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Alternative Scenarios of Spiral Breakup in a Reaction-Diffusion Model with Excitable
and Oscillatory Dynamics
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Instabilities (breakup) of spiral waves in two dimensions and their one-dimensional analogs—
wave trains triggered by a specific boundary condition—leading to spatiotemporally chaotic dynamics
are investigated in a simple activator-inhibitor model. These instabilities always require an
absolute instability of the emitted wave trains and coincide with the Eckhaus instability for the
excitable case, while for oscillatory conditions the well-known convective variant of the Eckhaus
instability is found. The different cases correspond to different spiral breakup phenomenologies.
[S0031-9007(99)08410-0]

PACS numbers: 82.40.Ck, 05.45.-a, 47.54.+r, 82.40.Bj

The investigation of transitions from regular patternsa spiral is constructed by employing a Dirichlet boundary
to spatiotemporally chaotic dynamics in extended systemesondition that emits a wave train. Therein, the selected
remains a challenge in nonlinear physics [1]. Inthis Letterwavelengthig;, is similar to the one realized in the 2D
we investigate the instability of spirals leading to defect-spirals in the parameter region of interest. In the excitable
mediated turbulence within a simple reaction-diffusioncase, BU of the wave train occurs in contrast very close to
model with oscillatory and excitable dynamics. Thisthe boundary.
transition is known as spiral breakup (BU) and has been Furthermore, the minimum stable wavelength, of a
found in experiments in pattern forming chemical reactionsvave train in a system with periodic boundary conditions
[2,3] and numerical simulations in various models [4—6].is computed by numerical stability analysis and compared
So far, there exist various, often heuristic explanations ofo Ag4;, selected by the 1D sources. Two scenarios are
the BU phenomenon. Most consider that the spiral core iseported: if Agi; = A at the onset of instability, the
a localized source of periodic waves. Far away from thenstability of periodic wave trains ain;, is assumed to
core, the profile of the spiral approaches a planar periodibe absolute. IfAg;, < Anin, the instability atAp, is
wave train with a wave number specific to the parametersonvective and 4, marks the onset of absolute instability.
of the system (wavelength selection). In general, BU isThe two cases are shown to correspond to the different
attributed to the selection of a wave number that is todU phenomenologies. Breaking near the source indicates
small to be sustained in the system. In excitable mediaabsence of a convective instability in the periodic waves.
it has been argued that the spiral wavelength is alreadyhe opposite is true for the case of BU far away from the
too close to the minimum wavelength,;, allowed by the source. Finally, a “curvature” perturbation is applied to
dispersion relation for wave trains in 1D [7]. The complexthe 1D sources. It has a destabilizing effect on the wave
Ginzburg-Landau equation (CGLE) describes oscillatontrains and accounts for most of the quantitative difference
media near a Hopf bifurcation. A comparison of analyticalbetween the instability of the 1D source and BU in 2D in
results on the stability of periodic waves in 1D andthe oscillatory case.
simulations in 2D suggested that spirals break up when Here, we study a two-component model describing
the asymptotic wave train becomes absolutely unstable [8the dynamics of a two-component vector of functions in
More recent numerical studies indicate that the BU ofterspacel/ = (u,v). The actual equations are of FitzHugh-
precedes the absolute instability of the corresponding 1Magumo type and describe the interaction of a fast activator

wave train [9]. (#) and a slow inhibitofv) variable:
Phenomenologically, there are two different BU scenar- ou 1 b+ v

ios: while spirals in excitable media usually break near the — =—uu—1) (u — > + Au,

spiral core [5], spirals in the CGLE first become unstable ot € a

far away from the core. Recently, this phenomenology v _ ) — v 1)

has been analyzed in related 1D problems (waves emit- ot ’

ted from a boundary due to convective or curvature related 0, 0=u<1/3

terms) and explained by the appearance of a global mode
that asymptotes to the absolute instability in large systems ) =91 =675uw— 1), 1/3=u=1.

[10]. Here, a reaction-diffusion model is studied, where L, I <u

BU near the core had been already found under excitabl€he form of f(«) describes a delayed production of the
conditions [6]. For oscillatory conditions, BU far away inhibitor and the equations have been used to model
from the spiral core will be reported. The 1D analog ofpatterns in a catalytic surface reaction [11]. The change
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of f(u) from the standard choic¢(«) = u [12] lead inner part of the initial spiral survives surrounded by a
to the discovery of spatiotemporal chaos due to BU forsea of small defects with irregular dynamics. The size
€ > egy [6,13]. The parameter choice < 1 yields of this remainder shrinks with increasing up to the
excitable (oscillatory) behavior fob > 0 (b < 0) and point where it disappears completely. The same scenario
0 < € < 1. In both cases, an unstable focus exists withis observed in experiment in the Belousov-Zhabotinsky
(u,v) = (up,vo) in the local dynamics of Egs. (1). In reaction (BZR) and in CGLE simulations [2,9].

the excitable case, two more fixed points appéarv) = Next, a 1D analog of a spiral is studied. Empirically,
(0,0) is the stable rest state arid,v) = (b/a,0) is a it is found in the oscillatory cas& = —0.045), that the
saddle that marks the threshold of the excitable mediuntoncentrations$u, v) in the spiral core fok coincide with
Throughout this Letterq is fixed to 0.84 andb ande  the unstable fixed pointug, vo) just below the critical
are varied. For simulations in 2D, zero-flux boundaryegy. Consequently, the equation farin (1) is replaced
conditions have been employed and a spatial (temporaby

discretization ofix = 0.196 (dt = 9.5 X 1073) has been ou 1 b+ v 2u  G(r) du
used in an explicit Euler-scheme, convergence has beegr =——u(u — 1)(u - ) + =+ —,
tested by runs withdx = 0.097 and dr = 2.4 X 1073. ! € a r roor
System sizes up t200 by 200 have been studied. Jv (2)

Earlier work in the excitable regime [6] revealed a ar =flu) — v,
transition to spatiotemporal chaos that has been precedgd, e Dpirichlet [4(0)
by a modulational instability of spiral rotation known

as meanderin_g [12]. In contrast, simul_ations insi_d_e thesed at respective ends of the 1D system of lenigth
oscillatory regime(b < —0.01) show a direct transition A "cnoice G(r) = 1, Eq. (2) represents the radial part of
from spiral rotation to spatiotemporal chaos. In thiSgq "1y anq the last term on the right-hand side describes
regime, BU appears first far away from the core. ANy, imnact of curvature. For simplicity, we first neglect

example is given in _Fig. 1. The stable spiral i_n Fig'__lacurvature effects and sét(r) = 0. The Dirichlet bound-
has pe(_an created Just below onset of th_e Ir‘St"’?b_'“tyary atr = 0 is a source of waves similar to the core of
If € is increased slightly, the waves acquire a visible,

L i g the spiral in 2D. Note, however, that the 1D source is
modulation in wavelength while moving outward from

h ol This lead . ; . not equivalent to the spiral in 2D. It rather describes
the spiral center. This leads to creation of new spiray,q r4dial dynamics of a target pattern emitting circular
pairs far away from the core (Fig. 1c). Finally, the

waves. The specific choice of the Dirichlet condition
nevertheless selects a wavelength almost identical to the
one found for spirals in 2D for parameters just below
egy. Space-time plots from the integration of Egs. (2)
are presented in Fig. 2 for oscillatory and excitable
conditions. In both cases, the wave train emitted from
the left boundary atr = 0 exhibit an instability upon

= up, v(0) = vo] and zero-flux
du(L)/dr = dv(L)/or = 0] boundary conditions are

u

FIG. 1. BU dynamics in Eqgs. (1) foe slightly larger than FIG. 2. Space-time plots of integrations of Egs. (2) with
egy. Parameters aré = —0.045 and € = 0.0752. Frame G(r) = 0. Time is running from top to bottom, space from
(a) shows the initial spiral generated fer slightly below left to right. The length isL = 100, time interval shown is
egy = 0.075. Frame (b) shows the modulation due to the =250. a = 0.84, in all cases,h = —0.045 in (a), (b) and
instability, (c) is BU far away from the center and (d) is the » = 0.07 in (c), (d). € = 0.078 (a), 0.082 (b), 0.081 (c), and
final state, a spiral fragment surrounded by a sea of smalled.082 (d). In (a) a stable wave train is established in the long
defects. The frames are separatedsby= 50, system size is run, in (b) waves break roughly three wavelengths away from
100 X 100. the boundary.

1161



VOLUME 82, NUMBER 6 PHYSICAL REVIEW LETTERS 8 EBRUARY 1999

increase ofe at a critical value ofec. Forb = —0.045,  form W, ~ ¢/®™/L2W(z) (Fig. 3). The amplitudes
perturbations are “advected” out of the systems in lineof the eigenfunctions are largest in the fronts and backs
with intuitions about convective instability foe just of the pulses in the wave train in contrast to the Fourier
below ec (Fig. 2a). The instability manifests itself first eigenfunctions in the CGLE [8].
in wave train “breakup” several wavelengths away from Thus, the fastest growing modes correspond to an alter-
the boundary, as shown in Fig. 2b. In the excitable caseating compression and expansion of subsequent pulses in
with » = 0.07, the instability appears very close to the line with the observations in the 2D simulations of Fig. 1b
source (see Fig. 2d). The transition between the twand experiments in the BZR [2]. The calculations reveal
scenarios happens arouid= 0.04. The values ofec  an instability reminiscent of the Eckhaus instability. As
are not very sensitive to changes #nand lie slightly the length of the ring is shortened, the spectra of the wave
above0.08. Thus, we find the counterpart of BU near [6] trains shift towards larger real parts and cross the imagi-
and far away from the spiral core (see Fig. 1) in the 1Dnary axis atLyiy, = N Amin(N) (Fig. 4). The spectra for
model. In particular, different scenarios do not dependhe caseb = 0.07 look similar to the ones in Fig. 4, but
on 2D ingredients like meandering. develop four maxima instead of two just beldwy,;,. For

We now turn to a numerical stability analysis of wave given parameters andb, we have computed thg,;,(¢)
trains. The linear stability problem for a traveling wave and compared the values with the wavelength selected
solution with constant shap&,(r — ct) and constant by the Dirichlet source)g;(e). The two curves merge
speedc in 1D is formulated in the moving frame =  for b = 0.07 ate = €¢ (lower panel in Fig. 5) and cross
r — ct, in which the wave solutions are stationary. Thefor b = —0.045 for € < ec¢ (upper panel in Fig. 5). The
numerical stability analysis of wave trains is performedcurves for the spiral wavelength in 2@, are also plotted
in the 1D version of Egs. (1) with periodic boundary in the upper frame of Fig. 5. The BU in 2D appears at
conditions as the closest approximation to the unboundesimaller values of, though the selected wavelengths of
system withL = <. The evolution of perturbations @,  the spirals and the Dirichlet sources are almost identical
is described by, (z)e“’, whereW;, andw, are eigen- just before BU. The results of Fig. 5 can be interpreted
vectors and eigenvalues obtained from linear stabilityas follows: forb = 0.07, the instability atA,,;, is absolute
analysis. There are infinitely many eigenvalues and eigerfor e- and forb = —0.045 it is only convective. The pe-
functions. ForL = «, w;, are located on continuous riodic boundaries detect both types of instabilities, while
curves in the complex plane. The solution is stable whenhe Dirichlet boundary condition suppresses the convec-
all eigenvaluesw;, have negative real parts. The ring tive instability as already observed in the CGLE [8,10,15].
length L is used as a bifurcation parameter. The com-
putations are done in a pseudospectral discretization of
the original equations using 200 modes and 1024 collo-
cation points. Discretization introduces a cutoff on the
wave number of the eigenfunctions. In addition, the finite
length L of the ring imposes a “quantization” & /L
on the wave numbers of the eigenfunctions. For a wave
train with given wavelengti, this finite size effect can be
reduced by increasing the numbkérof pulses under con-
sideration, wherd. = NA. To achieve reasonable con-
vergence of the stability properties of the wave trains, a
basic solution withNV > 8 pulses on the ring has to be
used. Usage of only a single pulse results in a value of
Amin that is 10%—15% too small. Similar arguments ap-
ply to spirals in 2D, here usage bf= 200 corresponds to
having roughly ten pulses from the core to the boundaries,
and thus finite size effects on the BU instability [13] are
negligible. Symmetry arguments require the eigenfunc-

tions of the periodic operator, obtained by linearization space z
around a solution with wavelength, to be Bloch func- F|G. 3. Examples of eigenfunctions for = 0.84, b =
tions Wj,(z) = e’(zﬂ”/L)z(I)jn(z) with ®@;,(z) = ®j,(z + —0.045, € = 0.081, andL = 152 whereL < L;, = 164.48.

A) with n = 0,..,N — 1 [14]. Moreover, the transla- Only the first half of the system length is displayed. Both
tional symmetry of the wave trains is reflected in aneigenfunctions repeat the same pattern once more. The upper

: _ ; . frame shows the: component of the Goldstone mod, (full
eigenvector Woo (8”0/62_’ dvo/9z) Wlth ZEI0 €I98N-  jine) ” The dashed line is the component of the profile. The
value (Goldstone mode, Fig. 3). The eigenvectors cormepyer frame shows the real part of the component for

sponding to the eigenvalues with the largest real part arghe eigenfunctionWys, which corresponds to the;, with
modulations of the Goldstone mode of the approximatehe largest positive real part.
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FIG. 4. Leading part of the spectra;, for parameters of 5.0
Fig. 3 and various lengthL = 114 (open circles),L = 122 . .
(full circles), L = 142 (diamonds),L = 166 (stars), andL = 0.02 0.04 0.06 0.08
238 (squares). L. = 164.5 corresponding to\,;, = 10.28. €

FIG. 5. Comparison ofAg;; (circles), Amin (triangles), and
Thus, the different scenarios depend on the presence epiral wavelength\, (squares upper panel) as a functioneof
absence of a convective instability. for b = —0.045 (upper panel) and> = 0.07 (lower panel).

Finally, we estimate the effect of curvature by using agggh\é%r)t";aru'nes(cjgg;f;é)e the values ef (solid), ec™ (long
function G(r) = O(r — r) in Eq. (2), where® is the P STEBU '
Heaviside function. The natural choice would have been
G(r) = 1 yielding the radial part of the 2D Laplacian in
Eqg. (2). Usage of5(r) = 1, however, increases the se-
lected wavelength substantially and prevents the instability[
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