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Phase Diagram for the Breakdown of the Quantum Hall Effect
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The breakdown of the dissipationless conductance in the integer quantum Hall effect regime has been
investigated over a wide range of filling factors. The temperature dependence of the critical current
and of the critical magnetic field at breakdown bears a striking resemblance to the phase diagram of the
phenomenological two-fluid Gorter-Casimir model for superconductivity. [S0031-9007(99)08459-8]

PACS numbers: 73.40.Hm, 71.10.Pm, 74.25.Dw

The breakdown of the integer quantum Hall effectdensities of6-14) X 10'! cm™2. Results for even filling
(IQHE) has been extensively investigated [1-5] with mostfactors on only one sample are shown for reasons of
work concentrating on the sample width and magnetic fieldpace but all of the samples investigated showed the same
(filling factor) dependence of the critical current requiredbehavior.
to destroy the dissipationless conductance at integer filling A typical magnetoresistance trace measured at 2.0 K
factors. An understanding of the physical origin of break-is shown in Fig. 1(a) for a sample cooled slowly and in
down and its implications for the resistance standard arthe dark to obtain a carrier density 28 x 10'! cm™2
of fundamental importance [3]. From a theoretical pointand a mobility of 11 m>V~'s™'. The critical current
of view a number of models have been proposed [6-11(/.) was determined by measuring four terminaly
but the exact mechanism for the breakdown remains con-
troversial. What is clear is that the breakdown is driven
by the Hall voltageVy = I % for a current/ at integer
filling factor ». In addition, for the rather high critical
currents typically observed, the current flows through both
edge states and the bulk of the sample [5,12]. 2 -

In this Letter we show that it is possible to map out a
phase diagram (critical current or critical magnetic field
versus temperature) for the breakdown of the IQHE. The R
measured phase diagram for different filling factors is all =
related by a remarkably simple scaling law. Perhaps more-q: | [WA]
surprising is the striking resemblance to the phase diagrarrg
for the coercive field in a superconductor. This is unex-
pected since there is currently no theoretical basis to con-
nect the IQHE and superconductivity. Theoretical work
has been limited to linking the fractional quantum Hall - n
effect (FQHE) to superconductivity [13—16], although it
has been suggested that in sufficiently narrow quantum
Hall systems it should be possible to observe Josephson 0 L ' | l 1
type oscillations in the IQHE regime [17,18]. 0 2 4 6 8

For the investigation a series of modulation doped
8.2 nm single quantum well structures was grown by BT]
molecular beam epitaxy. Hall bars were patterned to have,g 1 (a) Magnetoresistance measured A= 2.0 K.

a width 4 = 250 with 750 um between voltage probes. (b) Current-voltage characteristics measured Bat= 7.7 T
The mobility ranged from3-22 m>V~!s™! for carrier (v = 4) for temperatures 2—6 K.
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characteristics for magnetic fields at 10 mT intervals in
such a way as to sweep through the particular filling
factor. A plot ofI. versus magnetic field gives a slightly
asymmetric Gaussian (not shown) with the maximum
corresponding to the magnetic field for whighis an
integer. The critical current for a given filling factor is
taken to be the maximum of the Gaussian. Representative
I-V characteristics measured at 7.70 T corresponding to
the field for the maximuni, are shown in Fig. 1(b) for
different temperatures in the range 2—6 K.

For a given sampld,. is dependent on the pair of
voltage contacts chosen, the sign of the current, and
the magnetic field direction. Contacts which have a
high critical current show a very abrupt increase in
voltage upon breakdown which, we believe, is due to
an avalanche heating process. While such contacts havi
the advantage that the critical current is well defined
they have the major drawback that the large currents
involved can lead to heating in the current contacts. This
can be easily identified during the measurements due tc
the large voltage drop across the current contacts anc TIK]

a noticeable he_atlng of the temperature sensor even fgIG. 2. (&) Critical currentl() as a function of temperature
currents for which the conductance between the voltaggy even filling factors. The solid lines are calculated using
contacts under study remains dissipationless. Therefor€g. (1) as described in the text. (h)X40 mK) versus inverse
we choose contacts for which is sufficiently small to filling factor (1/v). The solid line is a least squares fit to
avoid Ohmic heating in the current contacts. Throughouth€ data.

the measurements has been defined as the current for

which the measured voltage between the voltage probe&o = 31 K is found by fitting Eq. (1) to the temperature
exceedsS0 uV. The value ofl. is therefore somewhat dependence of. for the filling factor» = 6. The tem-
arbitrary but we have verified that, although choosingperature dependence éf can then be generated using
different critical voltages changes the absolute value of Eq. (1) for the other filling factors with no adjustable pa-
it does not in any way modify the form of the temperaturerameters. The agreement between the data and the model
dependence or the scaling between different filling factorsfor all filling factors is remarkable and an equally good

The temperature dependencd ofs shown in Fig. 2(a). agreement has been found in all samples. The critical
For a given filling factor/. has an almost constant value current and the critical temperature scale as the cyclotron
at low temperatures before decreasing and then vanishirgnergy (iw. =« 1/v). The critical Hall electric field at
at a critical temperature7(). The resemblance to the T =0, F. = § ;2 = 32V4200 (1 - ,,10) ~ 1800 V/m for
phase diagram for the coercive field of a superconductor = 4. This gives aB dependence not dissimilar to that
is striking (for superconductork and H,. are equivalent reported for narrower Hall bar samples [2].
since the superconductivity is also quenched when the We now turn our attention to the temperature depen-
current is sufficient to produce its own critical magneticdence of the width of the dissipationless regions in the
field). The solid lines are generated using an expressiomagnetoresistance traces. Pursuing the analogy with the
similar to that for the phenomenological Gorter-CasimirGorter-Casimir model, we will try to map outR. versus
[19] two-fluid model for superconductivity, T phase diagram for the different filling factors. Mag-

) netoresistance traces were measured at different tempera-
L(T.v) = <Ic0 _ ICO) [] _ ( T ) :| (1) tures and with a small current 10-100 nA using low
e v v Teo/v ’ frequency (10.7 Hz) phase sensitive detectidh. is de-
fined as the half-width of the dissipationless region at each
where I.o = 314 uA and vy = 30 are obtained from filling factor. In order to determine the width of the dis-
the straight line fit tol.(T ~ 0) versus1/v shown in sipationless region we define a critical sample resistance
Fig. 2(b). The value oty has the physical significance R. = 10 () which is approximately 5% of the zero field
that this is the largest filling factor for which the con- resistance. Choosing different values fyr changes the
duction is expected to be dissipationless at zero temperabsolute value oB, but in no way modifies the form of
ture. From the magnetic field, at which Shubnikov—the temperature dependence.
de Haas oscillations are first observed, this corresponds Such a phase diagram for even integer filling factors
to the conditionw.7 = 2. The only remaining parameter is shown in Fig. 3(a). At first sight the data points bear

Ic [uA]
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T T 1 T T 1 energy squaredl/»?) as shown in Fig. 3(b). From the
slope BY = 13.4 T. The solid lines in Fig. 3(a) are
— generated by fitting to the low temperature= 4 data
- (b) 7 to determineT’y’ = 1.6 K with », = 30 as before.
i 1 B, is determined simply by the number of localized
states in the relevant Landau level (LL). Itis easy to show
that the normalized density of localized states in the LL
nloc/nLL = 2VBC/BF ~20% for v =4 atT ~ 0 with
0.00 e the fundamental field3; = 30.3 T. As B. « 1/v? this
0.00 003 0.06 implies that the density of localized states within a LL is
proportional to the magnetic field<(1/»). I., which is
determined with the Fermi level centered in the localized
~ states between LLs is apparently insensitive to the exact
~ - number of delocalized states since only one phase is
. observed. It is not clear why two phases are observed
... AN for B. but this must be linked to increased localization
'-...;\ e N - at low temperatures, possibly associated with the critical
- appearance of spin splitting [20,21]. To our knowledge
L, .i;-;'-: ..... [y ®. 1 Ny no detailed ca_llculations for the numper of Iocalizgd states
0.00 in a LL and its dependence on filling factor exist. At
0 5 10 odd filling factors (not shown) only one phase is observed
TIK] which supports the link to spin splitting, since the LL to
be populated is separated from the next unoccupied LL
FIG. 3. (a) Critical magnetic fieldR) versus temperature for py the cyclotron energy and therefore only one spin state

even filling factors ¢ = 4, 6, 8, 10, and 12) clearly showing s occupied. However, for even filling factors two phases
the existence of two phases. The dashed (HT phase), solid (L ' : ' . ' . ;
phase), and dotted (melting) lines are calculated using Egs. (2 are present even in low mobility samples in which no spin

(4), respectively. (b)B.(40 mK) versusl/»2. The solid line  SPlitting is observed. » o
is a least-squares fit to the data. We noted above that for lower filling factors in Fig. 3

the data dips below the high temperature fitting curve for a
. . . substantial part of the phase diagram. A similar deviation
little resembla_ncg to the Gorter-Casimir phase d|_agran]s observed in the phase diagram of high temperafde

However, as indicated by the solid and dashed lines, Iéuperconductors and is associated with the melting curve

is possible toLc_irecon;pﬁsi this phase diaﬁ;;amhinto aTI%\%‘ the Abrikosov vortex lattice [22]. In the liquid phase,
temperature (LT) and high temperature (HT) phase. Thg, o 5 current is applied, the vortices are free to move un-

HT phase can be fitted using der the influence of the Lorentz force which leads to dis-
gHr  pHT T 2 sipation and the superconductivity is quenched. In type-II
Bw,T)=|—"F 7 ||1 - | . (2)  superconductors the critical field can be enhanced by the
g Yo Teo' /¥ addition of impurities which pin the vortices and prevent
wherew, = 30 (as before) an#™’ = 6.7 Tand7{T =  fluxjumping, while in the QHE disorder increases the num-
54 K are determined by fitting to the data for =  ber of localized states and hence enhanges For the
8. The curves for all the other filling factors [dashed |QHE the “melting” would correspond to a delocalization
lines in Fig. 3(a)] are then generated using Eq. (2) witnof cyclotron orbit centers. We therefore make an analogy
no adjustable parameters. For= 8, 10, and 12 the Withtype-Il superconductors and, in particula?. super-
agreement is good while for lower filling factors there is aconductors with a weak interlayer coupling which show a

deviation with the data dipping below the predicted curve2D behavior.  The melting behavior suggested by the de-

The LT phase in Fig. 3(a) can be fitted using functional form of the Abrikosov lattice melting curve,

2
LT LT 2 _[Bn _ Bn T
Bc(v,T)=(BV“§ _Bcg>[1_<TTLOT) } @) BM,T)—(V VO)(I Tm/y>. (4)

& A good fit for the lowerr values can be obtained
which is identical to Eq. (2) except that. = T%" no  with B,, = 1.6 T, vy = 30, and T,, = 90 K. Here the
longer scales as the cyclotron energy, i.e., in the LT phasg/» scaling law has been determined empirically. The
the critical temperature is the same for all filling factors.predicted melting curves for = 8, 10, and 12 (not
In contrast to the behavior of.(T ~ 0), for both the shown) lie above the usual phase boundary and hence
LT and HT phasesB.(T ~ 0) scales as the cyclotron these filling factors are unaffected. For= 6, the data
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