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Alternative Scenarios of Spiral Breakup in a Reaction-Diffusion Model with Excitable
and Oscillatory Dynamics

Markus Bär and Michal Or-Guil
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, D-01187 Dresden, Germany

(Received 15 May 1998)

Instabilities (breakup) of spiral waves in two dimensions and their one-dimensional analogs—
wave trains triggered by a specific boundary condition—leading to spatiotemporally chaotic dynamics
are investigated in a simple activator-inhibitor model. These instabilities always require an
absolute instability of the emitted wave trains and coincide with the Eckhaus instability for the
excitable case, while for oscillatory conditions the well-known convective variant of the Eckhaus
instability is found. The different cases correspond to different spiral breakup phenomenologies.
[S0031-9007(99)08410-0]
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The investigation of transitions from regular pattern
to spatiotemporally chaotic dynamics in extended system
remains a challenge in nonlinear physics [1]. In this Lette
we investigate the instability of spirals leading to defec
mediated turbulence within a simple reaction-diffusio
model with oscillatory and excitable dynamics. Thi
transition is known as spiral breakup (BU) and has be
found in experiments in pattern forming chemical reaction
[2,3] and numerical simulations in various models [4–6
So far, there exist various, often heuristic explanations
the BU phenomenon. Most consider that the spiral core
a localized source of periodic waves. Far away from th
core, the profile of the spiral approaches a planar period
wave train with a wave number specific to the paramete
of the system (wavelength selection). In general, BU
attributed to the selection of a wave number that is to
small to be sustained in the system. In excitable med
it has been argued that the spiral wavelength is alrea
too close to the minimum wavelengthlmin allowed by the
dispersion relation for wave trains in 1D [7]. The comple
Ginzburg-Landau equation (CGLE) describes oscillato
media near a Hopf bifurcation. A comparison of analytica
results on the stability of periodic waves in 1D an
simulations in 2D suggested that spirals break up wh
the asymptotic wave train becomes absolutely unstable [
More recent numerical studies indicate that the BU ofte
precedes the absolute instability of the corresponding 1
wave train [9].

Phenomenologically, there are two different BU scena
ios: while spirals in excitable media usually break near th
spiral core [5], spirals in the CGLE first become unstab
far away from the core. Recently, this phenomenolog
has been analyzed in related 1D problems (waves em
ted from a boundary due to convective or curvature relat
terms) and explained by the appearance of a global mo
that asymptotes to the absolute instability in large system
[10]. Here, a reaction-diffusion model is studied, wher
BU near the core had been already found under excita
conditions [6]. For oscillatory conditions, BU far away
from the spiral core will be reported. The 1D analog o
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a spiral is constructed by employing a Dirichlet bounda
condition that emits a wave train. Therein, the select
wavelengthldir is similar to the one realized in the 2D
spirals in the parameter region of interest. In the excitab
case, BU of the wave train occurs in contrast very close
the boundary.

Furthermore, the minimum stable wavelengthlmin of a
wave train in a system with periodic boundary condition
is computed by numerical stability analysis and compar
to ldir selected by the 1D sources. Two scenarios a
reported: if ldir ­ lmin at the onset of instability, the
instability of periodic wave trains atlmin is assumed to
be absolute. Ifldir , lmin, the instability atlmin is
convective andldir marks the onset of absolute instability
The two cases are shown to correspond to the differe
BU phenomenologies. Breaking near the source indica
absence of a convective instability in the periodic wave
The opposite is true for the case of BU far away from th
source. Finally, a “curvature” perturbation is applied t
the 1D sources. It has a destabilizing effect on the wa
trains and accounts for most of the quantitative differen
between the instability of the 1D source and BU in 2D i
the oscillatory case.

Here, we study a two-component model describin
the dynamics of a two-component vector of functions
space$U ­ su, yd. The actual equations are of FitzHugh
Nagumo type and describe the interaction of a fast activa
sud and a slow inhibitorsyd variable:

≠u
≠t

­ 2
1
e

usu 2 1d

√
u 2

b 1 y

a

!
1 Du ,

≠y

≠t
­ fsud 2 y , (1)

fsud ­

8><>:
0, 0 # u , 1y3

1 2 6.75usu 2 1d2 , 1y3 # u # 1
1, 1 , u

.

The form of fsud describes a delayed production of th
inhibitor and the equations have been used to mod
patterns in a catalytic surface reaction [11]. The chan
© 1999 The American Physical Society
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of fsud from the standard choicefsud ­ u [12] lead
to the discovery of spatiotemporal chaos due to BU f
e . eBU [6,13]. The parameter choicea , 1 yields
excitable (oscillatory) behavior forb . 0 sb , 0d and
0 , e ø 1. In both cases, an unstable focus exists wi
su, yd ­ su0, y0d in the local dynamics of Eqs. (1). In
the excitable case, two more fixed points appear:su, yd ­
s0, 0d is the stable rest state andsu, yd ­ sbya, 0d is a
saddle that marks the threshold of the excitable mediu
Throughout this Letter,a is fixed to 0.84 andb and e

are varied. For simulations in 2D, zero-flux boundar
conditions have been employed and a spatial (tempor
discretization ofdx ­ 0.196 sdt ­ 9.5 3 1023d has been
used in an explicit Euler-scheme, convergence has b
tested by runs withdx ­ 0.097 and dt ­ 2.4 3 1023.
System sizes up to200 by 200 have been studied.

Earlier work in the excitable regime [6] revealed
transition to spatiotemporal chaos that has been prece
by a modulational instability of spiral rotation known
as meandering [12]. In contrast, simulations inside t
oscillatory regimesb , 20.01d show a direct transition
from spiral rotation to spatiotemporal chaos. In th
regime, BU appears first far away from the core. A
example is given in Fig. 1. The stable spiral in Fig. 1
has been created just below onset of the instabili
If e is increased slightly, the waves acquire a visib
modulation in wavelength while moving outward from
the spiral center. This leads to creation of new spir
pairs far away from the core (Fig. 1c). Finally, the

FIG. 1. BU dynamics in Eqs. (1) fore slightly larger than
eBU . Parameters areb ­ 20.045 and e ­ 0.0752. Frame
(a) shows the initial spiral generated fore slightly below
eBU ­ 0.075. Frame (b) shows the modulation due to th
instability, (c) is BU far away from the center and (d) is th
final state, a spiral fragment surrounded by a sea of sma
defects. The frames are separated bydt ­ 50, system size is
100 3 100.
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inner part of the initial spiral survives surrounded by
sea of small defects with irregular dynamics. The si
of this remainder shrinks with increasinge up to the
point where it disappears completely. The same scena
is observed in experiment in the Belousov-Zhabotins
reaction (BZR) and in CGLE simulations [2,9].

Next, a 1D analog of a spiral is studied. Empirically
it is found in the oscillatory casesb ­ 20.045d, that the
concentrationssu, yd in the spiral core fore coincide with
the unstable fixed pointsu0, y0d just below the critical
eBU. Consequently, the equation foru in (1) is replaced
by

≠u
≠t

­ 2
1
e

usu 2 1d
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!
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≠2u
≠r2 1

Gsrd
r

≠u
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,

≠y

≠t
­fsud 2 y ,

(2)

where Dirichlet fus0d ­ u0, ys0d ­ y0g and zero-flux
f≠usLdy≠r ­ ≠ysLdy≠r ­ 0g boundary conditions are
used at respective ends of the 1D system of lengthL.
A choice Gsrd ­ 1, Eq. (2) represents the radial part o
Eq. (1) and the last term on the right-hand side describ
the impact of curvature. For simplicity, we first neglec
curvature effects and setGsrd ­ 0. The Dirichlet bound-
ary at r ­ 0 is a source of waves similar to the core o
the spiral in 2D. Note, however, that the 1D source
not equivalent to the spiral in 2D. It rather describe
the radial dynamics of a target pattern emitting circul
waves. The specific choice of the Dirichlet conditio
nevertheless selects a wavelength almost identical to
one found for spirals in 2D for parameters just belo
eBU. Space-time plots from the integration of Eqs. (2
are presented in Fig. 2 for oscillatory and excitab
conditions. In both cases, the wave train emitted fro
the left boundary atr ­ 0 exhibit an instability upon

FIG. 2. Space-time plots of integrations of Eqs. (2) wit
Gsrd ­ 0. Time is running from top to bottom, space from
left to right. The length isL ­ 100, time interval shown is
ø250. a ­ 0.84, in all cases,b ­ 20.045 in (a), (b) and
b ­ 0.07 in (c), (d). e ­ 0.078 (a), 0.082 (b), 0.081 (c), and
0.082 (d). In (a) a stable wave train is established in the lo
run, in (b) waves break roughly three wavelengths away fro
the boundary.
1161
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increase ofe at a critical value ofeC . For b ­ 20.045,
perturbations are “advected” out of the systems in li
with intuitions about convective instability fore just
below eC (Fig. 2a). The instability manifests itself firs
in wave train “breakup” several wavelengths away fro
the boundary, as shown in Fig. 2b. In the excitable ca
with b ­ 0.07, the instability appears very close to th
source (see Fig. 2d). The transition between the t
scenarios happens aroundb ­ 0.04. The values ofeC

are not very sensitive to changes inb and lie slightly
above0.08. Thus, we find the counterpart of BU near [6
and far away from the spiral core (see Fig. 1) in the 1
model. In particular, different scenarios do not depe
on 2D ingredients like meandering.

We now turn to a numerical stability analysis of wav
trains. The linear stability problem for a traveling wav
solution with constant shape$U0sr 2 ctd and constant
speedc in 1D is formulated in the moving framez ­
r 2 ct, in which the wave solutions are stationary. Th
numerical stability analysis of wave trains is performe
in the 1D version of Eqs. (1) with periodic boundar
conditions as the closest approximation to the unbound
system withL ­ `. The evolution of perturbations to$U0
is described by$Wjnszdevjnt, where $Wjn andvjn are eigen-
vectors and eigenvalues obtained from linear stabil
analysis. There are infinitely many eigenvalues and eig
functions. ForL ­ `, vjn are located on continuous
curves in the complex plane. The solution is stable wh
all eigenvaluesvjn have negative real parts. The rin
length L is used as a bifurcation parameter. The com
putations are done in a pseudospectral discretization
the original equations using 200 modes and 1024 col
cation points. Discretization introduces a cutoff on th
wave number of the eigenfunctions. In addition, the fini
length L of the ring imposes a “quantization” of2pyL
on the wave numbers of the eigenfunctions. For a wa
train with given wavelengthl, this finite size effect can be
reduced by increasing the numberN of pulses under con-
sideration, whereL ­ Nl. To achieve reasonable con
vergence of the stability properties of the wave trains,
basic solution withN . 8 pulses on the ring has to be
used. Usage of only a single pulse results in a value
lmin that is 10%–15% too small. Similar arguments a
ply to spirals in 2D, here usage ofL ­ 200 corresponds to
having roughly ten pulses from the core to the boundari
and thus finite size effects on the BU instability [13] ar
negligible. Symmetry arguments require the eigenfun
tions of the periodic operator, obtained by linearizatio
around a solution with wavelengthl, to be Bloch func-
tions $Wjnszd ­ eis2pnyLdz $Fjnszd with $Fjnszd ­ $Fjnsz 1

ld with n ­ 0, ..., N 2 1 [14]. Moreover, the transla-
tional symmetry of the wave trains is reflected in a
eigenvector $W00 ­ s≠u0y≠z, ≠y0y≠zd with zero eigen-
value (Goldstone mode, Fig. 3). The eigenvectors cor
sponding to the eigenvalues with the largest real part
modulations of the Goldstone mode of the approxima
1162
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form $W0n ø eis2pnyLdz $W00szd (Fig. 3). The amplitudes
of the eigenfunctions are largest in the fronts and bac
of the pulses in the wave train in contrast to the Fouri
eigenfunctions in the CGLE [8].

Thus, the fastest growing modes correspond to an alt
nating compression and expansion of subsequent pulse
line with the observations in the 2D simulations of Fig. 1
and experiments in the BZR [2]. The calculations reve
an instability reminiscent of the Eckhaus instability. A
the length of the ring is shortened, the spectra of the wa
trains shift towards larger real parts and cross the ima
nary axis atLmin ­ NlminsNd (Fig. 4). The spectra for
the caseb ­ 0.07 look similar to the ones in Fig. 4, but
develop four maxima instead of two just belowLmin. For
given parametersa andb, we have computed thelminsed
and compared the values with the wavelength selec
by the Dirichlet source,ldir sed. The two curves merge
for b ­ 0.07 at e ­ eC (lower panel in Fig. 5) and cross
for b ­ 20.045 for e , eC (upper panel in Fig. 5). The
curves for the spiral wavelength in 2D,l0 are also plotted
in the upper frame of Fig. 5. The BU in 2D appears
smaller values ofe, though the selected wavelengths o
the spirals and the Dirichlet sources are almost identic
just before BU. The results of Fig. 5 can be interprete
as follows: forb ­ 0.07, the instability atlmin is absolute
for eC and forb ­ 20.045 it is only convective. The pe-
riodic boundaries detect both types of instabilities, whi
the Dirichlet boundary condition suppresses the conve
tive instability as already observed in the CGLE [8,10,15
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FIG. 3. Examples of eigenfunctions fora ­ 0.84, b ­
20.045, e ­ 0.081, and L ­ 152 whereL , Lmin ­ 164.48.
Only the first half of the system length is displayed. Bot
eigenfunctions repeat the same pattern once more. The up
frame shows theu component of the Goldstone mode$W00 (full
line). The dashed line is theu component of the profile. The
lower frame shows the real part of theu component for
the eigenfunction $W08, which corresponds to thevjn with
the largest positive real part.
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FIG. 4. Leading part of the spectravjn for parameters of
Fig. 3 and various length:L ­ 114 (open circles),L ­ 122
(full circles), L ­ 142 (diamonds),L ­ 166 (stars), andL ­
238 (squares). Lc ø 164.5 corresponding tolmin ø 10.28.

Thus, the different scenarios depend on the presence
absence of a convective instability.

Finally, we estimate the effect of curvature by using
function Gsrd ­ Qsr 2 r0d in Eq. (2), whereQ is the
Heaviside function. The natural choice would have be
Gsrd ­ 1 yielding the radial part of the 2D Laplacian in
Eq. (2). Usage ofGsrd ­ 1, however, increases the se
lected wavelength substantially and prevents the instabi
seen in Fig. 2. Thus, we empirically determined the sma
est r0 value sr0 ­ 3.5d that had no impact on the wave
length selection of the Dirichlet source and repeated
simulation to determine the change ofeC . The critical val-
ues shift in both cases fromeC ­ 0.0815 to e

curv
C ­ 0.076

(see Fig. 5). This is almost identical witheBU ­ 0.075
for b ­ 20.045 (Fig. 5). Forb ­ 0.07, eBU ­ 0.0705
is still not reached due to the impact of the meander
stability on the BU [6]. Thus, the impact of curvature o
the outgoing waves away from the center is crucial and
counts for most of the difference in the onset of instabili
in 1D and 2D for almost identical selected wave numbe

We have investigated a reaction-diffusion model wi
two different BU scenarios. Both scenarios are also fou
for a wave emitting source triggered by suitable bounda
conditions in 1D. The oscillatory case shows the famili
BU far away from the core and is related to the convecti
nature of the Eckhaus instability preceding the global mo
instability necessary for BU. The main new finding i
that BU near the core typical for excitable media stem
from a variant of the Eckhaus instability that coincide
with the appearance of a global mode and is related
the continuous spectrum of the spirals. Our methodolo
does not depend on knowledge of analytical solutions
the PDE and should be applied to other reaction-diffusi
systems of interest.

We thank M. Falcke, Y. Kevrekidis, and S. Tobias fo
stimulating discussions and A. Bangia for programmin
the numerical stability code.
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FIG. 5. Comparison ofldir (circles), lmin (triangles), and
spiral wavelengthl0 (squares upper panel) as a function ofe
for b ­ 20.045 (upper panel) andb ­ 0.07 (lower panel).
The vertical lines indicate the values ofeC (solid), e

curv
C (long

dashed), andeBU (dashed).
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