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When Can Noise Induce Chaos?
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Crutchfieldet al. observed that noise truncates period-doubling cascade and induces chaos. To date,
however, very little low-dimensional chaos has been unambiguously identified experimentally. This dis-
crepancy stimulates us to reexamine the noisy logistic map. We find that noise can indeed induce chaos.
However, this is not associated with the maincascade. We identify three basic conditions for noise
to induce chaos. We also show that when noise induces chaos the complete period-doubling cascade
is inhibited, otherwise the cascade is simply masked by noise. [S0031-9007(99)08394-5]

PACS numbers: 05.45.Ac, 05.40.Ca

Noise can induce a number of interesting phenomena in To determine whether noise can induce chaos or
nonlinear dynamical systems, such as noise-induced ordeot, we need to define chaos carefully. Mathematically
[1] and noise-induced chaos [2—4]. The latter was firsspeaking, a noisy system, no matter how small the noise
observed in a driven nonlinear oscillator [3], and lateris, has infinite dimensions. Experimentally speaking, one
studied via the noisy logistic map [4]. The main idea iswould be more interested in a certain range of finite
that intrinsic noise truncates the period-doubling cascadescales. If the noise is very weak, then its influence
That is, the periodic motions with high periods of the on the dynamics may be limited to very small scales,
clean system are replaced by chaoslike motions wheleaving the dynamics on finite scales deterministiclike.
there is noise. Indeed, when a period-doubling cascade ldere we will adopt this experimentalist’s point of view,
observed in experimental situations, such as in fluid flowsand define chaos by the exponential divergence between
[5], semiconductor lasers [6], chemical reactions [7], anchearby trajectories on certain finite scales.
biological systems [8], and in a plasma reactor [9], only Let us be more quantitative. From the time series
the first few period-doubling bifurcations can be observed{x(i)} of the noisy logistic map, we first construct vectors

Since the period-doubling cascade is a universal feafX;} by the time delay embedding technique [1X}: =
ture of nonlinear dynamical systems, we would expecfx(i), x(i + L), ..., x(i + (m — 1)L)], with m being
that chaos associated with this cascade should be reatite embedding dimension aiidbeing the delay time (we
ily observed experimentally. Because of the difficulty in choosem to be 4 andL to be 1 here). We then compute
distinguishing between low-dimensional chaos and nois¢he time-dependent exponeftk) curves [12],
[10], however, to date, not many true low-dimensional
chaotic systems have been identified experimentally. This 1Xivk — Xjarll
discrepancy leads us to ask a series of questions: Can an Ak) = {In Cx=xi )

. . . . . L J
experimentally observed chaoslike motion associated with
a period-doubling cascade be unambiguously identified as,

deterministic and low dimensional? Can noise indeed inWith © = [IX; = X;ll = r + Ar, where r and Ar are

duce chaos? If noise can induce chaos. then when cdlfescribed small distances. The angle brackets denote

this happen? Since noise truncates the period—doublinﬁ%nsemble averages of all possible pairdXf X;). The

cascade, is the complete period-doubling cascade inhi Ntegerk, called the evolution time, corresponds to time

ited, or just masked by noise? To answer these questionk®- Note that geometricallyr, r + Ar) defines a shell,
we study the following noisy logistic map: and a shell captures the notion of scale. For clean

chaotic systems, thé (k) curves first increase linearly
Xnt1 = px,(1 — x,) + Py, 0<x,<1, (1) withk till some predictable time scalé&,, then flattens

[13]. The linearly increasing parts of th&(k) curves
wherey is the bifurcation parameter aiiyj is a Gaussian corresponding to different shells collapse together to form
random variable with zero mean and standard deviatioan envelope. This property forms a direct dynamical
o. We will refer too as the noise level. The bifurcation test for deterministic chaos [12]. For noisy chaotic
diagrams, both for the clean and noisy systems, can b&ystems, the linearly increasing part of tAék) curves
found in Crutchfieldet al. [4]. Here, we will study the corresponding to small shells break themselves away from
system behavior at parameter valugs= 3.55, 3.63, the envelope. The stronger the noise, the marg)
3.74, and 3.83. The clean system at these parameteurves break away from the envelope. Only if the noise
values is periodic with periods 8, 6, 5, and 3, respectivelyis not too strong so that the linearly increasing parts of
Note thatu = 3.55 belongs to the mai@” cascade, while the A(k) curves corresponding to some finite scale shells
o = 3.83 belongs to the period(3)-doubling cascade. still collapse together, can we say that the motion is

(2)
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chaotic. Noise-induced chaos should also be defined in 1.5
this manner. I
Crutchfieldet al. [4] suggested that the effect of noise < I
is to average the structure of deterministic attractors 5 1‘0'_ J
over some range of nearby parameters. For noise to be § :
able to induce a transition from a certain periodic state 3
(corresponding to some paramejef) to a chaotic state, 5 .
the chaotic motions corresponding to adjacent parameter £ 0.5 l
values should still behave chaotically in the presence of 2 I
such noise. If those adjacent chaotic motions are very
insensitive to noise, then we can anticipate that noise- 0.0l . . . .
induced chaos is likely to occur. This argument suggests 350 360 3.70 380 3980 4.00
that, to answer whether noise can induce chaos or not, Bifurcation parameter p
it would first be useful to clearly understand how noiser s 1 variation of the normalized area NA with the bi-
affects chaos. furcation parametep. for two noise levelso = 0.002 (open

For a quantitative understanding of how noise affectsriangles) and 0.003 (filled circles). Shel@=(+1/2, 2-i/2)
chaos, it is more convenient to work with the logarithmicwith i = 7 and 8 were used in the computation.
displacement curves instead of the time-dependent expo-
nentA(k) curves [13]. This is done by rewriting Eq. (2) ing in an enlarged positive Lyapunov exponent. This phe-
as nomenon may be termed “noise-enhanced chaos.” While

this was a general conclusion by Crutchfietdal. [4], we

Dk) = (nllXivx = Xjeilly = AnllX; = X1y + A(K). sea here that this is true only for certain chaotic states.
(3)  Nevertheless, this fact upholds our hope that noise-induced
chaos is likely to happen.

Recall that we have speculated that for noise to induce

tiontimek. Now the linearly increasing parts of the curves the chaotic stat i i i iodic stat
corresponding to different shells separate, representing t aos the chaoltic states adjacent to certain periodic states
ave to be insensitive to noise. Thus, based on Fig. 1,

short-term memory of the chaotic system. By addin .- oo O
noise, the separation shrinks, reflecting loss of memor%’ve a;tlmpate that n%lse—lndlukceld chaﬁs is likely toboccur
’ - ! - . rat about u = 3.74, but unlikely to happen at about
The stronger the noise, the more the separation shrink&' K ’ y 1 PP .
g 15¢, paratl ! = 3.57, which belongs to the main period(2)-doubling

This can be quantified by taking the ratio of the separatiort* . . ;
between the displacement curves for the noisy and cleaff:Scade- This idea can be readily tested by computing the

systems. More concretely, we take two logarithmic dis-A(7]2 cur\(/je; 1;;)3[ thg noisy LOgIStIC map at = 355,[3“?3 .
placement curves corresponding to different shells, denotg " ™ and 5.05. -Or each case, we can aqust thé noise
them asD, and D, calculate the area between them, do evel till the A(k) curves b_est show chaoslike features.
this for both the noisy and the clean systems, and take the{rhe results are shown in Figs. 2(a)-2(d), where, for each

and plotting(In [|X; +«+ — X;+«|l) as afunction of the evolu-

ratio. Since this ratio is a normalized area, we denote it 9Ur€: SIX CUIVES, from bottom to top, correspond to shells

: : ror 4+ Ar); = 7UTD/2 2712y with i = 7,8, ..., 12.
by NA. This procedure can be well approximated by theCIearIy, the linearly increasing segments of thek)

following f la [13]: ;
ollowing formula [13] curves foru = 3.74 and o = 0.002 form a very tight

> [Di(ki) — Da(ki)]lwith-noise envelope, while, for = 3.55, the A(k) curves show only
NA ~ S l —> (4)  a noiselike feature. Hence, we conclude that noise does
i[Dl(ki) - D2(ki)]|with0ut—noise . ’ T . .
induce chaos afuw = 3.74, while noise-induced chaos
with k&, > (m — 1)L, i = 1,2, 3,.... NA typically de- does not happen in the main period(2)-doubling cascade.

creases from 1 to 0 with the strength of the noise. Here we Very interestingly, foru = 3.63 and 3.83, shown in
are more interested in how some noise of fixed strength afigs. 2(b) and 2(d), respectively, the linearly increasing
fects different chaotic states. This can be readily done bgegments of thé\ (k) curves corresponding to two shells
computing NA for different parametegs for certain fixed  [shells(2=0*1D/2 27i/2) with i = 9, 10 for u = 3.63, and
noise levels. Figure 1 shows, for noise levels= 0.002 i = 7,8 for u = 3.83] also collapse together. These
(open triangles) and 0.003 (filled circles), the variation offeatures indicate that the noisy dynamicguat 3.63 and

NA with . Note that at aboute = 3.63, 3.74, and 3.83, 3.83 appear to be chaoslike at certain definite scales. Note
the clean logistic map has periodic windows. They are rethat Crutchfieldet al. [4] also observed that the effect of
flected as dips in the NA va curves at aboutt = 3.63, noise on the period-doubling cascade associated with the
3.74, and 3.83. Also note that NA for some chaotic stateperiod-3 window (aboug. = 3.83) is different from that

is larger than 1. This is caused by the fact that with noisessociated with the main period(2)-doubling sequence in
the slope of the linearly increasing parts of thek) curves  that the probability density of the former has a broad
corresponding to those parameter values increases, resulackground.
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. ‘ , . . . . . FIG. 3. Three logarithmic displacemetin [IX; ., — X1«
6 5 10 15 20 25 0 5 10 15 20 25 curves (from top to bottom) corresponding to shells
Evolution ime K Evolution time K (2-G*+D/22=i/2) with i = 12,13, and 14. For more de-
FIG. 2. Time-dependent exponent(k) vs evolution timek  tails, see the text.
curves for (@) = 3.55 and o = 0.01; (b) u = 3.63 and
o = 0.005; () u = 3.74 and o = 0.002; and (d) u = 3.83
ando = 0.005. Six curves, from bottom to top [in terms of the and o = 0.0003, (b) u =3.83 and o = 0.001,
A(k) values for largek], correspond to shell®@~(*1/2 2-i/2)  (¢) w = 3.63 and o = 0.0003, and (d) u = 3.55
withi =7, 8,9, 10, 11, and 12. and o = 0.0005. To separate these different groups of
curves from each other, the grou@s and(b) curves are
shifted upward by 2 and 1 units, while the group$ and
Before leaving Fig. 2, we note an unexpected featurdéd) curves are shifted downward by0.5 and —0.2 units,
exhibited by Fig. 2(b): The time-dependent exponentespectively. Also shown iifa) (as diamonds)(b) (as
curves foru = 3.63 cross over for small evolution times. triangles),(c) (as circles), andd) (as squares) are curves
This reflects that the effect of noise on the systengenerated from IR* with « = 1.5, 1.0, 1.0, and 0.25,
behavior is different at different scales. This may berespectively. Surprisingly, we have observed a new type
related to the fact that the adjacent chaotic motions abf diffusional process, which is stronger than the standard
aboutu = 3.63 are sensitive to noise. Brownian motion characterized by an exponent- 0.5.
Let us look further into why noise does or does notHow shall we understand this?
induce chaos aju = 3.55, 3.63, 3.74, and 3.83. For This is the very condition we seek for the periodic
this purpose, we choose a series of different noise levelstates themselves to be susceptible to noise-induced chaos.
and study the behavior of the system at these paramet®reterministic chaos is characterized by short-term ex-
values. ponential divergence between nearby orbits. To induce
For noisy oscillatory systems such as the noisy Varchaos by adjusting the noise level, we are trying to make
der Pol's oscillator, or the wakes behind a cylinder,the displacement curves of the noisy system grow expo-
we have shown [13] that points in the phase spacaentially for a short period of time, then level off. This
execute Brownian-like motions, characterized by a poweis much easier for noisy systems that already show diffu-
law growth of the logarithmic displacement curves:sional processes stronger than the Brownian motion for
(INlIX;+x — Xj<4ll) ~ Ink%3, for large k. We have very weak noise (such as = 0.0003 for u = 3.74).
also found in a semiconductor laser system [14] thatThis is the reason that noise is able to induce chaos at
near a bifurcation point, the long-term growth rate of theu = 3.63, 3.74, and 3.83, while the chaoslike motion at
displacement curves may be slowed down, characterized = 3.74 is much better defined than that at= 3.63
by a power law growth ofIn|[X; 1 — X;+ll) ~ Ink*,  and 3.83.
with @« < 0.5. This is because the convergent flow We are now ready to answer whether noise masks or
of the underlying deterministic periodic orbit is very inhibits a complete period-doubling cascade. The answer
weak, hence noise can instantly kick phase points offlepends on whether noise-induced chaos occurs or not.
the deterministic orbit to a region where nonlinearity When noise can induce a transition from a periodic state
is very strong, resulting in a diffusional process thatto a chaotic state, we conclude that a particular period-
is slower than the standard Brownian motion for largedoubling cascade is inhibited. If noise cannot induce
evolution times. With these results in mind, we also com-chaos, we anticipate that the period-doubling cascade is
pute the logarithmic displacement curves for the noisyonly masked by noise. To make the above idea more
logistic map. concrete, let us observe some noisy time seriep &t
Figure 3 shows four groups of the logarithmic dis-3.55 and 3.74. Figure 4 shows some typical time series
placement(In [|X;+x — X;+«l[) curves for(a) u = 3.74  for the clean and noisy systems with the noise strength

N
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1.2 T In summary, we have shown that noise can indeed

(0) u=3.55 fg;g.m induce chaos. Three basic ingredients are required for this
= to happen. First of all, the noise level has to fall within
* 0.8 - a certain narrow range. Noise below this range would
k4 not be sufficient to induce chaos, whereas noise above
§ this range would destroy the induced chaos, if chaos
© 0.4 ] can indeed be induced. Second, when subject to a noise
ig source of strength within this range, the adjacent chaotic

states should still behave chaotically on certain finite
scales. Third, and most important, the periodic state itself,

0.0 . . L . .
when subject to weak noise, should undergo a process that
0 5 10 15 20 . . . - .
is much more diffusive than the Brownian motion. For
1.2 R ;3 74 " A0=0 a particular period-doubling cascade, when noise induces
(6) p=3. » 0=0.0003 chaos, the complete period-doubling sequence is inhibited.
< Otherwise, the cascade is simply masked by noise. We
: 0.8 1 note that these findings have also been observed in a
2 semiconductor laser system [15].
b
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