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A Solution of the Odderon Problem
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The intercept of the odderon trajectory is derived by finding the spectrum of the second inte
of motion of the three Reggeon system in high energy QCD. When combined with an ear
solution of the appropriate Baxter equation, this leads to the determination of the low lying sta
of that system. In particular, the energy of the lowest state gives the intercept of the odde
aOs0d ­ 1 2 0.2472asNcyp. [S0031-9007(98)08354-9]
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One of the still unsolved problems of perturbative QC
is the behavior of the theory in the Regge limit. Th
intercept of the Pomeron trajectory, the BFKL Pomero
has been derived in the classic works of Balitskii, Fadi
Kuraev, and Lipatov [1]. The next natural step was to fin
the intercept of the odderon trajectory, which, howeve
turned out to be very difficult [2–4].

Important progress was made by Lipatov, Faddee
and Korchemsky [5,6], who reduced the problem to th
solution of a functional equation—the Baxter equation—
for physical values of the two relevant constants of motio
(q2 and q3) of the system of three Reggeized gluon
Various approximation techniques [7–9] for solving th
Baxter equation have been used, and in our previous w
[10,11] an exact method of constructing a solution fo
generalq2 and q3 was developed. However, while the
eigenvalues of̂q2 are known, the spectrum ofq̂3 remained
unavailable, apart from asymptotic results of [7,9]. In th
Letter we report on the solution of the eigenproblem ofq̂3
which removes the last obstacle in deriving the numeric
value ofaO in the leading logarithmic approximation.

The intercept of the odderon trajectory is given by

aOs0d ­ 1 1
asNc

4p
fe3sh, q3d 1 e3sh, q3dg , (1)

wheree3 ande3 are, respectively, the largest eigenvalue
of the three Reggeon Hamiltonian and its antiholomorph
counterpart [6]. The conformal weighth parametrizes the
eigenvalues of the Casimir operatorq̂2,

q2 ­ hs1 2 hd, h ­ 1
2 s1 1 md 2 in ,

m [ Z, n [ R .
(2)

Analogous formulas hold for the antiholomorphic secto
with h ­ s1 2 mdy2 2 in [6]. After an explicit expres-
sion for the energieseesh, q3d fe3sh, q3dg was derived
[10], the only unknown ingredient was the quantizatio
of q3.

The eigenproblem of thêq3 operator was formulated in
general terms by Lipatov [3]. However, the quantitativ
solution was lacking due to the complicated and indire
way in which the boundary conditions enter and fix th
spectrum. To begin, we quote a general form of the wa
0031-9007y99y82(6)y1092(4)$15.00
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function of the compound state of three Reggeized gluon

fsr, rd ­
X
r ,s

crsfr srdfssrd , (3)

where r ­ hr1, r2, r3j denotes three transverse coordi
nates in the complex number representationrk ­ xk 1

iyk, k ­ 1, 2, 3. All other quantum numbers are collec-
tively denoted by the indexr. Similarly in the antiholo-
morphic sectorrk ­ xk 2 iyk . Since the integrals of
motionq̂2, q̂3 commute with the Hamiltonian, one choose
fsrd as a simultaneous eigenfunction of these operators

With the conformally covariant ansatz,z ­
r12r30

r10r32
,

m ­ hy3, rij ­ ri 2 rj , i, j ­ 0, 1, . . . , 3 (r0 being the
center of mass of the system),

fr0,q2,q3 srd ­

√
r12r13r23

r
2
10r

2
20r

2
30

!m

Fsh,q3dszd , (4)

the eigenequation,̂q3f ­ q3f, reads, in terms ofF, and
at fixedq2 given by (2),

aszd
d3

dz3 Fszd 1 bszd
d2

dz2 Fszd 1

cszd
d
dz

Fszd 1 dszdFszd ­ 0 , (5)

where

aszd ­ z3s1 2 zd3 ­
3X

i­0

aiz
i13,

bszd ­ 2z2s1 2 zd2s1 2 2zd ­
3X

i­0

biz
i12,

cszd ­ zsz 2 1d fzsz 2 1d s3m 1 2d sm 2 1d

1 3m2 2 mg ­
3X

i­0

ciz
i11,

dszd ­ m2s1 2 md sz 1 1d sz 2 2d s2z 2 1d

2 iq3zs1 2 zd ­
3X

i­0

diz
i .

This is a third order linear differential equation with the
three regular singular points atz ­ 0, 1, and̀ , introduced
by Lipatov in [3] and investigated in [12] in a slightly
© 1999 The American Physical Society
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different form. We will solve this equation by standard
methods and identify proper boundary conditions whic
lead to the quantization ofq3. To this end we first construct
a fundamental set of three linearly independent solutio
$us0dszd ­ sssus0d

1 szd, u
s0d
2 szd, u

s0d
3 szdddd, aroundz ­ 0.

u
s0d
1 szd ­ zs1

X̀
n­0

f s1d
n zn, u

s0d
2 szd ­ zs2

X̀
n­0

f s2d
n zn,

(6)

u
s0d
3 szd ­ lnszdus0d

2 szd 1 zs3

X̀
n­0

rnzn,
h

ns

wheres1 ­ 2hy3, s2 ­ 2hy3 1 1, s3 ­ 2hy3, and the
coefficients of the expansions are determined by the f
lowing recursion relations:

f sid
n ­ 2

3X
m­1

f sid
n2mlmssi 1 ndyl0ssi 1 nd ,

f
sid
0 ­ 1, f

sid
2j ­ 0, i ­ 1, 2, j . 0 ,

(7)

lmsxd ­ amsx 2 md sx 2 m 2 1d sx 2 m 2 2d

1 bmsx 2 md sx 2 m 2 1d

1 cmsx 2 md 1 dm ,

and for the logarithmic solution
rn ­ 2

√
pn21 1

3X
m­1

rn2mlmss3 1 nd

! ,
l0ss3 1 nd , r1 ­ 1, r0 ­ 2p0yl1ss3 1 1d, r21 ­ 0,

pn ­
3X

m­0

f s2d
n2mgmss2 1 nd , gmsxd ­ amf3sx 2 md sx 2 m 2 2d 1 2g 1 bmf2sx 2 md 2 1g 1 cm .

(8)
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There are three physical conditions which our solutio
should satisfy. The completewave function of the
compound system (3) must be (i) single valued in th
whole transverse plane of Reggeon coordinates, (ii) i
variant under any permutation of Reggeon coordinat
(Bose symmetry), and (iii) normalizable with respect t
the scalar productk f j gl ­

R
dr dr fpsr, rd gsr, rdyQk­3

k­1 jrkk11j
2, r4 ; r1, dr ­ dr1dr2dr3. Together

with the analyticity of the solutionFszd these conditions
unambiguously determine the spectrum ofq̂3.

The series in Eq. (6) is convergent in the unit circl
R0 around z ­ 0, and therefore it determines uniquely
the analytic continuation$us0dszd to the cut complex plane.
To achieve this continuation in practice we construct tw
other fundamental sets of solutions$us1dszd and $us`dszd
around z ­ 1 and z ­ `. This could be done analo-
gously to Eqs. (6)–(8), for the transformed equatio
however, because of the symmetry under permutations
Reggeon coordinates, one can partly satisfy condition (
by a proper choice of these bases. Since under ev
permutations s1, 2, 3d ! s3, 1, 2d, z ! 1 2 1yz, and
s1, 2, 3d ! s2, 3, 1d, z ! 1ys1 2 zd, we define

$us1dszd ­ $us0d

√
1 2

1
z

!
, $us`dszd ­ $us0d

√
1

1 2 z

!
,

(9)

These series are convergent in the regionsR1: Reszd .

1y2 andR`: j1 2 zj . 1, respectively. Analytic continu-
ation is realized by the transition matrices,

u
s0d
i szd ­ Giju

s1d
j szd, u

s1d
i szd ­ Viju

s`d
j szd , (10)

which depend onh and q3 only. They contain the full
information about the system, in particular, about it
spectrum. In practice we calculate transition matrice
as the solutions of the systems of3 3 3 algebraic
equations (10) written at some judiciously chosen poi
z ­ z . For example,
n
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Gik ­
Wik

Wsss $us1dsz dddd
, Wik ­ Wsus1d

k ! u
s0d
i d , (11)

where Wsss $us1dsz dddd is the Wroński determinant of the
fundamental solutions$us1dsz d. As long asz is in the in-
tersection of the convergence regionsR0 and R1, the
matrix elements obtained from Eq. (11) are independe
of z provided enough terms in the series (6) are include

Finally we implement the uniqueness constraints (i).
is crucial to observe that requiring single valuedness
the holomorphic and antiholomorphic sectors separat
gives a too strong condition and is, in fact, not necessa
Even though the Hamiltonians in both sectors commu
proper boundary conditions should be formulated only f
the wave function of the whole system (3). We therefo
define a general bilinear form [the power prefactors in (
are irrelevant for this discussion]

Ch,h,q3,q3
sz, zd ­ $u

s1d
szdT As1d $us1dszd , (12)

and demand its uniqueness in the whole transverse pla
The compound function (12) has nine free paramete
(We thank Gregory Korchemsky for the discussion o
that point.) By inspecting Eqs. (6) we see that th
most general choice of coefficients, consistent with t
uniqueness of the wave function in the neighborhood
z ­ 1, is

As1d ­

0B@ a 0 0
0 b g

0 g 0

1CA , (13)

which has the freedom of three parameters. Incidenta
this form also guarantees the normalizability of the wa
function. Rewriting the wave function in terms of othe
bases (9) aroundz ­ 0 andz ­ ` gives other coefficient
matrices,

As0d ­ sG 21dT As1dG21, As`d ­ V
T

As1dV . (14)

Now, uniqueness in the whole transverse plane requi
that the transformed matrices [Eq. (14)] have the sa
1093
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form as (13), with possibly different coefficients. There
fore we require

A
s0d
12 ­ A

s0d
13 ­ A

s0d
33 ­ A

s0d
21 ­ A

s0d
31 ­ 0 , (15)

A
s`d
12 ­ A

s`d
13 ­ A

s`d
33 ­ A

s`d
21 ­ A

s`d
31 ­ 0 . (16)

In fact, only one of these sets is sufficient, as can be s
from the following topological argument. Any possibl
cut in the domain of the full wave function has to beg
and end at the singular points of the equation, i.e., at
1, or at `. Therefore eliminating two of these point
guarantees that there is no cut beginning at the th
one. [We have checked for completeness that inde
our numerical solutions of Eqs. (15) and (16) coincide
Equations (15) and (16) are linear homogeneous equati
for the coefficientsa, b, and g. The condition of
the existence of a nonzero solution of Eqs. (15) or (1
provides the quantization ofq3 andq3 that we looked for.
It can conveniently be written as

BU

√
a

b

g

!
­ 0 and BL

√
a

b

g

!
­ 0 , (17)

where the rows of the matrixBU sBLd are the coefficients
of a, b, andg in, e.g.,A

s`d
12 , A

s`d
13 , andA

s`d
33 (A

s`d
21 , A

s`d
31 , and

A
s`d
33 ). Explicitly

BU ­

0B@ V11V12 V21V22 V21V32 1 V31V22
V11V13 V21V23 V21V33 1 V31V23
V13V13 V23V23 V23V33 1 V33V23

1CA .

(18)
Figure 1 shows the, suitably transformed, absolute va

of the determinant ofBU as a function ofq3 along the
imaginary axis in the complexq3 plane. The eigenvalue
of the first Casimir operatorq2 is fixed to q2 ­ q2 ­
1y4 which corresponds to the lowest representation of t
SLs2, Cd. All formulas in the antiholomorphic sector are
the same withq3 ­ q?

3 , with ? denoting a complex con-
jugate [6]. Clearly a set of discreteq3 values exists where
the first condition (17) is satisfied. Imposing the seco
condition eliminates half of the candidates. In addition,
discrete series of real solutions of (17) exists. Both grou

FIG. 1. Quantization ofq̂3. Only half of the zeros shown
constitutes the physical spectrum.
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lead to single-valued wave functions, however, the con
tion of Bose symmetry singles out the imaginaryq3 only.
Namely, for purely imaginary eigenvalues, the matrice
As0d, As1d, andAs`d coincide. This, together with the defini-
tion of the basis (9), guarantees the invariance of the wa
function under even permutations. In order to impleme
a full Bose symmetry it suffices to take the complete wa
function as

Csz, zd ­ C1y2,1y2,q3,q3
sz, zd

1 C1y2,1y2,q3,q3

√
z

z 2 1
,

z
z 2 1

!
, (19)

The second term is just the wave function in th
s2q3, 2q3d sector which, due to the degenerac
q3 $ 2q3, obeys the general structure (3). On the oth
hand, for real eigenvaluesq3, the matricesAs0d, As1d,
and As`d differ by a phase factor ofe2piy3, and the only
symmetric solution is identical with zero.

For q3 lying outside of the real and imaginary axe
both constraints (17) cannot be satisfied simultaneous
There also exists a solution of (17) withq3 ­ 0. It
follows from (8) that the coefficientsrn diverge like1yq3,
hence, after rescalingu

s0d
3 ! q3u

s0d
3 , the new solution is

free from the logarithmic term atq3 ­ 0. In fact, in this
case the series (7) can be summed and the well-kno
Pomeron wave functions are recovered. Together w
the prefactors as in (4) they depend only on two out
the three coordinates; therefore, they are not normaliza
and should be excluded [6]. Moreover, at (and only a
q3 ­ 0 due to the vanishing of the logarithmic term, othe
than (13), choices of the matrixAs1d may give single-valued
wave function. However, all of them are not normalizabl

Summarizing, we are led to conclude that the physic
spectrum ofq3 for h ­ 1y2 lies on the imaginary axis.
The first three levels are quoted in Table I.

It is very instructive to superimpose this result on ou
earlier calculations, based on a different approach (Be
ansatz), which results in the analytic expression for t
eigenenergy of the three Reggeon system as a funct
of h and q3 [10]. Figure 2 showse3s1y2, q3d along the
imaginary axis ofq3. Black dots and crosses mark value
of q3 quantized according to the first condition in (17).
turns out that the candidates which were eliminated by t
second condition (crosses) are numerically very close
the poles of thee3. They are, however, nonphysical sinc
the corresponding wave functions are not single valued

The intercept of the odderon trajectory is determine
by the largest eigenvaluee3s1y2, qO

3 d. This corresponds

TABLE I. Quantization ofq3 and corresponding eigenvalues
of the holomorphic Hamiltonian.

No. q3 e3

1 0.20526i 20.49434
2 2.34392i 25.16930
3 8.32635i 27.70234
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FIG. 2. The holomorphic energy of the three Reggeize
gluons for imaginaryq3 (solid lines [10]). Dots and crosses
show solutions of the first condition (17). Solutions close
the poles ofe3 are eliminated by the second condition.

to the first nonzeroqO
3 ­ q

s1d
3 on the imaginary axis, with

the numerical value

qO
3 ­ 20.20526i , (20)

which, together with our solution of the Baxter equation
e3sh, q3d [10], gives, for the energy of the odderon state

e3s1y2, qO
3 d ­ 20.49434 . (21)

This translates for the intercept of the odderon trajecto
c.f. Eq. (1),

aOs0d ­ 1 2 0.24717
asNc

p
, (22)

which may solve the long-standing phenomenologic
puzzle of why the odderon trajectory is so hard t
observe experimentally. However, any phenomenologic
consequences of this result should be taken with gr
caution. The general assumptions behind the derivation
(22) are the same as in the classic work of [1]. In additio
we rely on the assumptions of [10], e.g., analyticit
of the solution of the Baxter equationQ3sld, together
with the particular form (2) of [10] for the eigenenergy
generalizing known expressions used in the Bethe ans
approach.

In Table I we quote the first few quantized values o
q3, together with corresponding energies. Indeed the n
states have a substantially smaller intercept and, con
quently, their contribution to the high energy scattering
negligible.

Our method also provides explicit expressions for th
wave functions of the compound states. At the eigenvalu
of q̂3 the coefficients of the expansion (12) are given by th
common eigenvector corresponding to the zero eigenva
of BU or BL. Therefore the wave functions are give
explicitly, in terms of known bases, and can be used f
various applications. For the odderon state we obtain
aO ­ 0.7096, bO ­ 20.6894, gO ­ 0.1457 .

(23)
Note that the asymptotic form of the wave function atz ­
1, implied by the uniqueness condition (13), agrees wi
d
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that derived by Lipatov from the symmetry consideration
[3]. Moreover, it follows from Eqs. (15) and (16) that the
same asymptotics hold around other singular points.

A variational estimate of the lower bound for the
odderonaO . 1 1 0.36asNcyp was derived in Ref. [4].
Recently this has been challenged by Braun, who giv
the boundaOs0d . 1 2 0.339asNcyp [13]. The latter
estimate is consistent with our exact result. It would b
interesting to repeat their variational calculation with ou
exact wave function.

Recently Korchemsky studied the dependence of t
eigenvalues of̂q3 on h [9]. His results should agree with
ours for higher states. In fact, we have found earlier th
his WKB formulas reproduce exact results quite well eve
at low values ofq3.

We thank G. Korchemsky for interesting discussion
This work is supported by the Polish Committee fo
Scientific Research under Grants No. PB 2P03B086
and No. PB 2P03B04412.

Note added.—After we announced these results in hep
th/9802100, Braun, Gauron, and Nicolescu have inde
used our wave function (12), with (13) and (23), in thei
variational approach (hep-ph/9804432; hep-ph/980956
They have reproduced numerically our eigenvalue (21
which confirms the results reported here and the meth
of [10].
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