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A Solution of the Odderon Problem
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The intercept of the odderon trajectory is derived by finding the spectrum of the second integral
of motion of the three Reggeon system in high energy QCD. When combined with an earlier
solution of the appropriate Baxter equation, this leads to the determination of the low lying states
of that system. In particular, the energy of the lowest state gives the intercept of the odderon
ap(0) =1 — 0.2472a,N. /7. [S0031-9007(98)08354-9]

PACS numbers: 12.38.Cy, 12.40.Nn

One of the still unsolved problems of perturbative QCDfunction of the compound state of three Reggeized gluons,
is the behavior of the theory in the Regge limit. The
intercept of the Pomeron trajectory, the BFKL Pomeron, flp,p) = Zcmfr(p)fs(ﬁ), 3)
has been derived in the classic works of Balitskii, Fadin, r.s

Kura_lev, and Lipatov [1]. The next natural step was to ﬁ”dwherep — {p1, p, p3} denotes three transverse coordi-
the intercept of the odderon trajectory, which, however,nates in the complex number representatign= x; +

turned out to be very difficult [2—4]. _ ivi, k = 1,2,3. All other quantum numbers are collec-
Important progress was made by Lipatov, Faddeevyely denoted by the index. Similarly in the antiholo-
and Korchemsky [5,6], who reduced the problem to th%orphic sectorp, = x; — iye. Since the integrals of
solution of a functional equation—the Baxter eq“ation_motionqz, 45 commute with the Hamiltonian, one chooses
for physical values of the two relevant constants of motionf(p) as a simultaneous eigenfunction of these operators.

(92 _and q3) of jche system of three Reggeized gluons. With the conformally covariant ansatz — 2222
Various approximation techniques [7-9] for solving the Piops

Baxter equation have been used, and in our previous wo nte};/o3f’ rfwléss cﬁ‘lthe gi/’sf[;ajm) 0.1, 3 (po being the
[10,11] an exact method of constructing a solution for ’ u

generalg, and g3 was developed. However, while the 7 (p) = P12P13P23 B 0a)(7) 4)
eigenvalues of, are known, the spectrum ¢f remained P24 P PP ’
unavailable, apart from asymptotic results of [7,9]. In this ) ) ,

Letter we report on the solution of the eigenproblengof € igenequationgsf = gsf, reads, in terms o, and
which removes the last obstacle in deriving the numericaftt fixedq> given by (2),

value ofa in the leading logarithmic approximation.

d? d?
The intercept of the odderon trajectory is given by alz) a3 ®(z) + b(2) a2 ®(z) +
SNC —_ (7 —
ap(0) =1+ a477_ [es(h,g3) + €3(h,q5)], (1) c(2) diz(l)(z) + d(z)®(z) =0, (5)

wheree; ande; are, respectively, the largest eigenvalueswhere

of the three Reggeon Hamiltonian and its antiholomorphic 3 '
counterpart [6]. The conformal weightparametrizes the az) =31 — 2)* = zaiz’+3,
eigenvalues of the Casimir operatpy, i=0 3
@2 =h(1—h), h=2Li1+m)—iv, . b(z) = 2221 — 22(1 — 22) = > bz 2,
i=0

meZ vER. c(z) =z(z = D[zlz = DBu + 2)(x — 1)

Analogous formulas hold for the antiholomorphic sector 3 .
with # = (1 — m)/2 — iv [6]. After an explicit expres- +3u* — ul= Z ciz'™,
sion for the energies,(h, q3) [€3(h,q5)] was derived i=0
[10], the only unknown ingredient was the quantization dz) = p*(1 — @+ D —2)2z — 1)
of gs. 3
The eigenproblem of thg; operator was formulated in —ig3z(l — z) = Z diz'.
general terms by Lipatov [3]. However, the quantitative i=0
solution was lacking due to the complicated and indirect This is a third order linear differential equation with the
way in which the boundary conditions enter and fix thethree regular singular points at= 0, 1, andw=, introduced
spectrum. To begin, we quote a general form of the wavéy Lipatov in [3] and investigated in [12] in a slightly
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different form. We will solve this equation by standard wheres, = 24/3, s, = —h/3 + 1, s3 = —h/3, and the
methods and identify proper boundary conditions whichcoefficients of the expansions are determined by the fol-
lead to the quantization @f. To this end we first construct lowing recursion relations:

a fundamental set of three linearly independent solutions ) 3 0
1) __ __ ! . .
190) = ), u(2), u(2)), aroundz = 0. ful = Zl FalmAm(si + n)/Ao(s; + n),
—
i > 0 _ o o . (7)
@)= Y 0 i@ =2 Y AP foo =1 f5 =00 i=12j>0,
n=0 n=0

An(X) =ap,x —m)x —m —1)(x —m — 2)
+ bu,x —mx—m—1)
+ cp(x — m) + dp,

(6)
w5 (@) = Ny () + 2 Y ra”,
n=0
| and for the logarithmic solution

3
'n = _(pnl + Z rn*m/\m(SS + n)) / /\0(53 + l’l), ry =1, ro = _PO//\I(SS + 1)7 r-1 =0,
5 m=1 (8)
Po= D F2uymlsa + ). yn@) = auBx — m)(x —m —2) + 2] + bu[2(x — m) = 1]+ cu.

m=0

There are three physical conditions which our soluti%n Ty = YV“‘ ,
should satisfy. The completevave functionof the W(@M())

compound system (3) must be (i) single \_/alued ir.'. th‘awhere W@ (¢)) is the Wrdrski determinant of the
whole transverse plane of Reggeon coordinates, (i) inf,ndamental solutiong(¢). As long as¢ is in the in-

variant under any permutation of Reggeon coordinate§, saction of the convergence regioRs and R, the

(Bose symmetry), and (iii) normalizable with respect to 4y elements obtained from Eq. (11) are independent
thf:3scalar groduc_(f lg) = [ dpdp f*(p.p)s(p.P)/ o ¢ provided enough terms in the series (6) are included.
[Ti=i lpwe1l®, pa = p1, dp = dpidprdps. Together Finally we implement the uniqueness constraints (i). It
with the analyticity of the solutiond(z) these conditions  ig ¢rycial to observe that requiring single valuedness in
unambiguously determine the spectrumyef __ the holomorphic and antiholomorphic sectors separately

The series in Eq. (6) is convergent in the unit circlegiyes 4 too strong condition and is, in fact, not necessary.
Ry aroundz = 0, and tp(g)refore it determines uniquely gyen though the Hamiltonians in both sectors commute,
the analytic continuation™ (z) to the cut complex plane. proner houndary conditions should be formulated only for
To achieve this continuation in practice we construct tWoihe waye function of the whole system (3). We therefore

il > (o0 . e .
other fundamental sets of S‘?I“t'omé '(z) and @™(z)  gefine a general bilinear form [the power prefactors in (4)
aroundz = 1 and z = «. This could be done analo- e irrelevant for this discussion]

gously to Egs. (6)—(8), for the transformed equation, =D -0
however, because of the symmetry under permutations of Vnea(z2) =u (2 AV (2), (12)

Reggeon coordinates, one can partly satisfy condition (iynd demand its uniqueness in the whole transverse plane.

by a proper choice of these bases. Since under evefhe compound function (12) has nine free parameters.
permutations (1,2,3) — (3,1,2), z—1—1/z, and (we thank Gregory Korchemsky for the discussion on

Wi = Wil — ), @)

(1,2,3) = (2,3,1), z = 1/(1 — z), we define that point) By inspecting Egs. (6) we see that the
1 1 most general choice of coefficients, consistent with the
iV(z) = ?4“”(1 - ) 1" (z) = Zt(o)(l), uniqueness of the wave function in the neighborhood of
z -z — 1 i
z=1,Is
9) a 0 0
. : . m _
These series are convergent in the regi@sRe(z) > A 0 5 7], (13)
1/2 andR.: |1 — z| > 1, respectively. Analytic continu- 0 v 0
ation is realized by the transition matrices, which has the freedom of three parameters. Incidentally
) 1) 1 o0 H . .
! )(z) _ F,-juﬁ- ). ug )(z) _ Qijuﬁ- )(z), (10) this form also guarantees the normalizability of the wave

function. Rewriting the wave function in terms of other
which depend oz and g3 only. They contain the full bases (9) around = 0 andz = <« gives other coefficient
information about the system, in particular, about itsmatrices,
spectrum. In practice we calculate transition matrices 0 _ - INT  (D1—1 o =T (1
as the solutions of the systems 6fx 3 algebraic A = (@ ), A¥ = a A%, (14
equations (10) written at some judiciously chosen poinfNow, uniqueness in the whole transverse plane requires
z = {. For example, that the transformed matrices [EqQ. (14)] have the same
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form as (13), with possibly different coefficients. There-lead to single-valued wave functions, however, the condi-
fore we require tion of Bose symmetry singles out the imaginaryonly.
©_ ,0_ ,0_ ,0_ 0 _ Namely, for purely imaginary eigenvalues, the matrices
Ay = A3 = Ay = Ay = Ay =0, 15 ' o . ; -
12 13 33 21 31 (15) A AD andA™ coincide. This, together with the defini-
A=A =A% = A5 =4 =0. (16) tionof the basis (9), guarantees the invariance of the wave
function under even permutations. In order to implement
€full Bose symmetry it suffices to take the complete wave

function as

In fact, only one of these sets is sufficient, as can be se
from the following topological argument. Any possible
cut in the domain of the full wave function has to begin

and end at the singular points of the equation, i.e., at 0, V(z,2) = V1/21/2.4:3,(2, )
1, or at». Therefore eliminating two of these points z 7
guarantees that there is no cut beginning at the third + Yi21/20.7, T—1z-1) (19)

one. [We have checked for completeness that indeed o S
our numerical solutions of Egs. (15) and (16) coincide.]The second term is just the wave function in the
Equations (15) and (16) are linear homogeneous equatiofs 43, —¢3) Sector which, due to the degeneracy
for the coefficientsa, B, and y. The conditon of 4¢3 < —g3, obeys the general structure (3). On the other
the existence of a nonzero solution of Egs. (15) or (16)1and, for real eigenvaluegs, the matricesA®, A',
provides the quantization af; andg, that we looked for. andA® differ by a phase factor o#>7/3, and the only
It can conveniently be written as symmetric solution is identical with zero.
a @ For g3 lying outside of the real and imaginary axes
BU(/;) =0 and BL(/;) =0, (17)  both constraints (17) cannot be satisfied simultaneously.
Y % There also exists a solution of (17) witliy = 0. It

o v 3 oo o
. o) 2] 0 [o2] o y 3 — q3u3 y
of a, §, andy in, 9., A1z, Aiy, andAzs (Aar', Az, and oo 5o the logarithmic term at; = 0. In fact, in this

ASY). Explicitly case the series (7) can be summed and the well-known
Q105n 923102 03105 + Q31Q Pomeron wave functions are recovered. Together with

Bu=1| 0105 92310n 031035 + Q31Q |. the prefactors as in (4) they depend only on two out of
Q13013 0303 OnQs3 + 0330 the three coordinates; therefore, they are not normalizable

(18) and should be excluded [6]. Moreover, at (and only at)

Figure 1 shows the, suitably transformed, absolute valugs = 0 due to the vanishing of ;[)he logarithmic term, other
of the determinant ofB; as a function ofg; along the than (13), choices of the matri¥") may give single-valued
imaginary axis in the compleys plane. The eigenvalue wave function. However, all of them are not normalizable.

of the first Casimir operatoy, is fixed to ¢, = g, = Summarizing, we are led to conclude that the physical

1/4 which corresponds to the lowest representation of théPectrum ofgs for 4 = 1/2 lies on the imaginary axis.
SL(2,C). All formulas in the antiholomorphic sector are The first three levels are quoted in Table .

the same wittg; = ¢7, with % denoting a complex con- It i Very instructive to superimpose this result on our
jugate [6]. Clearly a set of discretg values exists where earlier calcu_latlons, bas_ed on a dlffe_rent appro_ach (Bethe
the first condition (17) is satisfied. Imposing the secondNSatz), which results in the analytic expression for the
condition eliminates half of the candidates. In addition, &€igenenergy of the three Reggeon system as a function

discrete series of real solutions of (17) exists. Both group&f 7 @nd ¢s [10]. Figure 2 showse;(1/2, ¢3) along the
imaginary axis ofj;. Black dots and crosses mark values

of g3 quantized according to the first condition in (17). It

turns out that the candidates which were eliminated by the
25 / second condition (crosses) are numerically very close to
20 the poles of thes;. They are, however, nonphysical since

the corresponding wave functions are not single valued.
The intercept of the odderon trajectory is determined
by the largest eigenvalues(1/2, q?). This corresponds

-
w
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-
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TABLE I. Quantization ofg; and corresponding eigenvalues
of the holomorphic Hamiltonian.

PR W IS S N NN TR SN AN W T S N RN N T

2 4 6 8 10 No. 3 €

Imay 1 0.20526i —0.49434

L 2 2.34392i —5.16930

FIG. 1. Quantization ofg;. Only half of the zeros shown 5 8.32635i —7.70234

constitutes the physical spectrum.
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that derived by Lipatov from the symmetry considerations
[3]. Moreover, it follows from Egs. (15) and (16) that the
same asymptotics hold around other singular points.

A variational estimate of the lower bound for the
Y Ty e odderonay > 1 + 0.36a,N./ was derived in Ref. [4].

2 L 6 8 10 D Recently this has been challenged by Braun, who gives
the bounda(0) > 1 — 0.339a,N./7 [13]. The latter
estimate is consistent with our exact result. It would be
interesting to repeat their variational calculation with our
exact wave function.

Imqq Recently Korchemsky studied the dependence of the
eigenvalues ofj; on & [9]. His results should agree with
FIG. 2. The holomorphic energy of the three Reggeizedgyrs for higher states. In fact, we have found earlier that
gluons for imaginaryg; (solid lines [10]). -Dots and crosses s KB formulas reproduce exact results quite well even
show solutions of the first condition (17). Solutions close to
the poles ofe; are eliminated by the second condition. at low values ofys. . . . .
We thank G. Korchemsky for interesting discussions.
This work is supported by the Polish Committee for
to the first nonzerq? = qgl) on the imaginary axis’ with Scientific Research under Grants No. PB 2P03B08614
the numerical value and No. PB 2P03B04412.
49 = —0.20526i (20) Note added—After we announced _these results in_ hep-

i 13 e ’ . th/9802100, Braun, Gauron, and Nicolescu have indeed
which, together_ with our solution of the Baxter equation, ,caq our wave function (12), with (13) and (23), in their
e3(h, ¢3) [10], gives, for the energy of the odderon state, \arjational approach (hep-ph/9804432; hep-ph/9809567).
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€3(1/2,99) = —0.49434. (21)  They have reproduced numerically our eigenvalue (21),
This translates for the intercept of the odderon trajectoryyhich confirms the results reported here and the method
c.f. Eq. (1), of [10].
YNC
ao(0) = 1 — 024717 22¢ (22)
a

which may solve the long-standing phenomenological
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generalizing known expressions used in the Bethe ansatzs] L.N. Lipatov, Padova Report No. DFPD/93/TH/70
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