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Symbolic dynamics play a central role in the description of the evolution of nonlinear systems.
there are few methods for determining symbolic dynamics of chaotic data. One difficulty is tha
data contains random fluctuations associated with the experimental process. Using data obtaine
a magnetoelastic ribbon experiment we show how a topological approach that allows for experim
error and bounded noise can be used to obtain a description of the dynamics in terms of su
dynamics on a finite set of symbols. [S0031-9007(99)08415-X]
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There has been considerable effort within the scientifi
community to develop methods to determine wheth
a given dynamical system is chaotic [1]. Three issu
make rigorous analysis of chaotic dynamics difficul
global nonlinearities making it difficult to obtain the
necessary analytic estimates; trajectories are inheren
sensitive to the initial conditions; the objects of interes
namely, invariant sets, can undergo dramatic changes
their structure due to local and global bifurcations. Th
problem is dramatically more complicated in the setting o
experimental systems because of the introduction of noi
parameter drift, and experimental error.

In a recent paper [2] we introduced new topologica
techniques designed to overcome these difficulties.
this paper, these techniques are successfully applied
the context of an actual physical system, a magnetoelas
ribbon subject to a periodically oscillating magneti
field. Our ideas are extensions of the numerical metho
developed in [3,4] along with a reinterpretation of wha
is an appropriate embedding theorem [5–7] to justify th
use of time delay reconstructions.

At the basis of our approach are three assumption
The first is that the dynamics of the physical system ca
be represented by a continuous mapf : X 3 L ! X,
whereX represents the phase space andL represents the
experimentally relevant range of parameter space. T
second assumption is that we are trying to descri
the dynamics of an attractor forf in X. The third involves
the relationship between the physical phase space and
values observed by the experimentalist. In particular, t
experimental observation is represented as a multivalu
map u : X ! fax , bxg , R, where jax 2 bxj may be
thought of as an upper bound for the experimental erro
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We assume that there is a continuous mapg : X ! R
such thatgsxd [ usxd for all x [ X. One may viewg

as representing the “true” measurement of the syste
We are only assuming the existence of such ag, but
never assume that it is known. Observe that, if it is
impossible to chooseu andg as above, for some points in
the physical phase space arbitrarily small changes in t
physical system must lead to arbitrarily large changes
measurements.

Recall that atransition matrix A on k symbols is
a k 3 k matrix whose entriesaij take values of 0 or
1. Given A, one can define a subset of the set of b
infinite sequences onk symbols,SA :­ hs ­ ssnd j sn [
h1, 2, . . . , kj and asn ,sn11 ­ 1j. Let s : SA ! SA denote
the shift dynamics,sssdn ­ sn11.

If the dimension of the reconstruction space isd, then
applying our method results in regionsNi , i ­ 1, . . . , k
in Rd and a k 3 k transition matrixA for which the
following conclusion can be justified [2]. Given any
sequencehlnj , L and any elements [ SA, there exists
an initial conditionx [ X such that, for alln ­ 1, 2, . . . ,

usssfnsx, lndddd 3 usssfn11sx, ln11dddd 3 · · · 3

usssfn1dsx, ln1ddddd > Nsn fi [ .

In other words, given any sequence of perturbations in t
parameter settings, there exists an initial condition su
that, up to experimental error, the reconstructed dynam
describes the observed physical dynamics.

Experimental setup.—The magnetoelastic ribbon is a
thin strip of material with the property that its Young’s
modulus varies with the strength of an applied magnet
field. A region of uniform field was created by the use o
three Helmholtz coils. The ribbon was placed in this fiel
© 1999 The American Physical Society
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and clamped from the bottom. The ribbon and Helmho
coils were placed upon a vibration isolation table and t
entire apparatus was in a temperature-controlled, sea
room, thereby minimizing environmental effects. Neve
theless, the system was extremely sensitive, and thu
significant amount of error was taken into account wh
performing the calculations. An oscillating magnetic fie
was applied vertically. When the magnetic field streng
is within a certain range, the ribbon will buckle under it
own weight. Under these conditions, the ribbon will o
cillate back and forth as its stiffness changes. Depend
upon the strength and frequency of the applied oscillati
field, as well as the physical characteristics of the ribbo
the motion of the ribbon can exhibit a wide variety o
different behaviors. The position of the ribbon once p
driving period was investigated.

The data set consisted of 100 000 consecutive d
pointshyn j n ­ 1, . . . , 100 000j taken from voltage read-
ings on the photonic sensor, sampled at the drive f
quency of 1.2 Hz. The readings were measured up
1023 volts.

Implementation of our method.—We selected 30 000
data pointshyn j n ­ 30 000, . . . , 60 000j from our data
set and chose a reconstruction dimension of 2 produc
the reconstruction plot ofU :­ hun ­ syn, yn11dj , R2

indicated in Fig. 1. We dividedR2 into a grid of squares
with each side of length 0.0106 volts.G is the set of
squares which contain a pointun [ U, and Y , R2 is
the region determined by this collection of squares (s
Fig. 2).

The next step is to define a dynamical system onY
that captures the observable dynamics of the experime
Since the physical system is subject to noise and exp
mental error, we do not describe the dynamics on a
scale smaller than that of the squares inG , and our
dynamical system has the form of a multivalued mapF
taking squares to sets of squares. To be more precise
G [ G and lethuai j i ­ 1, 2, . . . , Ij , U be the set of
points which lie inG. Let G0

i [ G such thatuai11 [
G0

i. Up to first approximation we require thatG0
i [

F sGd. Unfortunately, this definition is not sufficient

FIG. 1. Time delay plot of un ­ syn, yn11d, n ­ 30 000,
. . . , 60 000, whereyn is the nth voltage.
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One reason is that there may be few samples inG, so that
G0

1, G0
2, . . . , G0

I are isolated squares far apart from eac
other. F sGd should be a connected set and capture
possible images of points ofG, not just the ones for which
we have samples from the time series. Therefore,
grid squares contained in the smallest rectangle enclos
G0

1, G0
2, . . . , G0

I in F sGd are included. This may still not
be enough, since the images of four squares meeting
one point may not intersect, preventing the mapF from
having a continuous selector. We deal with this proble
in the following way. For each grid point, look at the
images of the four grid squares which meet at that poi
If they do not intersect, increases each image by t
set of all squares which intersect the set representing
Repeat this process until there are no empty intersectio
Finally, intersect each image of a grid square withG .
This procedure constructs a multivalued mapF on G
which we believe provides outer limits on the observab
dynamics of the experimental system. Trajectories in th
dynamical system consist of sequences of squares of
form hGi [ G j Gi11 [ F sGidj.

To discuss the issue of which dynamics is represen
by F requires several slight theoretical digressions. L
g : Rn ! Rn be an arbitrary continuous map. Recall tha
S , Rn is aninvariant setof g if, for every x [ S, there
exists a bi-infinite sequencehxij , S such thatx ­ x0
and xi11 ­ gsxid. While invariant sets are the objec
of interest in dynamical systems, they can be extreme
difficult to study directly since they may change the
properties dramatically through various local or glob
bifurcations. For this reason we shall make use of t
following notion. A closed bounded setN , Rn is an
isolating neighborhoodif the maximal invariant set inN
does not intersect the boundary ofN . If N is an isolating
neighborhood for the dynamical system generated byg,
then it is an isolating neighborhood for sufficiently sma
perturbations ofg.

FIG. 2. Squares with edges of length 0.0106 volts that conta
pointsun [ U of the time delay reconstruction.
1145
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Returning to the magnetoelastic ribbon we now loo
for isolating neighborhoods inY under the multivalued
dynamical systemF . There are a variety of criteria
that can be used in choosingC0 , G ; the important
point is that it must be a strict subset ofG . We used
the following procedure. DefineC1 ­ C0 > F sC0d >
F 21sC0d, whereF 21sC0d :­ hG [ G j F sGd > C0 fi

[j. Delete a component ofC1 which touches the
boundary ofC0 relative to Y . This two step procedure
is repeated untilCn11 ­ Cn. The resulting setCn is an
isolating neighborhood forF (see Fig. 3). Observe that
Cn consists of four disjoint sets labeledNi, i ­ 1, . . . , 4.

We will use the Conley index theory [8] to resolve
the following theoretical issue: While isolating neigh
borhoods can be computed, it is the structure of th
corresponding isolating invariant set which is of inter
est. Given an isolating neighborhoodN of g, a pair of
closed bounded setssK , Ld with L , K , N is an index
pair if the following conditions are satisfied: (1)x [ K
andgsxd [ N, thengsxd [ K; (2) x [ L andgsxd [ N ,
then gsxd [ L; (3) x [ K and gsxd ” N, then x [ L;
(4) the maximal invariant set inN is a subset of the inte-
rior of K excludingL. The importance of an index pair is
that the homology groupsHpsK , Ld and a homology map
g̃p : HpsK , Ld ! HpsK , Ld induced byg are invariants of
the maximal invariant set contained inN. Also, if under
a change in the dynamics,N remains an isolating neigh-
borhood, the homology group and map do not change.

We produce an index pair forF as follows. Let
L consist of the elements ofF sCnd which touch the
boundary ofCn relative toY . Let K ­ Cn < L. Then
sK , Ld is an index pair forF . Figure 3 indicates the
resulting index pair.

We now computeHpsK , Ld using Z2 coefficients and
determine that it is a four-dimensional vector space a
the corresponding map on homology is the matrix i
Fig. 3.

FIG. 3. Results from the data points 30 000 through 60 00
The four shaded regions labeledN1, . . . , N4 make up the set
Cn. Darkly shaded regions on the boundary of theNi areL.
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The embedding theorems of [5–7] assume that t
pointsU , R2 actually represent elements of trajectorie
of a fixed smooth map on a subset ofR2 and that
the dynamics of this map can now be embedded in
the dynamics of the physical system. Observe that
make no such assumption. Instead we use the existe
of the continuous mapg : X ! R to lift the algebraic
topological quantities associated withA to X. This allows
one to conclude [2] thatA represents a transition matrix
for a symbolic coding of the dynamics in the physica
phase space.

This implies that, given any small random environme
tal effects on the experiment and any sequenceb [ SA,
there exists an initial condition for the physical syste
such that, using our observational method, the trajecto
will, up to experimental error, pass through the regions l
beledNi , i ­ 1, . . . , 4 in the manner indicated byb.

Conclusions.—Our method provides an explicit sym-
bolic dynamics description of the chaotic behavior of th
magnetoelastic ribbon. This is a finer information tha
usual from experimental data. For example, givenA it is
easy to conclude that the topological entropy for the ri
bon must be greater than ln1.4656.

Two other methods that are commonly used to analy
chaotic data involve the approximation of Lyapuno
exponents or the determination of a fractal dimensio
These methods and ours require similar assumptio
(1) The data provided is a reasonable approximati
to what one would obtain if measurements could b
performed for an infinite amount of time; (2) the phas
space reconstruction has given a good approximat
to the underlying dynamics; (3) the underlying syste
is assumed to be governed by a deterministic set
equations.

For the computation of Lyapunov spectra, one mu
assume that the reconstruction has been done in a
ficiently high-dimensional space. In our setting this
not necessary, whenever one computes nontrivial
gebraic topological quantities the resulting conclusio
about the dynamics are correct. If one chooses too l
a dimension, the algebra corresponding to the result

FIG. 4. Time delay plot ofun ­ syn, yn 1 1d, n ­ 70 000,
. . . , 100 000, whereyn is the nth voltage.
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FIG. 5. Results from the data points 70 000 through 100 00
The four shaded regions labeledN1, . . . , N4 make up the setCn.
Darkly shaded regions on the boundary of theNi areL.

multivalued map will be trivial. It is easy to construc
examples where an embedding fails but the algebra
still nontrivial. A more fundamental problem is tha
Lyapunov exponents are sensitive to noise and pertur
tions, but quantification of this sensitivity is not known.

We performed Lyapunov exponent calculations an
embedding dimension calculations on this data set. T
dominant Lyapunov exponent seemed to be roughly 0.4
However, under reasonable parameter regimes, the co
puted Lyapunov exponent ranged between 0.45 and 0.9

Similar problems exist with a determination of fracta
dimension. A reasonable estimate of dimension is dif
cult to compute from experimental data and the dimensi
tells little about the underlying dynamics. Measureme
of the embedding dimension also yielded somewhat qu
tionable results. One method identifies the percentage
false nearest neighbors for a given embedding dimensi
The minimum embedding dimension differed greatly d
pending on our criteria for identification of a false neare
neighbor. In some analyses, it seemed an embedding
mension of 5 was necessary to decrease the percentag
false nearest neighbors to less than5%.

Finally, our approach appears to provide robust r
peatable conclusions. As was mentioned earlier, w
collected 100 000 data points. We repeated the abo
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mentioned procedure using the pointshyn j n ­ 70 000,
. . . , 100 000j. As one can see from Fig. 4, there ar
observable differences in this collection of data point
After applying our procedure we obtain the index pai
indicated in Fig. 5 which are also slightly different. How
ever, on the level of the algebra and hence the symbo
dynamics, we obtained the same transition matrix.

In conclusion, we have proposed a theoretically ju
tified and experimentally validated method which take
time series as input and produces the output of a tra
sition matrix and its associated regions in reconstructi
space which may be used to rigorously verify chaos, an
lyze and identify invariant sets, and determine properti
of the global dynamics above the noise level. All anal
sis is on a scale where the results of the analysis are
bust with respect to noise. Quantitative measurements
chaos may fail because of sensitivity in the analysis.
contrast, verification of chaos from analysis of the trans
tion matrix is robust.
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