do P — ) is given by G/I|n =iw, + n — ¢ — 2(iw,), where
- w- o the local self-energyS(iw,) must be calculated by

+ iTRyk(w)w . (10)  solving a single-impurity Anderson model supplemented
by a self-consistency condition [9]. Earlier work on
k(w) was shown to be even and real. Therefore, th‘?he Hall effect in infinite dimensions was carried out in

::ZIL;;%;{;agw:rélgggzt:gﬁs(ﬁ )nc?r:teriv(?;legu?nn?ulc()adsdl"orRefS' [10-12]. We compute the ac conductivities (14)
the ac Hall constant: and (15) numerically by using the tight-binding bagd=

—(D/V2d) 3 codk;a) in d dimensions, where is the

* w1 lattice spacing. We use the iterated perturbation theory
fo do[ReRy(w) = Ry] =0, (11) (IPT), which can be shown to obey our sum rules exactly.
Our main focus is on the frequency regime well
% below the Mott-Hubbard gaf@/. The relevant part of
do IMRy(w) N X X : .
. Ry — Ry, (12)  the single-particle spectrum then consists of two distinct

features: an incoherent lower Hubbard band (LHB) and,
where Ry is the dc Hall constant. Equation (11) holds provided the temperature is low enough, a quasiparticle
because the leading high-frequency behavioRpfz) — resonance (QPR) at the Fermi level. As the doping level
Ry is 1/z% [7]. Equation (12) is a Kramers-Kronig is increased, the QPR merges with the LHB from above.
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Accordingly, there are two widely different energy
scales close to the Mott transition: a coherence tempera-
ture T.on, below which Fermi-liquid properties begin to
be observed, and which sets the scale for incoherent
excitations. The width of the QPR defines a second low-
energy scaleT*. The ac conductivities (14) and (15)
reflect the possible transitions within the single-particle :3;
spectrum. Fof" < T.q, this means that the integrands of ©
all sum rules roughly decompose into two features: first, a ¢
narrow one at zero frequency which is due to transitions
within the QPR. Consequently, its width scales at most
with 7*. We shall see below that this feature can be
resolved in the Fermi-liquid regime so its width does not
exceed the smaller scalg,,. Second, a feature around
a frequencyw; that measures the distance between the
maxima of the LHB and the QPRy, ~ D. At high
temperatures, on the other hand, the integrands are solel
determined by transitions from occupied to unoccupie he
states within the LHB, and is the only energy scale.

In the Fermi-liquid regimeT, w < T, the conduc-
tivities can be cast into the Drude forms, (w) =

w;2/477 wfw;2/477
/T —iw

and oy (w) = /7= With renormalized pa-
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G.1. Real part of the Hall conductivity fof = 0.015D.

insets magnify the structures at= 0 (left inset) and

rameters. Here, the renormalized plasma frequency bdor 7 = 0.015D.

haves asw[*,2 ~ D68 [13]; 1/7* ~ §Im3g(w = 0,7),

o = D (right inset).

Fig. 1 displays the frequency-dependent Hall conductivity

Imaginary part of the Hall conductivity—Figure 2

where3 is the retarded self-energy in the absence of disdiSPlays the integrand of the sum rule (7), which is pro-

order,w; ~

.8 wherew, is the cyclotron frequency of portional to the spectral function (4). We have nor-

noninteracting electrons on the same lattice. The renofMalized this function to 1 to facilitate the comparison
malized plasma and cyclotron frequencies must not p@etween curves belonging to different temperatures. For

confused with the bare ones defined by the sum rules (8
and (13), respectively.
Expanding Egs. (14) and (15) to leading orderl i’

> T*, this function hardly depends on temperature. Its
-shaped” form is consistent with Eq. (5) and the fact
thatD is the only energy scale. As the temperature is de-

as explained in Ref. [12] shows that both conductivitiesCr®ased to below™, the spectral weight is redistributed

are suppressed by a factér close to the Mott transi-

to comply with the emergence of two energy scdles,

tion. Approximate expressions for the dissipative parts ofd @1, the Drude form in the Fermi-liquid regime, and
the conductivities, which capture the doping and temperath€ fact that the overall weight is positive.

ture dependences in the regithw > T*, w <K 2D, are
given by Rer (w) ~ ¢28 =28 1el/D) 5ng Mo () ~

|w]
e’Hssgnw)[1 — exp(—|w|/T)]/D. The last relation
holds only for a generic band that does not have the
bipartite-lattice property discussed in Ref. [12].

We now discuss the qualitative forms of the functions
governing the sum rules (6), (7), (11), (12), and (13) more
specifically. In all plots, we have choseéh= 0.1 and
U = 4.

Real part of the Hall conductivity—Its high-frequency
behavior is given byr,,(w) = —e?x’wp/w? and there-
fore has the opposite sign &, in Eq. (9). On the other
hand, its dc value has the same signRgs Close to
half filling, and for intermediate temperatures and Rg,

15

Hall angle—The real part of the Hall angle defined
before Eq. (13) closely resembles that of the previously

1.0

— T=0.15
---- T=0.10
——- T=0.05
—-— T=0.015

and Ry have the same sign [11]. Since in this parame- 0.0
ter regime, the only energy scalelis Reo,,(w) changes

its sign once at a scale of ordér to satisfy sum rule

(6). ForT < Teon, Ry remains holelike whileRy be- -0-5_15

comes electronlike [11]. Then, the sum rule (6) requires
at least one further sign change at a seale- T.,,. This
prediction is corroborated by our numerical investigation,

FIG. 2. x/ (w) normalized to 1.
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FIG. 3. ReRy(w) (solid lines) andRy (dotted lines) for FIG. 4. k(w) defined in Eq. (10).

T = 0.015D (main panel) and” = 0.15D (right inset). The
left inset magnifies the low-frequency part of tiie= 0.015D

C e. . . .
Hrv La,—,Sr,CuQy, k(w) is resonancelike and has a width

given by the anomalous relaxation ratgry which ex-

considered function, except that it is not subject to ahibits a7 law [7]. Instead, we find a width of ordeb
condition like Eq. (5). for temperatures abovE* whereRy > 0. Similarly, the

Hall constant—Close to half filling and forr > 7*,  dynamical mean-field theory predicts that Kohler's rule
Ry is greater thankyy [11]. Then, R&y(w) satisfies IS replaced byAp/p ~ (w./D)* in the high-temperature
the sum rule (11) as follows: Starting from its dc value,'€gime [12], whereas experiments on cuprates are con-
ReRy (w) first decreases monotonically as a function ofsistent withAp/p ~ (o .74#)* as suggested by Terasaki
frequency, drops to below its infinite-frequency level atet al.[14]. Here,Ap is the magnetoresistance.
a frequency of ordep, and finally rises to approachy; In summary, we have derived sum rules for the real
from below. In the opposite limit of very low tempera- and imaginary parts of the Hall conductivity and Hall
tures, we show a curve fof = 0.015D in the main constant. We have applied them, along with another one
panel of Fig. 3, along with a better resolution of its low- for the Hall angle, to the doped Mott insulator.
frequency part in the left insetR}; (dotted line) is seento ~ This work was supported by NSF DMR 95-29138.
be positive, whileR; < 0 (not discernible), in agreement E. L. is funded by the Deutsche Forschungsgemeinschaft.
with Ref. [11]. In addition,Ry(w) hardly depends on
frequency in the Fermi-liquid regime, as expected from _
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