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Wall-Mediated Forces between Like-Charged Bodies in an Electrolyte
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The Poisson-Boltzmann model of colloidal bodies in electrolyte is the basis of a recent numerical
calculation predicting attraction between two colloidal spheres confined in a cylinder. The present
study formulates an analytical proof that this model cannot predict attraction. Our exact result,
not contingent upon approximations, suggests that a new model is needed to explain experimental
results. [S0031-9007(98)08326-4]

PACS numbers: 82.70.Dd

Recent experiments demonstrate attraction between twapmbination of Boltzmann factors
colloidal spheres in a thin layer of electrolyte bound by N
glass walls [1,2]. The effect of walls is crucial since the —V(y) = Z cizie “v.
experiment and theory both concur that the force between 1
two like-charged spheres in unbounded electrolyte is|ntegration with respect t¢ gives
repulsive [1,2]. Additional experiments suggest that the N
nearby presence of densely packed spheres affects the pair V() = Z cie Y )
interaction in a manner similar to walls—by inducing =
a long range attractive force [1,2]. Collectively, these
experiments demonstrate that densely packed spheres

electrolyte constitute a nonpairwise many body problem. with two Kinds of ions of charge numbersl and —1,

In a recent publication, Bowen and Sharif numerically .,/ "~ = . :
simulate the electrostatic interaction between coIIoidaK (ul//a)tic:ns(lg)hli//s ?Sd I‘;(rﬁe):n:ego\?vri]tﬁ.bcljhn%la?lﬁigennoﬂ?:)ns
spheres confined by a cylinder [3]. They report a rang q bp y :

of intersphere distances for which the computed force i?n any component of boundadR where the electrolyte

attractive. This study presents an analytical proof that thénterfaces with one kind of materialj is a uniform

equations behind the Bowen and Sharif simulation predic?onStam' On. the S“”‘"’!"es of co_II0|daI bodies all made
f one material, there is one uniform potentild| and

only repulsive interaction. The argument presented heranother valuel.. on confining walls of some other
is not contingent upon approximations of an asymptotic i 9

or numerical character and applies not only to the specifi@ater'a.l' In summary, the boundary valug problem for
setup analyzed in [3], but more generally: The coIIoidaIl// consists of the Poisson-Boltzmann equation (1) subject

particles need not be spherical and the confining cyIindeE’)or twhzuglven uniform values af on colloidal bodies and/

can have any cross section. A pair of colloidal particles Given the solution fory, the Poisson-Boltzmann ap-

between confining planes would be a special case of the ~ "~ . . . . ;
analysis presented here. In addition, the ionic COmposiproxma'u_on to the force acting on a colloidal particle with
tion of the solution can be generalized from the SimplesurfaceS Is [4]
1:1 electrolyte treated in [3]. Any mixture of ions with 1 9. 3
different charge numbers is admissible, as long as elec- F= 2 J Yuhda. (3)
troneutrality is maintained. . .

In [3], the physics of the interaction is expressed mathegetrﬁé”n'g‘r;qh; lég'rtiv';%(/n(;agﬁzungséd dfroirg tr: gl(;?nwgm
matically by a boundary value problem for the eIectro-of surface area o§. Ph sica’ll the asurface integral in
static potentiaky(x) in the electrolyte. LetR represent ' ysicaly, . 9
the region occupied by electrolyte. In a dimensionlesé?’) represents the electrostatic force acting on the surface

formulation, (x) satisfies the Poisson-Boltzmann equa-Charge' In addition, the counterion C.IOUd abSuhduceg
tion (PBE) a pressure force on the body. But this pressure is uniform

on §, and so its contribution to the net force is zero. In
Ay — V') =0 (1) [3], the forceF (3) is computed using a numerical solution
for  which corresponds to the given geometry of two
spheres confined in the cylinder.
The analysis of this Letter is based upon an alternative
evaluation of the forc& by means of a stress tensbr

me (irrelevant) constant of integration is set equal to
zero. For the case treated in [3], i.e., a simple electrolyte

in R. The functionV(y) is determined by the ionic
composition of the electrolyte. Physically; V/(¢) is
the local charge density. GiveV ion species with
charge numbers and relative concentrations, the local
charge density seen in thermal equilibrium is the linear T=VyVy —fI, 4)
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_ ! Vo> + V(). (5) sections; = 0 andz = L. On the cylinder section} is
2 uniform soV¢ has na&Z component. Also, the unit normal
Here, I is the identity matrix. Ifys(x) is any solution of » on the cylinder wall is orthogonal to. It follows that
the PBE (1), then the stress tensor is divergence free. This: T2 = 0 on the cylinder, so the cylinder contribution
is verifiable by a simple calculation. But it also follows to (7) vanishes. This leaves contributions from cross
from a basic result of variational calculus: The quantitysectionsz = 0 andz = L. On thez = L cross section,
fin (5) is a Lagrangian density for the PBE (1). It turns# = +Z, and it follows from the definition of" in (4) that

out that7 in (4) is precisely the divergence free stress 5. Th = b2A(v. L) — I
tensor which follows from the space translation invariance ©n lp_z(y’ )= S D.
of f. The relevance of is the following: On the colloid On thez = 0 cross section; = —Z and
surfaceS whereys is uniform, Vi = 4,7 andV () is a 5 Th = f(y,L).

uniform constant. It readily follows that
| There is no—¢2(y,0) term becaus¢, = 0 onz = 0 due
f Thda = — f Ylida =F. to the mirror symmetry. In summary, the net axial force
s 2 Js acting ons is
But due to the divergence free charactefofthe surface
of integration can be deformed froshto another surface z-F= f {y2(y.L) + f(y,0) — f(y,L)}dy. (8)
S’ in the electrolyte which encloseS, but no other b

colloidal body. That is, The integral on the right-hand side has to be independent
of L. It is convenient to evaluate it in the limit — oo.
F = f Thda. (6) In the limit L — o, (y, L) becomes asymptotic to the
' solution ¥(y) of the two-dimensional boundary value

This method of computind is applied to a setup which Problem

contains the setup treated in [3] as a special case. As AV — V(W) =0 inD (9)
shown in Fig. 1, the cylinder containing the electrolyte
and colloidal bodies can have a noncircular cross section. v =1y, onaD. (10)

Cross section planes orthogonal to the cylinder axis are

labeled by axial displacement and the 2-vectoy, con- ~ One hasy.(y,L) — 0 asL — o, and . (y,0) = 0 due

fined to a given two-dimensional regidh, denotes posi- {0 mirror symmetry. Hence, (8) reduces to

tions in a given cross section plane. Two colloidal bodies 0

of the same shape are placed in the cylinder soghato ¢ - F = fD {f(y,0) = f(y,L)}dy = ¢[¢"] — ¢[V].

represents a plane of mirror symmetry. (12)
Consider the axialZ) component of force on the colloid

inz >0, Here, o[ ] is the functional

1
- F = jsz - Thda. ©) ¢lh] = fp‘z IVAl* + v(h)}dy, (12)

The surface of integratio§’ encloses the colloidal surface defin%d on scalar fieldg(y) in two-dimensional regio,
S as shown in Fig. 1. It consists of the cylinder section@ndy"(y) = ¥(y,0).

betweenz = 0 and z = L, together with the two cross For an attractive interaction between the colloidal
’ bodies, the axial force in (11) must be negative. It is

not hard to see that the formulation (9)—(12) does not
(@)

‘ % 4_—8_%3_. v V=V +9

v=V(W¥) +V(W¥) g
(b)

FIG. 1. Two colloidal bodies in a cylinder. (a) Side view. ~ 9
(b) Cross section of the cylinder. FIG. 2. ConvexV (V).
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confirm such a notion. Note that the solutidn(y) of  minimumof ¢. It follows that the axial force (11) cannot
the two-dimensional boundary value problem (9),(10) isbe negative and is most likely positive.

a stationary point of the functionap[k] in the space The details of the global minimum argument are very
of h's with h = U,, on aD. In fact, ¥(y) is aglobal simple: Letg(y) = ¢°(y) — ¥(y). From the definition

| of ¢ it follows that

o[y°] — o[¥] = f {% Vgl + V¥ - Vg + V(¥ + g) — V(‘I’)]dy
D
= jD{% IVgl> = AW g + V(¥ + g) — V(‘I’)]dy (13)

_ fD{% IVel> + V(¥ + g) — V(¥) — V’(‘I’)é']dy-

The second line follows from a standard Green’s idenﬂitymodified boundary conditions predicts wall-mediated at-
calculation and the boundary conditign= ¢° — ¥ = 0 traction between colloidal bodies, it is unlikely that a real
onadD. The third line is obtained by substitution f(¥)  contact can be made with Larsen and Grier's experimental
for AV as permitted by differential equation (9). Wis  data [1]. The energy and length scales observed in this
a convex-up function of its argument, then experiment seem out of reach. In [1], Larsen and Grier
present the wall-mediated interaction energy between two
VP +g) — V(¥) — VI(¥)g =0 colloidal spheres of radiu&5 wm as a function of center-
for any g, with equality only wheng = 0. Figure 2 to-center separation. There is a potential well.5kT
illustrates this argument. It is clear that the right-handdeep at a separation ef3.5 um = 3500 nm. Even with
side of (13) is positive definite irg if V(y) is convex @ probably optimistic 400 nm estimate of the Debye length
up. It follows that there is a possibility for attractive given in [1], the 3500 nm separation represents several
interaction only if V(i) is not convex up. Recall the Debye lengths. Itis hard to see how a Poisson-Boltzmann
explicit expression (2) fo¥ (). Each exponentiat ¥ model can account for such a deep potential well at such
is convex up regardless of the signs of charge numberg@ large separation. The need to go beyond Poisson-
zi. The coefficientsc; representing concentrations are Boltzmann theory seems compelling. One possible
necessarily positive. The verdict/(i) is convex up. €xtension was initiated by Onsager [5] and Kirkwood
Consequently, electrostatic for&ebetween two colloidal [6], and summarized in the recent monograph of Schmitz
bodies is non-negative, and hence, nonattractive. [7]. These works suggest that intercolloidal attractions
It is not clear why numerical simulations presented inmight be a fluctuation-based phenomenon. Models of
[3] produced attractive interaction. However, answers tdluctuation-mediated interactions between polymer chains
this question have no relevance to the real issue. Thare presented in a review article by Barrat [8]. Neverthe-
rigorous mathematical argument presented here demoless, the origin of the attractive force between colloidal
strates that the theory of colloid interaction based upon thodies remains an open question.
Poisson-Boltzmann boundary value problem in [3] can- The author of this work acknowledges Professor
not predict an attractive force between pairs of colloidalGeorge Oster at UC Berkeley for bringing this problem to
spheres, even if that interaction is mediated by a confiningjis attention.
cylinder.
What are the alternatives? Has Poisson-Boltzmann
theory been totally ruled out as an explanation of an
attractive interaction between colloidal bodies? In an [1] A.M. Larsen and D.G. Grier, Nature (LondoBB5 230
absolutely rigorous sense, not quite: The proof presented  (1997).
here applies only to specific boundary conditions, namely,[2] D.G. Grier, Nature (London$93 621 (1998).
uniform potentials on the solid surfaces. Even though [3] W.R. Bowen and A.O. Sharif, Nature (Londo893 663
such boundary conditions can be criticized on physical (1998). .
grounds, they are retained in this Letter in order to focus [#] J: Israelachvili, Intermolecular ‘and ~Surface Forces
o (Academic Press, London, 1992), 2nd ed.
on ;he assessment of Bowen a_nd Sha_rlfs results [3]. I_t re-[5] L. Onsager, Chem. Red3, 73 (1933).
mains to examine if the g_naIyS|s of this Le_tter generallzes[G] J. Kirkwood, J. Chem. Phy®, 762 (1934).
to other boundary conditions, such as might result from [7] k. Schmitz, Macroions in Solutions and Colloidal Suspen-
an explicit model of ion absorption on the solid surfaces. sion (VCH Publishers, Inc., New York, 1998).
Admittedly, such a generalization is not straightforward. [8] J.F. Barrat and J.F. Joanny, Adv. Chem. Ph9s, 1
However, even if a Poisson-Boltzmann model based on  (1996).
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