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Coulomb Blockade without Tunnel Junctions
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Tunnel junctions are not needed to provide single electron effects in a metallic island. Eventually
the tunnel junction may be replaced by an arbitrary scatterer. To formulate this in exact terms, we
derive and analyze the effective action that describes an arbitrary scatterer. It is important that even a
diffusivescatterer provides a sufficient isolation for single electron effects to persist. We also consider
the fluctuations of the effective charging energy. [S0031-9007(99)08403-3]

PACS numbers: 73.23.Hk, 73.40.Gk
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It is well known that electric charge of an isolate
piece of conducting material can take only discrete valu
corresponding to the integer number of electrons in the
This property persists if this isolated piece, the island,
connected to electron reservoir by means of a resist
tunnel junction. It is the recognition of this mere fact tha
lead to an outburst of the entire field of single electro
phenomena [1].

The single electron effects are best visible provided t
conductivity of the tunnel junction is much smaller tha
the conductance quantumGQ ; e2y2p h̄. The ground
state energy as a function of induced chargeq is given
by minimization of Coulomb energy,ECsn 1 qyed2, with
respect to discrete chargen. The result is periodic inq
with a periode [1]. The analysis of the reverse case
G ¿ GQ , requires advanced theoretical methods [2–4
Despite the partial controversy in results, all autho
agree that in this case the ground state energy reta
the periodicq dependence, that manifests the Coulom
blockade. The effective charging energy,ẼC, that is, the
q-dependent part of the ground state energy, is suppres
by a factor of exps2Gy2GQd in comparison withEC.

Still the analysis has been restricted to tunnel junction
The next step has been made in [5,6] where Coulom
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blockade has been studied in the situation where
isolation is provided by a quantum point contact wit
almost perfect transparency. It has been shown t
the charge quantization survives. Albeit the chargin
energy is strongly suppressed vanishing to zero at per
transmission.

In this paper, we construct a general theory of Coulom
blockade that can embrace tunnel junctions, quant
point contacts, diffusive conductors, and eventually a
type of scattering.

The results are as follows. Charging energy vanish
only for perfect point contacts. For a very wide class
conductors that have conductivityG ¿ GQ , the charg-
ing energy is exponentially suppressed, lnsẼCyECd ~

2aGyGQ, a being a dimensionless coefficient dependin
on the type of the conductor. For disordered conducto
for instance, diffusive ones, the charging energy strong
fluctuates. This happens even if the fluctuations of t
conductance are small.

The most equivalent mathematical framework to d
scribe the charging effects in full has been reviewed
Schön and Zaikin in [7]. The partition function of the
system is presented in the form of the path integral ov
the fieldwstd (b ; h̄yT ),
Z ­
Z Y

t

dwstd exp

"
2Lscfwstdg 1

Z b

0
dt

√
2

Ùwstd2

2EC
2 i

q Ùwstd
e

!#
. (1)
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The form of the last term presumes that the partition fun
tion can be presented as a sum over topological sect
that are labeled by an integerW ­

R
b

0 dt Ùwstdy2p wind-
ing number ofwstd,

Z ­
X
W

ZW exps2i2pWqyed . (2)

HereZW does not depend onq.
The actionLsc describes tunnel junction. It can be

evaluated by using the tunneling Hamiltonian method th
gives

Lsc ­
GT

2b2GQ

Z b

0
dt

Z b

0
dt0 sin2hfwstd 2 wst0dgy2j

sin2fpst 2 t0dybg
.

(3)
c-
ors

at

This form shows that the tunnel junction is quite differen
from a linear resistor which is described by a form

Lsc ­
G

8b2GQ

Z b

0
dt

Z b

0
dt0 fwstd 2 wst0dg2

sin2fpst 2 t0dybg
,

(4)

which is bilinear inw. It has been frequently assume
that a coherent diffusive conductor can be described
(4) and consequently exhibits no charging effects. W
show below that it is not so. However, the relation (4
holds for an arbitrary conductor in the limit of smal
w. It is worth noting that in the limit ofG ¿ GQ

the typical fluctuations of the phase are small indee
dw2 . GQyG ø 1.
© 1999 The American Physical Society 1245
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We sketch the derivation ofLsc for an arbitrary conduc-
tor. Our basic assumptions are (i) no inelastic scatteri
occurs in the conductor; (ii) the conductor is sufficientl
short, ECttravyh̄ ø 1, ttrav being typical traversal time
through the conductor; (iii) the island is sufficiently large
so thatEC greatly exceeds the average level spacing
the island. Two first assumptions allow us to characteri
the conductor by an elastic scattering matrix disregardi
retardation effects and possible energy dependence of
scattering matrix. The third assumption allows us to di
regard coherence between the electrons transmitted to
2
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coming from the island, so that it can be regarded as
electron reservoir. These assumptions are flexible enou
to treat various scatterers including those where the el
tic scattering is determined by many-body effects. F
instance, if the scatterer consists of two resistive tunn
junctions with an island in between, transmission may
strongly suppressed by Coulomb blockade effect. Suc
compound scatterer fits the conditions (i) and (ii) provide
the elastic cotunneling dominates the transport at energ
of the order ofEC .

These assumptions correspond to a fermionic action
the following form
L ­
Z b

0
dt

(
MX

m­1

Z 0

2`

dxfxy
msx, td s≠t 1 iym≠xdxmsx, td 1 cy

msx, td s≠t 2 iym≠xdcmsx, tdg

1

NX
n­1

Z `

0
dxfxy

n sx, td s≠t 2 iyn≠xdxnsx, td 1 cy
n sx, td s≠t 1 iyn≠xdcnsx, tdg 1 ECfQstd 2 qyeg2

)
.

(5)
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Here the island is on the right (x . 0), n and m
label transport channels in the island and the reserv
respectively. x stands for fermion fields coming to
the scatterer, andc stands for outgoing modes;yn are
velocities in the channels. The scatterer is complete
characterized by the scattering matrix̂Skl that sets a
boundary condition forc andx

cks0d ­
X

l

Sklxls0d . (6)

Herek, l label modes on both sides of the scatterer. T
charge in the island is given by

Qstd ­
MX

n­1

Z `

0
dxfxy

n sx, tdxnsx, td

1 cy
n sx, tdcnsx, tdg . (7)

To proceed, we perform a Hubbard-Stratanovitch tran
ir,

ly

he

s-

form on interaction term introducing a new variablewstd,

ECfQstd 2 qyeg2 ! 2
Ùwstd2

2EC
1 iQstd Ùwstd 2 i

q Ùwstd
e

.

(8)

The resulting action is quadratic in fermions so th
they can be integrated out and the action can be r
resented as a functional ofwstd. We do this calculat-
ing Green functions of the fermions in the presence
field w and scattering potential. Special attention shall
given to the fact that in one dimension the Green fun
tion Gsx, t, x0, t0; fwstdgd is not continuous at coinciding
arguments, so that the problem shall be regularized by
ting scattering occur in a small but finite region of spac
The result does not depend on a regularization proced
so we use the one that makes for an easy calculation.
following action for fermion fieldsa

y
k , ak ,
.

eries
2L ­
Z b

0
dt

Z `

2`

dz

(
N1MX
k­1

a
y
k sz, td f≠t 1 iyk≠z 1 i Ùwstdskgaksz, td 1

M1NX
k,l

a
y
k sz, tdd̃szd

p
yk Hkl

p
yl alsz, td

)
, (9)

wheresk ­ 1 for the channels in the island andsk ­ 0 otherwise,z ­ 6s2sk 2 1dx for incoming (outgoing) modes,
d̃szd is a smooth approximation of delta function, and proves to be a proper regularization ifŜ ­ expsiĤd. [We reverse
coordinates in the channels in such a way that all outgoing (incoming) modes go to (come from)6`.] The action (9)
can be integrated over fermions and the answer can be presented as a formal series inĤ:

2Lsc ­
X̀

m­1

Trfs
p

ŷ Ĥ
p

ŷ Ĝs0ddmg , (10)

where operator multiplication and trace function includes summation over channels, integration overt, and integration
overz with weight factord̃szd. Here we introducêGs0d, Green function in the absence ofĤ. To comply with assumption
(ii) we assume that the spread ofd̃szd is small in comparison withyny´, ´ being a typical Matsubara frequency involved
In this case,

Ĝ
s0d
kl sz, t, z0, t0; fwstdgd ­ dkl

i
yk

fu1st 2 t0dusz 2 z0d 2 u2st 2 t0dusz0 2 zdg seifwstd2wst0dgsk 1 1 2 skd , (11)

where Fourier components ofu1,2 areus6´d. The key step is to resum the series and to present the action as a s
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in DG ­ G0sx, t, x0, t0; fwstd ­ 0gd 2 G0sx, t, x0, t0;
fwstdgd. The DG is continuous atx ­ x0 and does not
depend onx, x0 within the spread of̃dszd. This allows
one to integrate overz in Eq. (10).

Then the action can be reduced to the trace of logarith
of an operator,

2Lsc ­ Trn,t lnf1 2 s1 2 r̂dû1 exps2iwdû2 expsiwd

2 s1 2 r̂1dû2 exps2iwdû1 expsiwdg ,

(12)

where operator multiplication involves summation ove
channel indices inside the island and integration overt.
The operatorr̂ is the reflection matrix for the island
channels.

Expression (12) can be explicitly evaluated in two lim
its: r̂ ! 1 andw ! 0. There, we successfully reproduc
Eq. (3) for tunnel junctions and Eq. (4) for an arbitrar
scatterer in the linear regime. In general, even an eva
ation of Eq. (12) at specific realization ofwstd presents a
complicated problem.

Albeit a very important part of analysis of the actio
(12) can be done exactly. We are able to find th
minima of (12) in each topological sector, and thus give
quantitative estimate of effective Coulomb energy in th
limit G ¿ GQ . We consider the configurations ofwstd
of the following form:

expsiwd ­
NY

i­1

u 2 zi

1 2 uzp
i

. (13)

Here u ; expsi2ptybd, zi are complex parameters.zi

can be viewed as coordinates ofN (anti)solitons in the
plane of complexu. If jzij ! 1, these configurations
correspond to sets of Korshunov’s solitons [8]. We a
interested in configurations where all solitons are of th
same sign. In this case eitherjzij , 1 for all i or jzij . 1
so that expsiwd is an analytical function ofu either within
or beyond the unitary circle. The winding numberW ­
6N . Using the methods of analytical function theory w
show that these configurations indeed minimize the acti
in the corresponding topological sector. The minimu
does not depend onzi and equals

2LW ­
1
2

ln detsr̂ r̂1d jW j 1
1
2

ln detsr̂yr̂1dW . (14)

The second term is imaginary and can be viewed as
trivial shift of induced chargeq: q ! q 1 i ln detsr̂yr̂1d.
The first term is of importance since it describes the su
pression of statistical weight of topological sectors wit
W fi 0 in comparison with the trivial sector. It has bee
shown in [2,3] that the suppression of these statistic
weights leads to suppression of effective charging ener
This allows us to write down a simple formula for effec
m
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ẼC ~ EC

Y
n

R1y2
n , (15)

where Rn are eigenvalues of the reflection matrixr̂ r̂1.
This formula is valid provided the suppression is big.
similar relation has been obtained by Flensberg [6] in
much more restrictive framework. In the limit of almos
perfect transmission,R ! 0, we reproduce the results o
Matveev [5].

Recent theoretical advances allow us to character
Rn of a scatterer/conductor of virtually any type (se
[9] for a review). This makes the relation (15) eas
to use for concrete examples. From now on, we w
concentrate on diffusive conductor in the limitG ¿ GQ .
It is a disordered conductor, so that it is characterized
distribution ofRn, or transmissionsTn ­ 1 2 Rn. It has
been shown in [10] that the transmission distribution
a diffusive conductor depends only on its conductanc
rsT d ­ Gys2GQT

p
1 2 T d. We average the logarithm

of (15) with this distribution to obtain

ẼCyEC ~ exp

√
2

p2G
8GQ

!
. (16)

This is the main result of this work. The diffusive
scatterer of the same resistance as a tunnel junc
suppresses Coulomb blockade much more efficiently.
give some numbers, let us choose1yG ­ 4kohm. In
this case, the suppression factor is about 25 for a tun
junction and almost 3000 for a diffusive conductor.

Below we consider the fluctuations ofẼC and the effect
of weak localization. To make a qualitative estimatio
we note that the fluctuation ofG is of the order of
GQ . The weak localization correction is of the sam
scale. Therefore, the fluctuations of an exponential li
(16) must be of the order of its average value. Th
same should hold for the weak localization effect.
is remarkable that quantitative consideration gives ev
biggervalues.

This quantitative treatment can be performed along t
lines of [11] and [12]. There are formulas that can b
directly applied to the quantity of interest lnsẼCyECd ­
1
2

P
n ln Rn. It appears that both the fluctuation and the l

calization effect are dominated by a contribution of theuni-
versal cooperon-diffusion mode, the one which provide
Wigner-Dyson statistics of closely spaced transmissi
eigenvalues [11]. The contribution of this mode logarith
mically diverges at very smallR and shall be cut off at
R . GQyG, the average value of transmission spacin
For pure statistical ensembles, the fluctuation is given b

kkln2sẼCyECdll ­
Ndc

4
lnsGyGQd , (17)

whereNdc is the number of massless cooperon and diff
sion modes. It ranges from 1 to 8. The weak localizati
1247
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correction is

klnsẼCyECdlwl ­ 2
Nwl

4
lnsGyGQd , (18)

whereNwl is 2, 0, -1 for simplectic, unitary, and orthogo
nal ensemble, respectively.
1248
-

Experimentally, the fluctuation and weak localizatio
effect are identified by their magnetic field dependenc
Following [11] we introduce dimensionless paramete
hH ,hSO to characterize magnetic field and spin-orb
interaction. We disregard influence of magnetic field o
spin. Correlator of twoẼC taken at different values of
magnetic field reads
kklnfẼCshHdyECg lnfẼCsh0
HdyECgll ­ 2

1
4

lnhjh2
H 2 h02

H j4fshH 1 h0
Hd2 1 h2

SOg3fshH 2 h0
Hd2 1 h2

SOg3j . (19)
a
r
I
e

This equation is valid providedGyGQ ø jhH 2

h
0
H j, hH , h

0
H , hSO ø 1. It shows that the actual value of

ẼC can be changed by an order of magnitude by a fair
small change of magnetic fielddhH . GQyG. At a
biggerdhH effective charging energy exhibits power-law
correlations.

Magnetic field dependence of the weak localizatio
correction is given by

klnsẼCyECdlwl ­
1
4

f3 lnsh2
H 1 h2

SOd 2 lnsh2
Hdg .

(20)

To conclude, we have shown that the isolation require
for discrete charge effects can be provided by an
constriction which is not ideally ballistic. We have
discussed suppression of the effective charging ene
by a diffusive scatterer and found gigantic fluctuations o
this quantity. It might seem surprising that the phas
dependent action of a diffusive conductor is not quadra
in phase since this suggests that the electrodymanics
such a conductor may be potentially nonlinear. We no
that a proof of the fact that the action is not a quadrat
one is in fact already known. Whereas the action of th
form (4) leads to Johnson-Nyquist current noise, it wa
predicted that a coherent diffusive conductor produces
substantial extra short noise [13]. In [14] the short nois
has been related to a nonlinear response diagram.
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