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Construction of Symbolic Dynamics from Experimental Time Series
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Symbolic dynamics play a central role in the description of the evolution of nonlinear systems. Yet
there are few methods for determining symbolic dynamics of chaotic data. One difficulty is that the
data contains random fluctuations associated with the experimental process. Using data obtained from
a magnetoelastic ribbon experiment we show how a topological approach that allows for experimental
error and bounded noise can be used to obtain a description of the dynamics in terms of subshift
dynamics on a finite set of symbols. [S0031-9007(99)08415-X]
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There has been considerable effort within the scientifiéVe assume that there is a continuous mapX — R
community to develop methods to determine whethesuch thaty(x) € 6(x) for all x € X. One may viewy
a given dynamical system is chaotic [1]. Three issue®s representing the “true” measurement of the system.
make rigorous analysis of chaotic dynamics difficult: We are only assuming the existence of such ,abut
global nonlinearities making it difficult to obtain the never assume that it is known. Observe that, if it is
necessary analytic estimates; trajectories are inherentiynpossible to choose andy as above, for some points in
sensitive to the initial conditions; the objects of interest,the physical phase space arbitrarily small changes in the
namely, invariant sets, can undergo dramatic changes physical system must lead to arbitrarily large changes in
their structure due to local and global bifurcations. Themeasurements.
problem is dramatically more complicated in the setting of Recall that atransition matrix A on k symbols is
experimental systems because of the introduction of nois@ k X k matrix whose entries;;; take values of O or
parameter drift, and experimental error. 1. Given A, one can define a subset of the set of bi-

In a recent paper [2] we introduced new topologicalinfinite sequences ok symbols,X, := {s = (s,) | s, €
techniques designed to overcome these difficulties. 141,2,...,k} andas, 5., = 1}. Leto : 24 — X, denote
this paper, these techniques are successfully applied the shift dynamicsg(s), = s,+1.
the context of an actual physical system, a magnetoelastic If the dimension of the reconstruction spacelisthen
ribbon subject to a periodically oscillating magnetic applying our method results in regiong, i = 1,...,k
field. Our ideas are extensions of the numerical methodm R? and ak X k transition matrixA for which the
developed in [3,4] along with a reinterpretation of whatfollowing conclusion can be justified [2]. Given any
is an appropriate embedding theorem [5-7] to justify thesequencgA,} C A and any element € 34, there exists
use of time delay reconstructions. an initial conditionx € X such that, for alk = 1,2,...,

At the basis of our approach are three assumptions.  g(en(y 2 )) X A(F" 1 (x, Aysy)) X -+ X
The first is that the dynamics of the physical system can nd
be represented by a continuous mAp X X A — X, 0" (x, An+a)) N Ny, # D
whereX represents the phase space andepresents the In other words, given any sequence of perturbations in the
experimentally relevant range of parameter space. Thparameter settings, there exists an initial condition such
second assumption is that we are trying to describéhat, up to experimental error, the reconstructed dynamics
the dynamics of an attractor fgrin X. The third involves describes the observed physical dynamics.
the relationship between the physical phase space and theExperimental setup—The magnetoelastic ribbon is a
values observed by the experimentalist. In particular, thé¢hin strip of material with the property that its Young’s
experimental observation is represented as a multivaluesiodulus varies with the strength of an applied magnetic
map 6 : X — [ay, B8] C R, where|a, — 8,] may be field. A region of uniform field was created by the use of
thought of as an upper bound for the experimental errorthree Helmholtz coils. The ribbon was placed in this field
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and clamped from the bottom. The ribbon and HelmholtzOne reason is that there may be few samples,iso that
coils were placed upon a vibration isolation table and theG{,G5,...,G; are isolated squares far apart from each
entire apparatus was in a temperature-controlled, sealaither. F(G) should be a connected set and capture all
room, thereby minimizing environmental effects. Never-possible images of points 6f, not just the ones for which
theless, the system was extremely sensitive, and thusvee have samples from the time series. Therefore, all
significant amount of error was taken into account whergrid squares contained in the smallest rectangle enclosing
performing the calculations. An oscillating magnetic field G{, G5, ..., G in F(G) are included. This may still not
was applied vertically. When the magnetic field strengthbe enough, since the images of four squares meeting at
is within a certain range, the ribbon will buckle under its one point may not intersect, preventing the nfapfrom

own weight. Under these conditions, the ribbon will os-having a continuous selector. We deal with this problem
cillate back and forth as its stiffness changes. Dependingn the following way. For each grid point, look at the
upon the strength and frequency of the applied oscillatingmages of the four grid squares which meet at that point.
field, as well as the physical characteristics of the ribbonl|f they do not intersect, increases each image by the
the motion of the ribbon can exhibit a wide variety of set of all squares which intersect the set representing it.
different behaviors. The position of the ribbon once peRepeat this process until there are no empty intersections.
driving period was investigated. Finally, intersect each image of a grid square w@h

The data set consisted of 100000 consecutive dat@his procedure constructs a multivalued m&pon G
points{v, | n = 1,...,100000} taken from voltage read- which we believe provides outer limits on the observable
ings on the photonic sensor, sampled at the drive fredynamics of the experimental system. Trajectories in this
quency of 1.2 Hz. The readings were measured up tdynamical system consist of sequences of squares of the
1073 volts. form{G; € G | Gi+1 € F(G))}.

Implementation of our method-We selected 30000  To discuss the issue of which dynamics is represented
data points{v, | n = 30000,...,60000} from our data by ‘F requires several slight theoretical digressions. Let
set and chose a reconstruction dimension of 2 producing : R” — R" be an arbitrary continuous map. Recall that
the reconstruction plot o/ := {u,, = (v,,v,+1)} C R? S C R” is aninvariant setof g if, for everyx € S, there
indicated in Fig. 1. We divide®? into a grid of squares exists a bi-infinite sequencf;} C S such thatx = x,
with each side of length 0.0106 voltsG is the set of and x;+; = g(x;). While invariant sets are the object
squares which contain a poimf, € U, andY C R? is  of interest in dynamical systems, they can be extremely
the region determined by this collection of squares (se€lifficult to study directly since they may change their
Fig. 2). properties dramatically through various local or global

The next step is to define a dynamical system}on bifurcations. For this reason we shall make use of the
that captures the observable dynamics of the experimeniollowing notion. A closed bounded s&t C R” is an
Since the physical system is subject to noise and experisolating neighborhoodf the maximal invariant set iV
mental error, we do not describe the dynamics on anyloes not intersect the boundaryf If N is an isolating
scale smaller than that of the squares Gh and our neighborhood for the dynamical system generated; by
dynamical system has the form of a multivalued njAp then it is an isolating neighborhood for sufficiently small
taking squares to sets of squares. To be more precise, lpérturbations og.

G € G and let{u,, | i = 1,2,...,1} C U be the set of
points which lie inG. Let G; € G such thatu, +; €
G;. Up to first approximation we require thak, €
F(G). Unfortunately, this definition is not sufficient.

FIG. 1. Time delay plot ofu, = (v,,v,+1), n = 30000, FIG. 2. Squares with edges of length 0.0106 volts that contain
...,60000, wherev, is the nth voltage. pointsu, € U of the time delay reconstruction.
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Returning to the magnetoelastic ribbon we now look The embedding theorems of [5—7] assume that the
for isolating neighborhoods iy under the multivalued pointsU C R? actually represent elements of trajectories
dynamical system¥. There are a variety of criteria of a fixed smooth map on a subset B? and that
that can be used in choosingy C G; the important the dynamics of this map can now be embedded into
point is that it must be a strict subset . We used the dynamics of the physical system. Observe that we
the following procedure. Defin€; = Cy N F(Cy) N make no such assumption. Instead we use the existence
FUCy), where F1(Cy) :={G € G| F(G)N Cy#+ of the continuous map : X — R to lift the algebraic
). Delete a component of”; which touches the topological quantities associated withto X. This allows
boundary ofC, relative toY. This two step procedure one to conclude [2] thatt represents a transition matrix
is repeated untiC,+; = C,. The resulting seC, is an  for a symbolic coding of the dynamics in the physical
isolating neighborhood foff (see Fig. 3). Observe that phase space.

C, consists of four disjoint sets labeled, i = 1,...,4. This implies that, given any small random environmen-

We will use the Conley index theory [8] to resolve tal effects on the experiment and any sequelce 3 ,,
the following theoretical issue: While isolating neigh- there exists an initial condition for the physical system
borhoods can be computed, it is the structure of thesuch that, using our observational method, the trajectory
corresponding isolating invariant set which is of inter-will, up to experimental error, pass through the regions la-
est. Given an isolating neighborhodd of g, a pair of beledN;,i = 1,...,4 in the manner indicated by.
closed bounded setX, L) with L C K C N is anindex Conclusions—Our method provides an explicit sym-
pair if the following conditions are satisfied: (k) € K bolic dynamics description of the chaotic behavior of the
andg(x) € N, theng(x) € K; (2)x € Landg(x) €N, magnetoelastic ribbon. This is a finer information than
theng(x) € L; (3) x € K andg(x) € N, thenx € L;  usual from experimental data. For example, givieit is
(4) the maximal invariant set iV is a subset of the inte- easy to conclude that the topological entropy for the rib-
rior of K excludingL. The importance of an index pair is bon must be greater than 1at656.
that the homology groupH.(K, L) and a homology map Two other methods that are commonly used to analyze
g : H.(K,L) — H.(K,L) induced byg are invariants of chaotic data involve the approximation of Lyapunov
the maximal invariant set contained M Also, if under exponents or the determination of a fractal dimension.
a change in the dynamicd] remains an isolating neigh- These methods and ours require similar assumptions:
borhood, the homology group and map do not change. (1) The data provided is a reasonable approximation

We produce an index pair foff as follows. Let to what one would obtain if measurements could be
L consist of the elements off (C,,) which touch the performed for an infinite amount of time; (2) the phase
boundary ofC, relative toY. LetK = C, U L. Then space reconstruction has given a good approximation
(K,L) is an index pair forF. Figure 3 indicates the to the underlying dynamics; (3) the underlying system
resulting index pair. is assumed to be governed by a deterministic set of

We now computeH.(K, L) using Z, coefficients and equations.
determine that it is a four-dimensional vector space and For the computation of Lyapunov spectra, one must
the corresponding map on homology is the matrix inassume that the reconstruction has been done in a suf-
Fig. 3. ficiently high-dimensional space. In our setting this is
not necessary, whenever one computes nontrivial al-
gebraic topological quantities the resulting conclusions
about the dynamics are correct. If one chooses too low
a dimension, the algebra corresponding to the resulting

FIG. 3. Results from the data points 30000 through 60 000.
The four shaded regions labeled,..., N, make up the set FIG. 4. Time delay plot ofu, = (v,,v, + 1), n = 70000,
C,. Darkly shaded regions on the boundary of teare L. ..., 100000, wherew, is the nth voltage.
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mentioned procedure using the poidis, | n = 70000,
...,100000}. As one can see from Fig. 4, there are
observable differences in this collection of data points.
After applying our procedure we obtain the index pairs
indicated in Fig. 5 which are also slightly different. How-
ever, on the level of the algebra and hence the symbolic
dynamics, we obtained the same transition matrix.

In conclusion, we have proposed a theoretically jus-
tified and experimentally validated method which takes
time series as input and produces the output of a tran-
sition matrix and its associated regions in reconstruction
space which may be used to rigorously verify chaos, ana-
lyze and identify invariant sets, and determine properties
of the global dynamics above the noise level. All analy-
sis is on a scale where the results of the analysis are ro-
bust with respect to noise. Quantitative measurements of
FIG. 5. Results from the data points 70000 through 100000¢haos may fail because of sensitivity in the analysis. In
The four shaded regions labeldq, ..., N, make up the sef,.  contrast, verification of chaos from analysis of the transi-
Darkly shaded regions on the boundary of ffieare L. tion matrix is robust.
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