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Coulomb Blockade without Tunnel Junctions
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Tunnel junctions are not needed to provide single electron effects in a metallic island. Eventually
the tunnel junction may be replaced by an arbitrary scatterer. To formulate this in exact terms, we
derive and analyze the effective action that describes an arbitrary scatterer. It is important that even a
diffusivescatterer provides a sufficient isolation for single electron effects to persist. We also consider
the fluctuations of the effective charging energy. [S0031-9007(99)08403-3]

PACS numbers: 73.23.Hk, 73.40.Gk

It is well known that electric charge of an isolated blockade has been studied in the situation where the
piece of conducting material can take only discrete valuessolation is provided by a quantum point contact with
corresponding to the integer number of electrons in therealmost perfect transparency. It has been shown that
This property persists if this isolated piece, the island, igshe charge quantization survives. Albeit the charging
connected to electron reservoir by means of a resistivenergy is strongly suppressed vanishing to zero at perfect
tunnel junction. It is the recognition of this mere fact thattransmission.
lead to an outburst of the entire field of single electron In this paper, we construct a general theory of Coulomb
phenomena [1]. blockade that can embrace tunnel junctions, quantum

The single electron effects are best visible provided theoint contacts, diffusive conductors, and eventually any
conductivity of the tunnel junction is much smaller thantype of scattering.
the conductance quantuip = ¢*/27/h. The ground The results are as follows. Charging energy vanishes
state energy as a function of induced chayges given  only for perfect point contacts. For a very wide class of
by minimization of Coulomb energy;c(n + g/e)?, with  conductors that have conductivity > G, the charg-
respect to discrete charge The result is periodic iy  ing energy is exponentially suppressed(En/Ec) =
with a periode [1]. The analysis of the reverse case, —aG/Gy, a being a dimensionless coefficient depending
G > Gy, requires advanced theoretical methods [2—4]on the type of the conductor. For disordered conductors,
Despite the partial controversy in results, all authorsfor instance, diffusive ones, the charging energy strongly
agree that in this case the ground state energy retairfictuates. This happens even if the fluctuations of the
the periodicq dependence, that manifests the Coulombconductance are small.

blockade. The effective charging enerds, that is, the The most equivalent mathematical framework to de-
g-dependent part of the ground state energy, is suppressedribe the charging effects in full has been reviewed by
by a factor of exp—G/2G) in comparison withE¢. Schoén and Zaikin in [7]. The partition function of the

Still the analysis has been restricted to tunnel junctionssystem is presented in the form of the path integral over
The next step has been made in [5,6] where Coulomthe fielde(7) (8 = h/T),
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The form of the last term presumes that the partition funcThis form shows that the tunnel junction is quite different
tion can be presented as a sum over topological sectofeom a linear resistor which is described by a form
that are labeled by an integéf = f{f d7¢(1)/27 wind-
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HereZy does not depend op which is bilinear ine. It has been frequently assumed

The action L, describes tunnel junction. It can be that a coherent diffusive conductor can be described by
evaluated by using the tunneling Hamiltonian method thaf4) and consequently exhibits no charging effects. We
gives show below that it is not so. However, the relation (4)

B 8 : _ / holds for an arbitrary conductor in the limit of small
L = %] de dr' SIrF_{n[;D(T) 9057 )]/2}. ¢. It is worth noting that in the limit ofG > Gy
2B°Go Jo 0 sin{@ (7 — 7/)/B] the typical fluctuations of the phase are small indeed,
(B) 8¢?=Gy/G K 1.
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We sketch the derivation of . for an arbitrary conduc- coming from the island, so that it can be regarded as an
tor. Our basic assumptions are (i) no inelastic scatteringlectron reservoir. These assumptions are flexible enough
occurs in the conductor; (ii) the conductor is sufficientlyto treat various scatterers including those where the elas-
short, Ec7vav /R < 1, T4ay being typical traversal time tic scattering is determined by many-body effects. For
through the conductor; (iii) the island is sufficiently large, instance, if the scatterer consists of two resistive tunnel
so thatE- greatly exceeds the average level spacing ifjunctions with an island in between, transmission may be
the island. Two first assumptions allow us to characterizetrongly suppressed by Coulomb blockade effect. Such a
the conductor by an elastic scattering matrix disregardingompound scatterer fits the conditions (i) and (ii) provided
retardation effects and possible energy dependence of tlee elastic cotunneling dominates the transport at energies
scattering matrix. The third assumption allows us to dis-of the order ofEc.
regard coherence between the electrons transmitted to andThese assumptions correspond to a fermionic action of
| the following form

B[ M (o
—r-f drl > [ dslihte. )0 + e, ) + 65,7 (0 — i 5.7

N o
+> fo dx[x (x,7) (0; = v, xa(x, 7) + o1 (6, 7) (8- + 0,000, (x, 7)] + Ec[Q(7) — g/}
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(5)

Here the island is on the rightx (> 0), n and m | form on interaction term introducing a new varialdér),

label transport channels in the island and the reservarr, C v .

respectively. y stands for fermion fields coming to g.[o(7) — g/el? — _o(1) +iQ(1) () — Z-M‘
e

the scatterer, angs stands for outgoing modes;, are 2Ec
velocities in the channels. The scatterer is completely (8)
characterized by the scattering matrfy, that sets a ) S o )
boundary condition fogr and y The resulting action is quadratic in fermions so that
they can be integrated out and the action can be rep-
P (0) = ZSleI(O)- (6) resented as a functional @f(r). We do this calculat-
I ing Green functions of the fermions in the presence of
Herek, I label modes on both sides of the scatterer. Thdield ¢ and scattering potential. Special attention shall be
charge in the island is given by given to the fact that in one dimension the Green func-
M o tion G(x, 7,x', 7’;[¢(7)]) is not continuous at coinciding
o(r) = > f dxx (e, 7)xn(x, 7) arguments, so that the problem shall be regularized by let-
=170 ting scattering occur in a small but finite region of space.
+ zp:{(x, T, (x, 7)]. (7)  The result does not depend on a regularization procedure,

To proceed, we perform a Hubbard-Stratanovitch trapsgo we use the one that makes for an easy calculation. The

following action for fermion fieIds:,f, ag,
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whereo; = 1 for the channels in the island amgl = 0 otherwisez = *(20 — 1)x for incoming (outgoing) modes,
8(z) is a smooth approximation of delta function, and proves to be a proper regularizafiea #xp(i H). [We reverse

coordinates in the channels in such a way that all outgoing (incoming) modes go to (cometfrom)The action (9)

can be integrated over fermions and the answer can be presented as a formal g€ries in

— Ly = i Tr[(vVo AV GOy, (10)
m=1

where operator multiplication and trace function includes summation over channels, integration amdrintegration
overz with weight factoro(z). Here we introducé&®, Green function in the absencef To comply with assumption
(i) we assume that the spread®fz) is small in comparison witlv,, /&, € being a typical Matsubara frequency involved.
In this case,
Gilr 2 i le(@) = Sy [67(r = )0 — ) = 67 (r = )6 — Doy + 1 - o), (1D)
k

where Fourier components 6f~ aref(+¢). The key step is to resum the series and to present the action as a series
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in  AG = Go(x,7,x",7;[e(7) = 0]) — Go(x,7,x',7/; tive charging energy
[¢(7)]). The AG is continuous att = x’ and does not
depend onx,x’ within the spread o6 (z). This allows Ec ECl_[er/z’ (15)
one to integrate over in Eq. (10). n
Then the action can be reduced to the trace of logarith

Where R, are eigenvalues of the reflection matrig .
of an operator,

This formula is valid provided the suppression is big. A
A Ao ) similar relation has been obtained by Flensberg [6] in a
~ Lo =Tr, [l = (1 = 1) exp(—ie)d~ explie) much more restrictive framework. In the limit of almost
— (1 -0 exp—ip)0t explie)], perfect transmissiork — 0, we reproduce the results of
(12) Matveev [5]. _ _
Recent theoretical advances allow us to characterize
R, of a scatterer/conductor of virtually any type (see
[9] for a review). This makes the relation (15) easy
to use for concrete examples. From now on, we will
concentrate on diffusive conductor in the lingit> Gy.
It is a disordered conductor, so that it is characterized by

where operator multiplication involves summation over
channel indices inside the island and integration over
The operatori is the reflection matrix for the island
channels.

Expression (12) can be explicitly evaluated in two lim-

ts:7 1 andy — 0. There, we successiull reproduce p Zf0 P00 Ml B HASERS BN L e ) T8 o
Eq. (3) for tunnel junctions and Eq. (4) for an arbitrary

: : . diffusive conductor depends only on its conductance
scatterer in the linear regime. In general, even an evall? = — . ’
ation of Eq. (12) at specific realization ¢f(v) presents a p(T) = G/(quT. = .T)' We average the logarithm
complicated problem. of (15) with this distribution to obtain

Albeit a very important part of analysis of the action . G
(12) can be done exactly. We are able to find the Ec/Ec = exp(—g) (16)
minima of (12) in each topological sector, and thus give a e
guantitative estimate of effective Coulomb energy in theThis is the main result of this work. The diffusive
limit G > Gy. We consider the configurations ¢f(r)  scatterer of the same resistance as a tunnel junction
of the following form: suppresses Coulomb blockade much more efficiently. To
give some numbers, let us choo$¢G = 4kohm. In
. u— z; this case, the suppression factor is about 25 for a tunnel
explie) = l] 1 — uz (13) junction and almost 3000 for a diffusive conductor.
. Below we consider the fluctuations Bf and the effect
Here u = exp(i2mr/B), z; are complex parameterss; of weak localization. To r_nake a qualitative estimation,
can be viewed as coordinates Nf (anti)solitons in the We note that the fluctuation ot is of the order of
plane of complexu. If |z;]| — 1, these configurations Go- The weak localization correction is of the same
correspond to sets of Korshunov's solitons [8]. We arescale. Therefore, the fluctuatlons of an exponential like
interested in configurations where all solitons are of thd16) must be of the order of its average value. The
same sign. In this case eithef| < 1forallior|z| >1 Same should hold for the yveak quallzat'lon effect. It
so that expi ¢) is an analytical function of: either within 1S remarkable that quantitative consideration gives even
or beyond the unitary circle. The winding numbgr =  biggervalues.
+N. Using the methods of analytical function theory we _ This quantitative treatment can be performed along the
show that these configurations indeed minimize the actiofines of [11] and [12]. There are formulas that can be
in the corresponding topological sector. The minimumdirectly applied to the quantity of interest(fc /Ec) =
does not depend an and equals 5 2. INR,. It appears that both the fluctuation and the lo-
calization effect are dominated by a contribution of timé
1 o 1 s versal cooperon-diffusion mode, the one which provides
—Lw = Elndet(” ) IWl + Elndet(r/r W (14) Wigner-Dyson statistics of closely spaced transmission
eigenvalues [11]. The contribution of this mode logarith-
The second term is imaginary and can be viewed as mically diverges at very smaR and shall be cut off at
trivial shift of induced charge: ¢ — ¢ + iIndet(#/#"). R = Go/G, the average value of transmission spacing.
The first term is of importance since it describes the supFor pure statistical ensembles, the fluctuation is given by
pression of statistical weight of topological sectors with N
W + 0 in comparison with the trivial sector. It has been {n*(Ec/Ec)) = = In(G/Gy), (17)
shown in [2,3] that the suppression of these statistical 4
weights leads to suppression of effective charging energwhereNy. is the number of massless cooperon and diffu-
This allows us to write down a simple formula for effec- sion modes. It ranges from 1 to 8. The weak localization
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correction is Experimentally, the fluctuation and weak localization
effect are identified by their magnetic field dependence.

(N(Ec/Ec))w = —Mln(G/GQ), (18) Following [11] we in@roduce dim_ens_ionless parameters

4 nu,mso to characterize magnetic field and spin-orbit

whereN,, is 2, 0, -1 for simplectic, unitary, and orthogo- interaction. We disregard influence of magnetic field on
nal ensewmble’re’spectively. ’ ' spin. Correlator of twaE taken at different values of

magnetic field reads

{In[Ec(nu)/Ec]INEc(ny)/Ec]) = —%ln{lnﬁ — il (e + 9p)* + 050 PL(na — ni)* + n5oT}. (19)

This equation is valid providedG/Gy < Iny — | instructive discussions of the results. This work is a
il M. M, mso << 1. 1t shows that the actual value of part of the research program of the “Stichting voor
Ec¢ can be changed by an order of magnitude by a fairlyFundamenteel Onderzoek der Materie” (FOM), and |
small change of magnetic fieldny = Go/G. At a  acknowledge financial support from the “Nederlandse
bigger 6 ny effective charging energy exhibits power-law Organisatie voor Wetenschappelijk Onderzoek” (NWO).
correlations.

Magnetic field dependence of the weak localization
correction is given by

. 1
(In(Ec/Ec)wi = 5 [3In(nj; + n3o) — In(nip)].
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