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We study the phase behavior of additive binary hard-sphere mixtures bydirect computer simulation,
using a new technique which exploits an analog of the Gibbs adsorption equation. The res
phase diagrams, for size ratiosq  0.2, 0.1, and 0.05, are in remarkably good agreement w
those obtained from an effective one-component Hamiltonian based on pairwise additive dep
potentials, even in regimes of high packing (solid phases) and for relatively large size ratios (q  0.2)
where one might expect the approximation of pairwise additivity to fail. Our results show tha
depletion potential description accounts for the key features of the phase equilibria forq # 0.2.
[S0031-9007(98)08128-9]

PACS numbers: 64.75.+g, 64.60.– i, 82.70.Dd
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Understanding the stability of colloidal mixtures is rele
vant for many industrial applications, e.g., paint, in
etc., but is also interesting from a fundamental statistic
physics point of view [1]. Surprisingly, the phase beha
ior of even the simplest model colloid mixture, i.e., larg
and small hard spheres, is still not established and rema
a topic of much debate. For instance, it is still uncle
whether a (stable) fluid-fluid demixing transition exists fo
any additive binary hard-sphere mixture. The celebrat
Percus-Yevick approximation [2] predicts no fluid spino
dal instability, while other integral equation approxima
tions do [3,4], although at completely different statepoin
Experiments on colloidal hard-sphere mixtures suggest t
the demixing transition is strongly coupled to the freezin
transition, although sedimentation effects preclude de
nite conclusions [5]. Theoretical approaches that consi
both the fluid and solid phase have also been inconc
sive. First, a phenomenological free volume theory pr
dicts a fluid-fluid demixing transition that is metastab
with respect to a broad fluid-solid coexistence region [6
Here “broad” refers to the width of this coexistence regio
in terms of the difference between the packing fractio
of the larger species in the two coexisting phases. A
other scenario is reported in Ref. [7] where a virial expa
sion is used for the fluid phase and a density function
approximation for the solid. This yields a narrow freez
ing transition forq  0.1, a broad one forq  0.2, and a
fluid-fluid spinodal instability at such high pressures that
is argued to be metastable. Yet another theoretical tre
ment predicts a narrow fluid-solid coexistence forq ! 0
[8]. The calculated phase behavior is thus very sensit
to the details of the approximations involved in the abo
approaches.

An alternative approach to asymmetric binary har
sphere mixtures stems from the analogy with colloi
polymer mixtures. The properties of such mixtures ha
been described succesfully in terms of the so-called dep
tion potentialfdep which arises between a pair of (large
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colloidal particles due to the presence of a “sea” of (sma
polymers. This depletion potential is essentially attrac
tive, and was derived by Asakura and Oosawa and ind
pendently by Vrij for the case of ideal polymers [9]. As
it is generally accepted that the stability of binary mix
tures is determined by these depletion potentials, seve
groups attempted to measure them directly in experimen
[10]. Moreover, explicit theoretical expressions forfdep
have been derived by several groups [11,12] and the
have been tested against simulations [4,13]. In this Le
ter we show that phase diagrams calculated using an
fective pairwise potentialfeff  fll 1 fdep, wherefll

is the hard-sphere potential, agree well with those dete
mined by direct simulation of the true binary hard-spher
mixture for q  0.2, 0.1, and 0.05. Our results provide
the first justification for the effective depletion potentia
description of phase equilibria.

We considerNl large andNs small hard spheres in a
macroscopic volumeV at temperatureT . The total Hamil-
tonian consists of kinetic energy contributions and inte
action termsH  Hll 1 Hls 1 Hss. It is convenient to
consider the system in thesNl , V , zsd ensemble, in which
the fugacityzs of the small spheres is fixed; the pack
ing fraction of the corresponding reservoir is denote
hr

s and we omit the explicitT dependence. The appro-
priate thermodynamic potentialFsNl , V , zsd, from which
the phase behavior can be deduced as in Ref. [14],
defined by

expf2bFg  Trl

X̀
Ns0

zNs
s Trs expf2bHg , (1)

where the trace Trn is short for 1yNn!L3Nn
n times the

volume integral over the coordinates of the particle
of speciesn, and whereLn is the thermal wavelength
and b  1ykBT . F is the Helmholtz free energy
of an effective one-component large-sphere syste
described by a zs-dependent effective Hamiltonian
Heff, viz. expf2bFg  Trl expf2bHeffg with
© 1998 The American Physical Society 117
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Heff  Hll 1 V. The physical meaning ofV is
the grand potential of the sea of small spheres in the pr
ence of theNl large spheres at fixed positions [14]. B
neglecting three- and more body terms inHeff and using
accurate (but empirical) expressions for the depleti
potentialfdep, we determineF for fixed zs and packing
fraction hl  spy6ds3

l NlyV by standard thermodynamic
integration using Monte Carlo simulations [14]. Th
resulting phase diagrams, which follow from commo
tangent constructions, are shown by the solid lines
Fig. 1. These calculations predict the existence of a flu
fluid demixing transition forq  0.1 and 0.05, although
this is metastable with respect to the fluid-solid transitio
[14]. Perhaps more surprisingly, they also yield a stab
isostructural solid-solid transition forq  0.05, and a
metastable one forq  0.1. For q  0.2 the effective
one-component calculations predict only a fluid-sol
transition that becomes broader for largerhr

s . Note,
however, that these results are not exact, since three-
higher body interactions are neglected. One might exp
this approximation to break down at sufficiently hig
densities (e.g., in the solid phase) or for less extreme s
ratios (e.g.,q . 0.154, where three nonoverlapping large
spheres can overlap with a small one [15]), thereby cast
doubt on the specific predictions (in particular, those f
the solid-solid transition). Moreover, even the potenti
fdep used in the simulations is approximated by an empi
cal form that does not take into account the longer-rang
oscillations [14]. To the best of our knowledge thes
approximations—and therefore the depletion potent
picture as a whole—have never been tested directly b
comparison with results of a full treatment of true binar
mixtures. Given the richness of the predicted pha
diagrams and the experimental and computational eff
that is being put into the determination of the depletio
potential, it seems both important and timely to perfor
such a test. It has been argued by many authors (includ
the present) that direct simulations are not feasible f
highly asymmetric binary hard-sphere mixtures becau
of ergodicity problems. However, results of Fig. 1 sho
such interesting phase behavior at (surprisingly) lowhr

s
that we were motivated to perform direct simulations
this regime. Note that direct simulations have recen
been performed in Ref. [16], but their new algorithm
precludes a study of the state points of interest he
shl 1 hr

s . 0.25d.
The scheme we use to calculate the “exact” phase d

grams of binary hard-sphere mixtures by direct simulatio
employs the identity

bFsNl , V , zsd  bF sNl , V , zs  0d

1
Z zs

0
dz0

s

∑
≠bFsNl , V , z0

sd
≠z0

s

∏
. (2)

The system atzs  0 is the pure system of large hard
spheres, and hence the first term of the right-hand side
118
es-
y

on

e
n
in

id-

n
le

id

and
ect
h
ize

ing
or
al
ri-
ed
e
ial
y a
y
se
ort
n

m
ing
or
se
w

in
tly

re

ia-
n

of

0.00 0.25 0.50 0.75
ηl

0.0

0.1

0.2

0.3

0.4

ηs

r

(a)

q=0.2

F

F+S

S

0.00 0.25 0.50 0.75
ηl

0.0

0.1

0.2

0.3

0.4

ηs

r

(b)

q=0.1 F

F+S

F+F

S+S

S

0.00 0.25 0.50 0.75
ηl

0.0

0.1

0.2

0.3

0.4

ηs

r

(c)

q=0.05

F+F

F+S

S+S

SF

FIG. 1. Phase diagram of binary hard-sphere mixtures wi
size ratios (a)q  0.2, (b) q  0.1 and (c) q  0.05 as a
function of the large-sphere packing fractionhl and the small
sphere reservoir packing fractionhr

s . F and S denote the
stable fluid and solid (FCC) phase.F 1 S, F 1 F, andS 1 S
denote, respectively, the stable fluid-solid, the metastable flu
fluid, and the (meta)stable solid-solid coexistence region. T
solid and dashed lines are the effective one-component resu
the squares and the asterisks ( joined by lines to guide the e
denote, respectively, the fluid-solid and the solid-solid transitio
obtained from direct simulations of the true binary mixture with
Nl  32 large spheres.

Eq. (2) is given accurately by Carnahan-Starling [17] i
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the fluid phase and by Hall [18] in the solid phase. In th
latter case, an integration constant was chosen such
the known fluid-solid coexistence of the pure hard-sphe
system is recovered [19]. The integrand in the seco
term can be rewritten using Eq. (1) as∑

≠bFsNl , V , zsd
≠zs

∏
 2

kNslzs

zs
, (3)

where kNslzs denotes the average number of small pa
ticles in thesNl , V , zsd ensemble. This quantity can be
measured directly in a grand-canonical simulation of t
“adsorption” of small spheres from a reservoir at fugaci
zs onto a system ofNl large spheres in a volumeV .

Before discussing the results of these direct simulatio
(Fig. 1), a few remarks are in order. First, the schem
proposed in Eqs. (2) and (3) is merely a bulk analo
of using the Gibbs adsorption equation to determi
the surface tension, wherekNslzs plays the role of the
adsorption,F that of the surface tension, and whereNl, V ,
andq characterize the “substrate.” Second, it is importa
to realize thatkNslzs is not identical to the unweighted
average adsorption from the reservoir onto a system
static large hard spheres, since not all configurations
large spheres carry the same statistical weight. In fa
this weight is proportional to expf2bHeffg, a quantity
that is not known exactly as it involves empirical pa
potentials and unknown higher-order interactions, as
have seen above. Consequently, the grand-canon
simulations that measurekNslzs must be combined with
a simultaneouscanonical average over the large-sphe
configurations. This requirement still leads to ergodici
problems at highhr

s , although the upperbound, which
depends onNl, V , and q, is high enough to permit
us to study interesting regimes. Third, the requireme
to perform a simultaneous canonical average over
large spheres in the calculation ofkNslzs also points to
a shortcoming in the free volume approach to asymme
binary mixtures. The key quantity in this approach isa ;
hsyhr

s , where the packing fraction of the small sphere
is defined byhs  spy6ds3

s kNslzs yV . If it is assumed
that a s, 1d depends onhl and q but is independent of
zs, and we employ the scaled particle expression for th
quantity, we recover the free volume approach [6] fro
Eqs. (2) and (3). However, this scaled particle express
identifiesa with the probability to insert a small spher
in the pure large-sphere system, and thus assigns
equal statistical weight to all (nonoverlapping) large
sphere configurations. This shortcoming can (formall
be remedied by realizing that the “free volume fraction
a is not an intrinsic property of the pure large-sphe
system, as assumed in, e.g., Ref. [6], but also depe
on the thermodynamic state of the reservoir of sm
ones, i.e.,a  ashl , q, zsd. Actually, thezs dependence
of a is a manifestation of the fact that not all large
sphere configurations carry the same statistical weig
e
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and this is crucial for a proper description of the depletio
mechanism.

We now return to the calculation ofF from Eqs. (2)
and (3). Typical data are presented in Fig. 2, whe
we plot hs as a function of hr

s as measured in a
simulation with Nl  32 and q  0.1 for several hl.
Here we convertedzs into hr

s using the Carnahan-
Starling expressionzssssyLsd3  s6hr

s ypd expfs8hr
s 2

9hr2
s 1 3hr3

s d s1 2 hr
s d23g, which is essentially exact in

the regime of interest. AlthoughNl  32 may seem
too small a number to perform reliable simulations, on
should recognize that (i) the pure large-sphere free ener
(at zs  0) is taken from accurate independent source
and (ii) the maximum value ofkNslzs is about5 3 104

due to the small size ratio. For comparison we als
plot hs as predicted by the free volume approach o
Ref. [6]; these are straight lines. As expected, agreeme
with results of direct simulations becomes worse wit
increasing hr

s for every value of hl. Moreover, the
diffferences between simulation and theory begin at low
hr

s when hl is higher. In particular, the difference
for hl  0.1 increases dramatically athr

s ø 0.15, which
is close to the fluid-solid transition. This is a direc
manifestation of the depletion mechanism, that allow
more free volume (and hence a higherhs) because of
clustering of the large ones. This part of the depletio
effect is not contained in the free volume approach.

Using the simulation data forhs, we calculate
FsNl , V , zsd from Eq. (2) by numerical integration. Once
F is known we employ common tangent constructions
fixed zs to obtain the phase boundaries shown by the sym
bols in Fig. 1 [14]. The main observation is the strikingly
good overall agreement with the effective one-compone
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FIG. 2. The small sphere packing fractionhs of a hard-sphere
mixture with size ratioq  0.10 versus that of the reservoirhr

s
for several large sphere packing fractionshl . The asterisks
denote simulation data while the full lines denote the results
the free volume approach [6].
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results for all three values of the size-ratioq. Such good
agreement throughout the fluid-solid coexistence cur
for q  0.2 and at highhl for q  0.1 and0.05 is rather
unexpected, as one might expect the depletion pictu
to break down in these regimes. The only significa
difference is that the isostructural solid-solid transition fo
q  0.1 at hr

s , 0.06 turns out to be stable with respec
to fluid-solid coexistence, in contrast to the effectiv
one-component prediction. The present results prov
further evidence for a fluid-solid coexistence broadenin
with increasinghr

s for all q, and do not support the
narrowing predicted by some theoretical approaches [7,
Unfortunately, the ergodicity problems prevented us fro
reaching the fluid-fluid demixing regime by direct simu
lation, so that this feature of the effective one-compone
results could not be tested. Nevertheless, the quantita
agreement at the accessible values ofhr

s does not give
any indication that breakdown of the depletion potenti
picture will occur at higherhr

s .
In conclusion, we have studied the free energy of asy

metric binary hard-sphere mixtures by direct simulatio
and compared the resulting phase diagrams with tho
obtained from an approximate effective one-compone
Hamiltonian. These two approaches can be seen as c
plementary, in the sense that the latter is based on the
energy costHeff to “insert” large spheres at fixed posi
tions into a sea of small ones, while the former can
described in terms of the adsorption of the small sphe
onto a system of freely moving large ones. These two a
proaches yield results in surprisingly good agreement
size ratiosq  0.2, 0.1, and 0.05, even at high packing
fractionshl corresponding to the solid phase. Our resu
provide strong support for the pairwise depletion potent
description of phase equilibria given in our earlier pap
[14]. In particular, we confirm our earlier prediction of an
isostructural solid-solid transition forq  0.1 and 0.05,
which is now found to be stable for bothq  0.1 and
0.05. We also give evidence for a broadening of the flui
solid coexistence ashr

s increases. Our present approac
should be relevant for studies of other asymmetric mi
tures (e.g., nonspherical, charged, polydisperse, or fle
ble particles) for the following reasons: (i) The schem
which is reliable and efficient, is based on an analog of t
Gibbs adsorption equation that can be generalized to stu
the phase behavior of other asymmetric mixtures; (ii) th
good agreement between the results of direct simulatio
and the depletion potential approach indicates that t
three- and more body terms, which are generally difficu
to obtain, are relatively unimportant for small values o
q. This justifies,a posteriori, the experimental, numeri-
cal, and theoretical effort spent on the determination of t
effective pair potential for various systems. Note that th
depletion potential approach not only provides physic
insight into the phase behavior of the mixture and the n
ture of the pair correlation functiongllsrd [14], but is also
computationally more tractable than a treatment of t
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true mixture. A word of caution is appropiate here, since
the importance of the effective pair potential implies the
need for an accurate one. In the present hard-sphere ca
the theoretical expressions employed in Ref. [14] for the
depletion potential agree well, but probably fortuitously
well at highhr

s , with simulations [12]. Before embarking
upon generalizations, it is necessary to understand bett
this fortuitous agreement.
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