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Quantum Lévy Processes and Fractional Kinetics
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Exotic stochastic processes are shown to emerge in the quantum evolution of complex systems.
Using influence function techniques, we consider the dynamics of a system coupled to a chaotic
subsystem described through random matrix theory. We find that the reduced density matrix can
display dynamics given by Lévy stable laws. The classical limit of these dynamics can be related
to fractional kinetic equations. In particular, we derive a fractional extension of Kramers equation.
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Whether one studies deterministic Hamiltonian or dis-the asymptotic behavior faf — *o [5],
sipative systems, one finds that transport in chaotic sys- A
tems often resembles some type of stochastic process. The LA(q) = I'(a) sin & a—H ) (4)
dynamics of such systems leads to a rich spectrum of 2 lql*

behaviors, from enhanced diffusion such as tracer diffuThese non-Gaussian processes can be related to anoma-
sion in flows_and' turbulent diffusion in the atmosphere, Oous transport in a variety of (classical) physical systems
dispersive diffusion [1]. Much effort has been spent in[g] as well as to classically chaotic systems. We have re-
recent years to understand such classical stochastic preently shown that turbulent diffusion can also arise in the
cesses in chaotic systems, leading to the development §fe ‘evolution of complex quantum systems [10]. Here
approach}es ra_nging from fractional kinetig equations [2-we find that a general form of quantum chaotic back-
4] and Levy flights [5], to random walks in random en- groynds can give rise to quantum evolution characterized
vironments [5,6] and stochastic webs [7]. One of thepy | ¢yy distributions. Further, we can connect, in the
common features to all of these is the use of Lévy stablgemiclassical limit, such processes to fractional kinetic
laws [8]. It was shown by Levy [9], in studies of exten- theory, which was initially introduced as a phenomeno-
sions of the central limit theorem, that a continuous clasggica] approach to classical anomalous diffusion.
of non-Gaussian processes satisfy the same fundamentaﬁ],\/e study the problem of a particle coupled to a chaotic
equation that gives rise to the theory of Gaussian processegayironment, quantum mechanically. It has been realized
namely, the Chapman-Kolmogorov equation for the conin recent years that the quantum counterpart of chaos is
ditional probabilityP(q, ¢, 1): random matrix theory. For systems with time-reversal
, " " Y P symmetry, the random matrices are real symmetric. In
P(q,q';1) 2] dq"P(q.q".t — 1)P(q".q".1"). (1) this Letter we will examine the class of quantum dynamic
) , o processes, which can be realized through the interaction
The standagdz solution,P(q,¢',1) = exd—(¢ — 4¢')°/  of a particle with a random matrix background. In
4Dt]/(4mD1)*?, gives rise to the Gaussian processesontrast to the Caldeira-Leggett approach [11], we assume
and the usual form of the Fokker-Planck equation. Thg,om the outset that the background is chaotic, and
general solutions of Lévy provide a way to generalizeno; necessarily thermal. We denote the coordinates of

Brownian motion. , _ the background by(x, p) and that of the test particle
The non-Gaussian processes which satisfy (1) argy (x p). The Hamiltonian for the background plus
known as Leévy stable laws, and have the form interaction is taken to have the following form:
1
Plat) = L3) = 5 [ exstikg — AlkIVak, () Hy = hol,p) + hi(X,%. ). ©)

In the basis of (many-body) eigenstates/gf holn) =

where) < o« =2 and A « ¢t. The casea = 2 corre- y -
., N), we define the matrix off;, as

sponds to Gaussian processes. The Lévy distribution@ 17> (n = 1,...
L 2(q) satisfy the scaling relation [H, ) = €85 + [(X)];; . (6)

A —1/a 1 -1/«

Lilg)=A ! La(gA ', ) It is convenient for calculations to choose an average level
where for A =1 we drop the superscriptL!(x) =  density asp(s) = po exp(Be). For a background with
L,(x). Fora < 2, these distributions are characterizedconstant average level densify,= 0, while for a general
by infinite second moments, as one can easily infer fronmany-body system3 > 0. The chaotic properties of the
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interaction of the background with the particle are incor- In order for the measure (8) to be positive definite
porated into the correlation function (second cumulant): must not decorrelate faster than a Gaussian [12]:

X)) ][] = Gij(X — Y)Ajju (7) Glx) =1—|x|* +..., a € (0,2]. (10)

Here A = [846,i + 848], and all other cumulants AS the positionx of the slow particle changes, the instan-
vanish. In our analysis, the integration over the chaotid@neous energy levels, (X) of [H,(X)];; change. Using
part, given by i (X), is defined through a Gaussian the above measure, the average fluctuations are

measure for parametric random matrices [12], (E (X) — E,(Y)P) = D,|X — Y|“. (11)
o 1 The energy-spacing fluctuations have a behavior that is
PlmX)] exp[ f dx dy similar to a Lévy process characterized by the diffusion

constantD,. The character of these fluctuations in the
X Trlh(X)G (X — Y)hl(Y)]}- (8) eigenvaluesE,(X), indicated by, will be seen to be
related to Lévy distributions, which describe the time
The character of the interaction of the background withevolution of the density matrix for a particle evolving in
the test particle is incorporated into the correlation func+this chaotic bath.

tion G(X — Y), for which we use the form [13-15] To develop the dynamical evolution of a free particle
I (6; — &) ¥ evolving in the presence of a chaotic background, we take
Gii(X) = —— ex;{ —’72’}6(—) the Hamiltonian of the form
24 p(ei)p(e)) 2kp 0 2

(9) H,/(X,P) = 51'}'|:2P—M + U(X)j| + H}),l’j(X). (12)

This describes a parametric, banded, random matrix where

the strength of matrix elements decreases with increas-"€ correlated, random-matrix bath can be integrated
ing level density. HereG(x) = G(—x) = G*(x) = 1, out in an influence functional formalism [14]. For our

G(0) = 1, and the spreading width", «, [linked with ~ PUrPOSes, the(B) act_ion is sufficient, as weII_as a weak
the effective band widthNy =~ «op(s)], and the correla- coupling of the particle to the bath. In this case the

tion lengthX, are characteristics of the background. | effective equation for the density matrix of the test particle
has the form

lﬁatp(X’ Ya t) =

Py Py grin _(x —v
XY 4 px) - Uy) - Py — P
oM 2M UX) - U¥) 4X0MG Xo (Px v)

srle() |

, : . | ,
where in weak couplingG(x) =1 — |x|* and G'(x) * p(r,0,5) = f f drdk v —kT /M)
above representsa sgn(x) [x|*~ . 2arh

p(X,Y,1), (13)

Consider first a test particle in the absence of an ik(r — r') 0 ,
external field and interacting with a background with X ex 5 ]k y ds
constant average level density/(X) = 0 and 8 = 0]. | ;e !

This evolution equation can be solved by passing to % MI® ) s" (15)
the coordinates = (X + X')/2, s = X — X'. In these kh | Xo
variables, the density matrix has the form
dk kt dk o| o? r
= = s — — = | —exp—k| =5 t+ 5
plr.s.1) f A Ry Po(r ,§ m) 27 p{ 202 8Mo?
ikr —r') TIM [° , [hpatl o
X + - |k|
eXp[ i ik o (@ + DA(MX)

)] o i

An initial wave packet, o(X) = EXD(—_X2/402)/_ p(X,X,1r) is nothing more than the spatial probability
Qma?)'/4,  provides an initial density matrix distributionP(X, ¢) for the process. We can now express
po(r,s") = (1/N2mo?) exd—(4r> + s2)/802]. it in terms of a convolution of Lévy distributions,

For the diffusive dynamics of the test particle, we are
interested in the diagonal component of the density matrix _ f I ra® vy POy
LD = plrs 2 0.0) p(X,X,1) dx' £20x" £y"(x - x'), (A7)
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where sions of the Fokker-Planck (FP) equation [2—4]. These
l « are phenomenological fractional kinetic equations (re-
r h a+tl . . . . . . . .
a(t) = (@ + )i\ Mx > (18)  stricted to one dimension) in which certain derivatives are
o2 2’ replaced by derivatives of “fractional” order [16]. Such
b(t) = > + o2 2. (19) approaches have also found applications in a wide range

of problems from turbulence to diffusion in porous or vis-
. - X o ) -->"coelastic media [17]. We can now explore the type of
tive definite, the spatial probability (X, 1) is also posi-  gyqchastic process, which emerges in the classical limit of

tive definite. Notice that the restriction & < & =2, 5, qyantum Lévy processes, and the connection to multi-
which came from the short-distance statistical Correlat'onﬁlimensional fractional kinetic theory.

in (11) and the requirement of a positive definite statistical Typically, the phenomenological fractional FP equation
measure, is also the necessary requirement on the LY\ i forr,n
distribution to keep the resulting time evolution positive

definite. Hence the character of thieort-distanceluctua- 3°P(Q,1) EYC
tions is directly responsible for tHeng-timebehavior of =

As both functions in the integrand of Eq. (17) are posi-

[A(Q)P(Q,1)]

B (= 0)m
the quantum system. ot (=0) .
Consider now the short-time and long-time behavior n 1 9 [BQ)P(0.1)]. (23)
of the dynamics. Fol < a < 2, in the limit of long 2 9(—Q) 2B

times, we expect the®"! term to dominate over? in
(16), so that the density asymptotically approaches a Lévyhere u = v =1 in Ref. [4], u = v in Ref. [3], and
distribution, 0 = v = 1in Ref. [2]. Here the symbad*/dx* repre-
e e sents the Riemann-Liouville fractional derivative [16], ex-
p(X. X, 1) — alt) ¥ Lalatn™x], (20) cept for Ref. [2], where it represents the Fourier transform
while for very short times, the Gaussian process is thef —k~. This equation, while formally constructed, is phe-
dominant behavior, nomenological. It is defined to reproduce anomalous dif-
V2 V2 fusion through scaling formulas such@$ ~ 7, wherey
pX.X,1) = . £2<: X)' (21)  is afunction ofs, u, andw. A few points should be made
. ) : here. Generally, the coefficiensand B are defined as
Specifically, in Eq. (16) thdk|* term in the exponent |imits whose existence is postulated but not known. Fur-
dominates in the long-time limit only for momenta<  ther, either the form of the fractional derivatives is taken to
ke, where La) provide this scaling law, or power law noise is chosen
L — [@} o fla—1/2-a) 22) to obtain them [2,6]. Such dynamics can then be related
¢ b(t) ) to Lévy processes [1]. Finally, the extension of these equa-
For the special case of = 2, the result is Gaussian tions to phase space become tenuous, since it is not clear
but the dynamics can be ar{omalous as one can h’a\pow to include momentum. l\_lote on_ly Is it unclear if one
wrbulentlike diffusion of the typ€x2) ~ ’t3 [10]. When Should take fractional derivatives W|th respect to coordi-
. . ' nates, momenta, or both, but the existence of the corre-
the level density of the background is not constant

8 >0anda = 2, one can recover Brownian diffusion sponding coefficientd, B, ... is unknown. Through our

transport equation, we can provide a microscopic interpre-
[15]. For generala and g > 0, however, the results tation of these coefficients as well as a systematic manner
are not yet known. For the range< « < 1, the long-

. . . 11 nstruct a fractional kineti tion is ph
time behavior approaches a Gaussian process. At shar consruct a fractional KInetic equation 1S phase space,

times, the dynamics is influenced b§,, and there is Whose guantum limit results in Lévy processes.
’ y : 3 ar = To obtain a classical transport equation, we construct
a crossover from short time Lévy dynamics to normal

Gaussian expansion of the wave packet. In both casetshe Wigner transformf(Q, P, ) of the density matrix

however,1 < a <2 and0 < « < 1, the second spatial pX.Y,1)as
moments are strictly speaking divergent. One should also :

. . L dR iPR R R
note that neithew(s) nor b(¢) are linear in time; even f = Yy 5 pl O + 7,Q — ?,t
though the dynamics has the character of a Lévy process, .
it is not a Lévy stable law. (24)

Efforts to understand unusual stochastic behaviors of

dynamical systems has led to the development of exﬁerﬁ%ﬂ?’itr;?rgsirtg c\)/\l/g ﬁxglu'[ion equation, taking the leading

o

af dR iPR h? R R R
- = ——— |1—=—0p0r + + =] - - — | =it =
a1 2im i eXp< i )[ om Ok U<Q 2) U(Q 2) X
a—1
R R R
+ iyhXoa sgrR) | — rp| @ + —,0 — 1. (25)
Xo 2 2
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This leads naturally to the Reisz fractional integro-did not have the absolute value, and from [3], which uses
differential operator. This operator, applied to a functionthe Riemann-Liouville form of this operator. The Reisz
f(P), is defined as [16] operator is defined as a fractional integral for &e< 0
(=Ap)*2f = FUXI“FF, (26) and as a fractional derivative for Re > 0 through ana-
where A, is the Laplacian (in our case with respect to lytic %ontlnugtlon.) It is cgnvgnlent ;[o deflnezthe ozpera-
the momentunP), and F represents a Fourier transform. OF Dp = (=i/R)*(—=Ap)*/%, since Dp[ ] = o°f /oP=.
(This operator is distinct from that proposed in [2] whiﬁh Then the classical limit of our quantum Lévy process gives
rise to a fractional extension of Kramers equation:
af(Q,P,1) + P af(Q.P,1) 3U(Q) af(Q,P,1) _ 2T™M
ot M a0 90 P Y ak’

Dy '[PF(Q,P,1)] —

(ih)*Dp[ f(Q.P. D),
(27)

where T = 1/8 is the temperature and the operatbrtum and classical transport in chaotic systems, as well as
Dp = (—i/W)*F~ ! sgnX)|X|*F, with the property the links between chaos, quantum statistical fluctuations,
DA[Pf] = a(Pf)/oP. The generalized friction coeffi- Lévy processes, and classical fractional dynamics.
cient is given by

Bllha

Yo T Mg .
. [1] M. Shlesinger, G. Zaslavsky, and J. Klafter, Nature

For a = 2 we recover Kramers equation [_18]. Wh_at we (London)363 31 (1993).
see is that it is not the coordinates which acquire the 2] 4. c. Fogedby, Phys. Rev. Le@3, 2517 (1994).
fractional character, as usually assumed, but the momentgg] G. zaslavsky, Physica (Amsterdan®6D, 110 (1994):
Because the coupling to the background is not momentum  Chaos7, 753 (1997).
dependent, the correlation functi@h(X) results only in [4] G. Jumarie, J. Math. Phys. (N.Y33, 3536 (1992).
fractional derivatives with respect to momenta. This can[5] M. Shlesinger, B.J. West, and J. Klafter, Phys. Rev.
be traced back to the nature of the chaotic correlations Lett. 58 1100 (1987); E. Montroll and B. West, in
in Eq. (13). Further, these processes, related to Lévy Fluctuation Phenomenaedited by E. Montroll and
processes, do not require the introduction of fractional _ J- Lebowitz (North-Holland, Amsterdam, 1979).
time derivatives. We note here that our transport theory (6] J:P- Bouchaud, A. Comtet, A. Georges, and P. Le Dous-

. . . sal, Ann. Phys. (N.Y.)201, 285 (1990); J.P. Bouchaud
has a consistent classical limit for all of these transport and A. Georges, Phys. Repo5, 127 (1990).

coefficients only when they remain finite As— 0. This [7] G. Zaslavsky and B. Niyazov, Phys. Re383 73 (1997).

requires in turn that the parameters of our quantum theory[g] see, for exampleLévy Flights and Related Topics in
cannot remain constant @s— 0, if we are to recover a Physics, edited by M. Shlesinger, G. Zaslavsky, and

well defined classical transport. Finally, we observe that  U. Frisch (Springer-Verlag, Berlin, 1995).

this approach provides finite coefficier®g o, Dpp, Dop, [9] P. Lévy, Calcul des ProbabilitieGuthier-Villars, Paris,

and so forth (e.g4, B, .. .) for a fractional kinetic equation 1925).

in phase space. [10] D. Kusnezov, A. Bulgac, and G.Do Dang, Phys. Lett. A
We have shown that the quantum evolution of a wave _ 234 103 (1997).

packet in a chaotic environment can lead to reduced dentll A-O. Caldeira and A.J. Leggett, Ann. Phys. (N.¥49

sity matrices which behave as Lévy processes. The short- 3/4 (1983); R.P. Feynman and F.L. Vernon, Ann. Phys.

distance energy fluctuations of the background, which are E’I‘é\ég)m’ 118 (1963); P. Pechukas, Phys. R&81, 174

chargcterlzed by a parametere (0, ,2]' are found to be [12] D. Kusnezov and C. H. Lewenkopf, Phys. RevoE 2283
precisely related to the quantum time evolution with @’ "~ (1996,
Lévy process of the same character For @ = 2 one  [13] D.M. Brink, J. Neto, and H. A. Weidenmiiller, Phys. Lett.
has Gaussian processes, which can display normal to tur-  80B, 170 (1979).
bulentlike diffusion or Brownian diffusioq8 > 0), while  [14] A. Bulgac, G. Do Dang, and D. Kusnezov, Phys. Rev. E
for « = 1 one has the dynamics of the Dyson process. 54, 3468 (1996); Ann. Phys. (N.Y342 1 (1995).
The general quantum evolution of a wave packet displays E5] A. Bulgac, G. Do Dang, and D. Kusnezov, Phys. Rev. E
crossover between Gaussian and Lévy dynamics. In pass- 98 196 (1998). . . ,
ing to the classical limit of this behavior, we find that the [16] ﬁ{tgg']rilasrgﬁ éé’?i‘\-/;'i'\l;’:;é grizi?)r?'Eslfel\ggﬁcggfirsacfggg)l
{on. which 1 a generalization of Kramers equation. Forll7) F- Manard, Chaos Sofions Fracta, 17 "(1996)

' ) ] : R. Nigmatullin, Phys. Status Solidi B24, 389 (1984);
a = 2 Kramers theory is feco‘{ered- _Th'_s approa_ch pro- E. Novikov, in Lévy Flights and Related Topics in
vides a means to develop fractional kinetic theory inmore  ppysics, edited by M. Shlesinger, G. Zaslavsky, and
than one dimension, since the expansion coefficients are  y. Frisch (Springer-Verlag, Berlin, 1995), p. 35.
determined from the microscopic theory. It also provideg18] N.G. van KampenStochastic Processes in Physics and
the possibility to explore the connections between quan-  Chemistry(North-Holland, Amsterdam, 1990).

(28)

1139



