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Solitary Waves for N Coupled Nonlinear Schrödinger Equations
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A hierarchy of exact analytic solitary-wave solutions forN coupled nonlinear Schrödinger equations
for which the nonlinear coupling parameters can change continuously and cover many regio
is presented. Besides their potentially many practical applications to optical communication a
multispecies Bose-Einstein condensates for couplings outside the special integrable cases, t
analytically solvable cases for special initial conditions supplement and provide important links
and among the integrable cases. [S0031-9007(98)08318-5]

PACS numbers: 42.65.Tg, 05.45.Yv, 42.81.Dp
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Nonlinearly coupled dynamical systems with two o
more degrees of freedom have been subjects of cons
erable interest for many years [1]. These systems can e
hibit many interesting features, including chaos. In rar
cases that involve specific interaction parameters, a no
linearly coupled dynamical system may be found to b
integrable. For most interaction parameters, however,
nonlinearly coupled system is usually not integrable. W
should note that “integrable” usually is taken to mean fo
all initial conditions. The analytic results we present in
this Letter show that the coupled nonlinear system fo
which these results apply is analytically solvable for
wide range of specific initial conditions, even though th
system may not be integrable. We should also note, ho
ever, that in return for restricting the initial condition the
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analytic results are applicable for a wide range of nonli
ear coupling parameters, and provide not only many mo
useful physical applications but also important links
the integrable cases. The coupled dynamical system
discuss in this Letter is closely related to the coupled no
linear Schrödinger (CNLS) equations which have applic
tions in many physical problems, especially in nonline
optics and in the dynamics of Bose-Einstein condensat

When two optical waves of different frequencies co
propagate in a medium and interact nonlinearly throu
the medium, or when two polarization components
a wave interact nonlinearly at some central frequenc
the propagation equations for the two problems c
be considered together by considering the followingN
coupled nonlinear Schrödinger-like equations [2] for th
caseN ­ 2:
ifmz 1 fmtt 1 kmfm 1

√
NX

n­1

pmnjfnj2

!
fm 1

√
NX

n­1

qmnf2
n

!
fp

m ­ 0, m ­ 1, . . . , N , (1)
d

where fmsz, td denotes the complex amplitude of th
mth electric field envelope, or themth polarization
component,p’s, q’s, andk’s are parameters characteristi
of the medium and interaction, and the subscripts
 in

z and t denote derivatives with respect toz and t as
opposed to the subscriptm for different components.
Equivalently, we may consider the following couple
equations:
icmz 1 cmtt 1

√
NX

n­1

pmnjcnj2

!
cm 1

√
NX

n­1

qmnc2
ne2iknz

!
cp

me22ikmz ­ 0, m ­ 1, . . . , N , (2)
e

,

which can be transformed into (1) with the substitution
cm ­ fm exps2ikmzd. Although the results presented
in this Letter are for the specific case ofN ­ 2, the
method and prescription we present are, as will be se
extendable to a general value ofN for Eqs. (1) and (2).

We first search for the stationary-wave solution of th
form

fmsz, td ­ xmstd expsiVzd , (3)

where V is a real constant, andxmstd are real func-
tions of t only. Equations (1) reduce to the following
which we call the associated dynamical coupled nonline
s

en,

e

ar

Schrödinger equations:

ẍm 2 Amxm 1

√
NX

n­1

bmnx2
n

!
xm ­ 0, m ­ 1, . . . , N ,

(4)

where Ùx denotesdxydt, and where

Am ­ V 2 km0 and bmn ­ pmn 1 qmn . (5)

To eliminate the permutation symmetry, we arrang
Eqs. (4) such thatA1 # A2 # · · · # AN . Since Eqs. (1)
and (2) are invariant under a Galilean transformation
© 1999 The American Physical Society
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traveling waves can be constructed from (3) by replaci
fmsz, td by

fmsz, t 2 zyyd exphift 2 zy2ygy2yj , (6)

wherey is the velocity of the waves.
We can identify negative (positive) values ofbjk ,

k ­ 1, 2 with the normal (anomalous) group-velocit
dispersion (GVD) region forfj. The special case of
Aj ­ 0 andbjk ­ 1 for j, k ­ 1, 2 is associated with the
known integrable case of Eqs. (1) first given by Manako
[3]. Various solitary-wave solutions for this case, whic
consist of the so-called bright and dark solitary wave
periodic (elliptic) waves, and waves of different forms
have been presented [4]. Other values ofb’s for which
the coupled equations are integrable have been gi
[5]. The coupled equations (4) have been of interest a
studied in nonlinear dynamics for many years, and th
are known to be integrable for a number of specific valu
of A’s andb’s [1].

Let us refer to the space spanned by theN2 real values
of bjk , j, k ­ 1, . . . , N as theb space. Instead of asking
whether, for some particular point of thisb space, Eqs. (4)
are integrable, the key idea behind the results presente
this Letter is to ask whether it is possible to postulateN
analytic solutions forx1, . . . , xN , with variable parameters,
and find regions in theb space for these solutions to
hold so that, for these points or regions, Eqs. (4) ha
these analytic solutions, even though only for the initi
conditions given by the values of thesex’s and Ùx’s at
some initial timet0. In this Letter, we show that there ar
many regions in theb space where the values forb’s can
change continuously over wide ranges and for which t
coupled equations are analytically solvable. Specifical
we present a prescription for obtaining such regions a
present sixteen analytically solvable regions for the ca
N ­ 2. The ansatz we use is thatx1std, . . . , xN std be
expressed in terms ofN of the 2n 1 1 Lamé functions
of order n [6], with repetition allowed (i.e., the same
function for different x’s) for n ­ 1, . . . , N 2 1, and
without repetition forn ­ N .

Let h
snd
j , j ­ 1, . . . , 2n 1 1, arranged in descending

order of magnitude, denote the characteristic values, a
f

snd
j sud the corresponding characteristic function (Lam

function), of the Lamé equation of ordern, d2yydu2 1

fh 2 nsn 1 1dk2sn2su, kdgy ­ 0. We make the ansatz tha

x1std ­
p

C1 f snd
p satd, x2std ­

p
C2 f snd

q satd , (7)

be a solution of Eqs. (4) forN ­ 2, where n ­ 1, 2,
p, q ­ 1, . . . , 2n 1 1, p # q for n ­ 1, andp , q for
n ­ 2. Sincex1std andx2std are assumed real, we requir
that C1 andC2 be real and positive. Substitutions of th
ansatz (7) into Eq. (4) result in algebraic equations for t
b’s, A’s, C’s, and a and k2 which can be expressed in
a compact way in terms of three matricesG, B, and D
which we define in the following. We start by expressin
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the square of thejth Lamé function of ordern in a power
series ins ­ snsu, kd as

f f
snd
j sudg2 ­

n11X
i­1

a
snd
ij s2si21d, j ­ 1, . . . , 2n 1 1 .

(8)

We form asn 1 1d 3 s2n 1 1d matrix a ­ fasnd
ij g, i.e., a

2 3 3 matrix for n ­ 1 and a3 3 5 matrix for n ­ 2.
We defineG ­ fcijg to be asn 1 1d 3 2 matrix, where

ci1 ­ a
snd
ip C1, ci2 ­ a

snd
iq C2, i ­ 1, . . . , n 1 1, whereC’s

are the amplitudes in (7).B ­ fbijg, i, j ­ 1, 2, is a
2 3 2 matrix, where b’s are the nonlinear coupling
parameters in (4). D ­ fdsnd

ij g, i ­ 1, . . . , n 1 1, j ­

1, 2, is asn 1 1d 3 2 matrix, whered
snd
11 ­ A1 1 h

snd
p a2,

d
snd
12 ­ A2 1 h

snd
q a2, d

snd
2j ­ 2nsn 1 1dk2a2, d

snd
3j ­ 0,

j ­ 1, 2, A’s are the linear coupling parameters in (4), an
h

snd
j ’s are the characteristic values of the Lamé equatio

The algebraic equations that need to be satisfied
(7) to be a solution of Eqs. (4) can now be express
conveniently as

GBT ­ D , (9)

where BT denotes the transposed matrix ofB. Equa-
tion (9) can be readily solved, forn ­ 1, p, q ­ 1, 2, 3
and forn ­ 2, p, q ­ 1, . . . , 5 andp , q, giving 16 ana-
lytically solvable regions in theb space, or 16 sets of
explicit expressions ofb’s in terms of the arbitrary am-
plitudesC1 and C2 of the waves, for which Eqs. (4) are
analytically solvable. The modulusk of the elliptic func-
tions that express the Lamé functions, which is in th
range0 , k2 # 1 unless otherwise specified, can be r
garded as another variable parameter. Treating the am
tudesC1 andC2 for x1 andx2, the modulusk, the scaling
parametera, and in some casesA1 andA2, as variable pa-
rameters, the sixteen analytically solvable regions in t
b space for Eqs. (4),N ­ 2, are given in (i)–(xvi) in
Tables I–III, together with the analytic solutions forx1
and x2. Using transformation (6), these are the regio
of b’s for which Eqs. (1) or (2) have analytic couple
solitary-wave solutions.

These results show surprisingly many analytically sol
able regions for the two coupled dynamical equations
and for two coupled nonlinear Schrödinger-like equ
tions (1) and (2). The analytically solvable regions give
in Tables I and II correspond to analytic solutions give
by waves of ordern ­ 1, and those given in Table III
correspond to waves of ordern ­ 2, the order of the
Lamé equation. For the analytically solvable regions
Table I, x1 and x2 have the same wave form,A1 must
be equal toA2. The nonlinear coupling parametersb’s,
on the other hand, as long as they satisfy the equalit
and inequalities stated, are quite free to take up rat
wide ranges of values. It should be remembered, ho
ever, thatC1 and C2 must be non-negative (forx1 and
1153
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TABLE I. Analytically solvable regions for waves of order 1 and of the same wave form forx1 andx2.

(i) (ii) (iii)

x1
p

C1 snsat, kd
p

C1 cnsat, kd
p

C1 dnsat, kd
x2

p
C2 snsat, kd

p
C2 cnsat, kd

p
C2 dnsat, kd

Aj 2s1 1 k2da2 s2k2 2 1da2 s2 2 k2da2

For b11yb21 ­ b12yb22 ­ 1, For b11yb21 ­ b12yb22 ­ 1, For b11yb21 ­ b12yb22 ­ 1,

b11C1 1 b12C2 ­ 22k2a2 b11C1 1 b12C2 ­ 2k2a2 b11C1 1 b12C2 ­ 2a2

For b11 . b21, b22 . b12, For b11 . b21, b22 . b12,

C1 ­ 2k2a2sb22 2 b12dD21, C1 ­ 2a2sb22 2 b12dD21,

C2 ­ 2k2a2sb11 2 b21dD21, C2 ­ 2a2sb11 2 b21dD21,

whereD ­ b11b22 2 b12b21 whereD ­ b11b22 2 b12b21
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x2 to be real), and thus at least one of theb’s in (i), for
example, must be negative. For the analytically solvab
regions in Tables II and III,x1 and x2 have different (or
what we call complementary) wave forms and, for thes
regions,A1 need not be equal toA2. While A1 and A2
are free to take up any values for complementary wav
of order 1 as shown in (iv)–(vi), they are constrained fo
complementary waves of order 2 as shown in (vii)–(xvi)
For these analytically solvable regions, the nonlinea
coupling parametersb’s can assume wide ranges o
values as indicated. Some have common boundar
at k2 ­ 1.

It is possible that a similar approach can be used f
finding analytically solvable regions for other nonlinearly
coupled equations, and that these results can be u
as a starting point for discovering a more general wa
of finding analytically solvable regions and how thes
regions are linked to the integrable points in nonlinea
dynamical problems. As they stand now, the explic
expressions (i)–(xvi) could open up new application
in optical communications. We note that some wav
pairs can be in the “mixed” GVD region, i.e., one wave
in the normal while the other in the anomalous GVD
region, and some wave pairs can be in the normal
anomalous GVD regions for both waves. But the ne
feature here is that they are not always restricted f
use in those regions because, depending on the cho
TABLE II. Analytically solvable regions for complementary waves of order 1 forx1 andx2.

(iv) (v) (vi)

x1
p

C1 snsat, kd
p

C1 snsat, kd
p

C1 cnsat, kd
x2

p
C2 cnsat, kd

p
C2 dnsat, kd

p
C2 dnsat, kd

b11 fA1 1 s1 2 k2da2gC21
1 k2fA1 2 s1 2 k2da2gC21

1 2k2k022fA1 2 a2gC21
1

b12 fA1 1 s1 1 k2da2gC21
2 fA1 1 s1 1 k2da2gC21

2 k022fA1 1 s1 2 2k2da2gC21
2

b21 fA2 1 s1 2 2k2da2gC21
1 k2fA2 2 s2 2 k2da2gC21

1 2k2k022fA2 1 s2 2 k2da2gC21
1

b22 fA2 1 a2gC21
2 fA2 1 k2a2gC21

2 k022fA2 2 k2a2gC21
2
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of amplitudes and modulus, the same wave pair can
made to propagate as a solitary wave pair in two optic
media of different character. Prospects for experimen
applications of these shape-preserving “Jacobian ellip
wave trains” have been greatly enhanced following
recent experimental observation [7] of the evolution
an arbitrarily shaped input optical pulse train to the shap
preserving Jacobian elliptic pulse train for the Maxwe
Bloch equations. If, however, we restrict ourselves
using only aperiodic waves that correspond tok2 ­
1, then the analytically solvable regions are reduc
in number and size considerably; the aperiodic solita
waves have the forms tanhaj and sechaj for waves of
order 1 (the well-known dark and bright solitary wave
and have the forms sech2aj 2

2
3 , tanhaj sechaj, and

sech2aj (the red, white, and blue solitary waves [4]) fo
waves of order two. These aperiodic waves of orde
greater than 1 can be multihump solitary waves, and
is interesting to note a recent experimental observat
of multihump solitons in a dispersive nonlinear mediu
[8] and the appearance of two of the three wave form
of order 2 in the theory of incoherent dark solitons [9
Besides applications in optical communication, anoth
potentially useful application of the results presented
this Letter is in the study of the dynamical stability an
creation of solitary waves in multispecies Bose-Einste
condensates [10].
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TABLE III. Analytically solvable regions for complementary waves of order 2 forx1 andx2. G6 denotes1 1 k2 6 s1 2 k2 1 k4d1y2.

(vii) (viii)

x1
p

C1 f 1
3 G2 2 k2sn2sat, kdg

p
C1 f 1

3 G2 2 k2sn2sat, kdg
x2

p
C2 snsat, kdcnsat, kd

p
C2 snsat, kddnsat, kd

b11 9G22
2 fA1 1 2G1a2gC21

1 9G22
2 fA1 1 2G1a2gC21

1

b12 6k2G21
2 fA1 1 s2G1 2 G2da2gC21

2 6k2G21
2 fA1 1 s2G1 2 G2da2gC21

2

b21 9G22
2 fA2 1 s4 1 k2da2gC21

1 9G22
2 fA2 1 s1 1 4k2da2gC21

1

b22 6k2G21
2 fA2 1 s4 1 k2 2 G2da2gC21

2 6k2G21
2 fA2 1 s1 1 4k2 2 G2da2gC21

2

A1 2a2s2G1G2 2 3k2G1 2 1dys3k2 2 2G2d 2a2fG2s2G1 2 G2d 2 3G1gys3 2 2G2d
A2 a2f2s4 1 k2dG2 2 3k2s4 1 k2d 2 2gys3k2 2 2G2d a2f2G2s1 1 4k2 2 G2d 2 3s1 1 4k2dgys3 2 2G2d

(ix) (x)

x1
p

C1 f 1
3 G2 2 k2sn2sat, kdg

p
C1 f 1

3 G2 2 k2sn2sat, kdg
x2

p
C2 cnsat, kddnsat, kd

p
C2 f 1

3 G1 2 k2sn2sat, kdg
b11 29G21

2 D21hs1 1 k2dA1 1 2fG1s1 1 k2d 2 3k2ga2jC21
1 29G21

2 D21sA1 1 G1a2dC21
1

b12 6k2D21hA1 1 s2G1 2 G2da2jC21
2 9G21

1 D21hA1 1 s2G1 2 G2da2jC21
2

b21 29G21
2 D21hs1 1 k2dA2 1 s1 2 4k2 1 k4da2jC21

1 29G21
2 D21hA2 1 s2G2 2 G1da2jC21

1

b22 6k2D21hA2 1 s1 1 k2 2 G2da2jC21
2 , 9G21

1 D21sA2 1 G2a2dC21
2 ,

whereD ­ 6k2 2 G2s1 1 k2d whereD ­ G1 2 G2

A1 2a2hG2s2G1 2 G2d 2 3fG1s1 1 k2d 2 3k2gjyf3s1 1 k2d 2 2G2g a2s2G1G2 2 G2
1 2 G2

2dD21

A2 a2h2G2s1 1 k2 2 G2d 2 3s1 2 4k2 1 k4djyf3s1 1 k2d 2 2G2g a2s22G1G2 1 G2
1 1 G2

2dD21

(xi) (xii)

x1
p

C1 snsat, kdcnsat, kd
p

C1 snsat, kdcnsat, kd
x2

p
C2 snsat, kddnsat, kd

p
C2 cnsat, kddnsat, kd

b11 6a2k4k022C21
1 hs1 1 k2dA1 1 s4 2 k2 1 k4da2jC21

1

b12 26a2k2k022C21
2 hA1 1 s4 1 k2da2jC21

2

b21 6a2k4k022C21
1 hs1 1 k2dA2 1 s1 2 4k2 1 k4da2jC21

1

b22 26a2k2k022C21
2 hA2 1 s1 1 k2da2jC21

2

A1 2s4 1 k2da2 s5k2 2 4da2

A2 2s1 1 4k2da2 s5k2 2 1da2

(xiii) (xiv)

x1
p

C1 snsat, kdcnsat, kd
p

C1 snsat, kddnsat, kd
x2

p
C2 f 1

3 G1 2 k2sn2sat, kdg
p

C2 cnsat, kddnsat, kd
b11 6k2G21

1 hA1 1 s4 1 k2 2 G1da2jC21
1 hs1 1 k2dA1 1 s1 2 k2 1 4k4da2jC21

1

b12 9G22
1 hA1 1 s4 1 k2da2jC21

2 hA1 1 s1 1 4k2da2jC21
2

b21 6k2G21
1 hA2 1 s2G2 2 G1da2jC21

1 hs1 1 k2dA2 1 s1 2 4k2 1 k4da2jC21
1

b22 9G22
1 hA2 1 2G2a2jC21

2 hA2 1 s1 1 k2da2jC21
2

A1 a2h3k2s4 1 k2d 2 2G1s4 1 k2 2 G1djys2G1 2 3k2d s5 2 4k2da2

A2 a2h6k2G2 2 2G1s2G2 2 G1djys2G1 2 3k2d s5 2 k2da2

(xv) (xvi)

x1
p

C1 snsat, kddnsat, kd
p

C1 cnsat, kddnsat, kd
x2

p
C2 f 1

3 G1 2 k2sn2sat, kdg
p

C2 f 1
3 G1 2 k2sn2sat, kdg

b11 6k2G21
1 hA1 1 s1 1 4k2 2 G1da2jC21

1 26G1k2D21hA1 1 s1 1 k2 2 G1da2jC21
1

b12 9G22
1 hA1 1 s1 1 4k2da2jC21

2 9D21hs1 1 k2dA1 1 s1 2 4k2 1 k4da2jC21
2

b21 6k2G21
1 hA2 1 s2G2 2 G1da2jC21

1 26G1k2D21hA2 1 s2G2 2 G1da2jC21
1

b22 9G22
1 hA2 1 2G2a2jC21

2 9D21hs1 1 k2dA2 1 f2G2s1 1 k2d 2 6k2ga2jC21
2 ,

whereD ­ s1 1 k2dG2
1 2 6G1k2

A1 a2h3s1 1 4k2d 2 2G1s1 1 4k2 2 G1djys2G1 2 3d a2h2G1s1 1 k2 2 G1d 2 3s1 2 4k2 1 k4djyf3s1 1 k2d 2 2G1g
A2 a2h6G2 2 2G1s2G2 2 G1djys2G1 2 3d a2h2G1s2G2 2 G1d 2 6fG2s1 1 k2d 2 3k2gjyf3s1 1 k2d 2 2G1g
.
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