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Global conservation constraints based on the nonlinear Vlasov-Maxwell equations are used to
a three-dimensional kinetic stability theorem for an intense non-neutral ion beam (or charge b
propagating with average axial velocityyb ­ const. It is shown that a sufficient condition for linea
and nonlinear stability for perturbations with arbitrary polarization is that the equilibrium distribu
be a monotonically decreasing function of the single-particle energyH 0 in the beam frame, i.e.,
≠feqsH 0dy≠H 0 # 0. [S0031-9007(98)06765-9]

PACS numbers: 29.27.Bd, 41.75.– i, 41.85.–p
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Periodic focusing accelerators [1–3] have a wide ran
of applications ranging from basic scientific research,
applications such as heavy ion fusion, tritium productio
and spallation neutron sources. Of particular importanc
at the high beam currents and charge densities of pract
interest, are the effects of the intense self-fields produc
by the beam space charge and current. While considera
progress can be made in understanding the evolution
the beam distribution functionfbsx, p, td and the average
electric and magnetic fieldsEsx, td andBsx, td in kinetic
analyses [1,4–6] based on the nonlinear Vlasov-Maxw
equations, the effects of finite geometry and space cha
often make predictions of detailed stability behavior dif
ficult. It is therefore important to develop a basic unde
standing of the class of distribution functions that arestable
and can propagate quiescently over large distances, eve
parameter regimes where space-charge effects are inte
and play a controlling role in the nonlinear beam dynam
ics. The present analysis makes use of global (spatia
averaged) conservation constraints [6] satisfied by the no
linear Vlasov-Maxwell equations to determine a suffi
cient condition for stability of an intense non-neutral io
beam (or isolated charge bunch) propagating in the po
tive z direction with average axial velocityyb ­ const
along the axis of a perfectly conducting cylindrical pip
with wall radius r ­ sx2 1 y2d1y2 ­ rw. The theoreti-
cal approach used here is motivated by the early work [
of Newcomb, Gardner, and Fowler, carried out for pe
turbations about a spatially uniform, electrically neutra
nonrelativistic plasma, and by the stability theorem deve
oped by Davidson and Krall [6,8] for a one-componen
nonrelativistic, non-neutral plasma column confined rad
ally by a uniform axial magnetic field. The present analy
sis is restricted to acollisionlessmodel of intense beam
propagation based on the nonlinear Vlasov-Maxwell equ
tions. That is, the beam particles interact with the avera
(applied plus collective) fields, but discrete-particle inte
actions (such as binary collisions) arenot included in the
model. The termequilibrium,as used in the present analy
sis, does not refer to thermal equilibrium, but rather to
quasisteady equilibrium state on a time scale short in co
parison with a binary collision time.
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The beam consists of positively charged ions wi
charge1Zie and rest massm propagating in the positive
z direction with characteristic kinetic energysgb 2 1dmc2

in the laboratory frame, wheregb ­ s1 2 y
2
byc2d21y2 is

the relativistic mass factor. The particle motion in th
beam frame (the “primed” frame) is assumed to be nonre
tivistic with jv 0j ø c, and the beam is assumed to hav
sufficiently high directed axial velocity thatyb ¿ jv 0j.
The beam current and charge density are allowed to
sufficiently intense that the collective processes asso
ated with space-charge effects and self-consistent chan
in the beam current can play a controlling role in th
nonlinear evolution of the distribution of beam particle
fbsx, p, td in the six-dimensional phase spacesx, pd. Fi-
nally, it is assumed that transverse focusing of the be
particles is provided by the average effects of applied ma
netic or electric focusing fields. We adopt a model wide
used in thesmooth-focusingapproximation, which corre-
sponds to a transverse focusing electric field of the form

E0
sfsxd ­ 2

1
Zie

mv2
b'sxêx 1 yêyd , (1)

wherevb' ­ const is an effective betatron frequency fo
transverse oscillations. Equation (1) is often used to mo
the averagefocusing properties of an alternating-gradien
lattice of magnetic or electric quadrupoles.

Analysis of the nonlinear Vlasov-Maxwell equations i
greatly simplified by transforming to a frame of referenc
moving at the average axial velocityyb ­ const of the
beam particles, particularly because of the assumption t
the particle motion is nonrelativistic in the beam fram
The Lorentz transformation relating the primed variable
sx0, p0, t0d in the beam frame to the “unprimed” variable
sx, p, td in the laboratory frame is given by

x0 ­ x, y0 ­ y, z0 ­ gbsz 2 ybtd ,

p0
x ­ px , p0

y ­ py , (2)

p0
z ­ gbspz 2 gmybd, t0 ­ gbst 2 ybzyc2d .

Here, the particle momentum and velocity are related
p ­ gmv andp0 ­ g0mv 0, where the kinematic mass fac
torsg ­ s1 1 p2ym2c2d1y2 andg0 ­ s1 1 p02ym2c2d1y2

transform according tog0 ­ gbsg 2 ybpzymc2d. For the
© 1998 The American Physical Society 991
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smooth-focusing electric field defined in Eq. (1), som
straightforward algebra shows that the corresponding a
plied focusing forceF0

foc ­ ZiesE0
foc 1 c21v 0 3 B0

focd
on a particle in the beam frame is given by

fF0
focgsf ­ 2gbmv2

b'

Ωµ
1 1

y0
zyb

c2

∂
sx0ê0

x 1 y0ê0
yd

2
yb

c2 sx0y0
x 1 y0y0

ydê0
z

æ
, (3)

which can be approximated by

fF0
focgsf ­ 2gbmv2

b'sx0ê0
x 1 y0ê0

yd (4)

for jv 0j ø c. Here,sê0
x , ê0

y , ê0
zd are unit Cartesian vectors

in the beam frame.
In the beam frame, the nonlinear Vlasov equation [1] f

the distribution functionfbsx0, p0, t0d can be expressed as

≠fb

≠t0
1

≠

≠x0
? sv 0fbd 1

≠

≠p0
?

Ω∑
Zie

µ
E0 1

1
c

v 0 3 B0

∂
2 =0c 0

sf

∏
fb

æ
­ 0 , (5)

whereE0sx0, t0d andB0sx0, t0d are the self-generated electric
and magnetic fields, and the focusing force defined
Eq. (4) has been expressed asfF0

focgsf ­ 2=0c
0
sfsx0d,

where

c 0
sfsx0, y0d ­

1
2 gbmv2

b'sx02 1 y02d (6)

is the confining potential. Because the particle motio
is assumed to be nonrelativistic in the beam frame, w
approximateg0 ­ 1 1 p02y2m2c2 and p0 ­ mv 0. The
static potential defined in Eq. (6) provides transverse co
finement of the beam particles in thex0-y0 plane, but not in
thez0 direction, which corresponds to acontinuousbeam.
A simple generalization to the case of a singlefinite-length
charge bunchis to add to Eq. (6) a stationarys≠y≠t0 ­ 0d
contribution in the beam frame that provides axial confin
ment of the ions, e.g., a term proportional togbmv

2
bzz02y2,

wherevbz ­ const is an effective betatron frequency fo
the axial motion. This gives the confining potential

c 0
sfsx0, y0, z0d ­ 1

2 gbmv2
b'sx02 1 y02d 1

1
2 gbmv2

bzz02.
(7)

It is convenient to view Eq. (7) as modeling the average p
tential of an rf bucket that provides a stationary confinin
potential centered atz0 ­ 0 in the beam frame. The rela-
tive axial and transverse dimensions of the charge bun
confined by Eq. (7) will, of course, depend on the rat
vbzyvb'.

Maxwell’s equations in the beam frame relateE0sx0, t0d
andB0sx0, t0d self-consistently to the distribution function
fbsx0, p0, t0d. We introduce the scalar and vector poten
tials, f0sx0, t0d and A0sx0, t0d, and expressB0 ­ =0 3 A0

and E0 ­ E0
L 1 E0

T , whereE0
L ­ 2=0f0 is the longitu-

dinal electric field,E0
T ­ 2c21≠A0y≠t0 is the transverse

electric field, and the Coulomb gauge condition with=0 ?

A0 ­ 0 is assumed. The Maxwell equations=0 ? B0 ­ 0
992
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and=0 3 E0 ­ 2c21≠B0y≠t0 are automatically satisfied,
and Poisson’s equation and the=0 3 B0 Maxwell equation
are readily expressed in the beam frame as

=02f0 ­ 24pZie
Z

d3p0 fb , (8)

=02A0 ­ 2
4p

c
Zie

Z
d3p0 v 0fb 1

1
c2

≠2A0

≠t02

1
1
c

=0 ≠f0

≠t0
, (9)

where =02 ; ≠2y≠x02 1 ≠2y≠y02 1 ≠2y≠z02. The elec-
trostatic potentialf0sx0, t0d is determined self-consistently
in terms of the beam charge density by means of Eq. (8
andA0sx0, t0d is determined in terms of the beam curren
density by means of Eq. (9). We impose the require
ment that the tangential electric field and the normal ma
netic field vanish at radiusr ­ rw . That is,fEzgr­rw ­
fEugr­rw ­ fBr gr­rw ­ 0, whereBr , Eu , and Ez denote
field components in cylindrical polar coordinates in the
laboratory frame. In the beam frame, the correspondin
field components areE0

z ­ Ez, B0
r ­ gbsBr 1 ybEuycd,

and E0
u ­ gbsEu 1 ybBrycd, so that the corresponding

boundary conditions in the beam frame are given b
fE0

zgr 0­rw ­ fE0
ugr 0­rw ­ fB0

r gr 0­rw ­ 0. In terms of the
scalar and vector potentials,f0sx0, t0d andA0sx0, t0d, these
boundary conditions can be expressed in the equiv
lent form

f0sr0 ­ rw , u0, z0, t0d ­ A0
zsr 0 ­ rw , u0, z0, t0d

­ A0
usr 0 ­ rw , u0, z0, t0d ­ 0 ,

(10)
where the constant values off0, A0

z , and A0
u at r 0 ­ rw

have been set equal to zero.
The Vlasov-Maxwell equations (5), (8), and (9) pro-

vide a complete nonlinear description of the collectiv
interaction of the beam particles with the applied and sel
generated electric and magnetic fields. Equations (5), (8
and (9), subject to the boundary conditions in Eq. (10
can be used to derive certainglobal (spatially averaged)
conservation constraints [6] in the beam frame that a
useful in demonstrating a kinetic stability theorem. Fo
present purposes, it is assumed that the phase-space den
fbsx0, p0, t0d is equal to zero beyond some radiusr 0

0, i.e.,
fb ­ 0 for r 0 ­ sx02 1 y02d1y2 . r 0

0 , rw. For the case
of a charge bunch with finite axial length, i.e., whenvbz fi

0 in Eq. (7), it is also assumed thatfb ­ 0 for jz0j .

L0
0y2 whereL0

0 is larger than the axial bunch length2z0
b .

Moreover, when carrying out integrations over momen
tum p0, it is assumed thatfb ­ 0 as jp0j ! `. Finally,
the domain of spatial integration is defined by

R d3x0

L0 · · · ­RL0y2
2L0y2

dz0

L0

Rrw

0 dr 0r 0
R2p

0 du0 · · ·. Here, two cases are dis-
tinguished. Case (a) corresponds to an infinite-leng
beam wherec 0

sfsx0, y0d is specified by Eq. (6), andL0 is
viewed as a fundamental periodicity length for Fourie
decomposition of thez0 dependence of the distribution
function and field components. Case (b) corresponds
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a finite-length charge bunch, wherec
0
sfsx0, y0, z0d is speci-

fied by Eq. (7) withvbz fi 0, andL0 is chosen to be suf-
ficiently large thatz0 ­ L0y2 and z0 ­ 2L0y2 are in the
far-field regions of the charge bunch, whereE0 andB0 are
negligibly small.
The two global conservation constraints that are
particular utility correspond to the conservation of tot
particle plus field energyU 0st0d, and generalized entrop
S0

Gst0d. Without presenting algebraic details [9], it can b
shown from Eqs. (5), (8), (9), and (10) that
U 0st0d ­
1
L0

Z
d3x0

(
jE0

T j2 1 jB0j2

8p
1

Z
d3p0

√
p02

2m
1 c 0

sf 1
1
2

Zief0

!
fb

)
­ const, (11)
ed
gy

e-

rge
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and

S0
Gst0d ­

1
L0

Z
d3x0

Z
d3p0 Gs fbd ­ const, (12)

no matter how complicated the nonlinear evolution o
fbsx0, p0, t0d, E0sx0, t0d, and B0sx0, t0d. Here, Gs fbd is a
smooth, differentiable (but otherwise unspecified) fun
tion with Gs fb ! 0d ­ 0. In Eq. (11), B0 ­ =0 3 A0

is the self-generated magnetic field,E0
T ­ 2c21≠A0y≠t0

is the transverse electric field, andE0
L ­ 2=0f0 is the

longitudinal space-charge field. Use has been made
Eqs. (8) and (10) to expresss8pL0d21

R
d3x0j=0f0j2 ­

sL0d21
R

d3x0
R

d3p0sZiey2df0fb.
Equations (11) and (12) represent very powerful co

straints on the nonlinear evolution of the system.
f

c-

of

n-
A

three-dimensional kinetic stability theorem can be deriv
by introducing a generalized Helmholtz free ener
defined byF0st0d ­ U 0st0d 1 S0

Gst0d ­ const. We con-
sider (arbitrary-amplitude) perturbations about a tim
stationarys≠y≠t0 ­ 0d equilibrium distributionfeqsx0, p0d
in the beam frame and corresponding space-cha
potentialf0

eqsx0d. It is further assumed that the equilib
rium distribution feqsx0, p0d carries zero current in the
beam frame, i.e.,

R
d3p0v 0feq ­ 0, so thatA0

eq ­ 0 and
B0

eq ­ 0 ­ E0
Teq

. Perturbed quantities are denoted b
dfbsx0, p0, t0d ­ fbsx0, p0, t0d 2 feqsx0, p0d, df0sx0, t0d ­
f0sx0, t0d 2 f0

eqsx0d, dE0
T sx0, td ­ E0

T sx0, t0d, and
dB0sx0, t0d ­ B0sx0, t0d. DefiningDF0st0d ; F0st0d 2 F0

eq,
where F0st0d ­ U 0st0d 1 S0

Gst0d, some straightforward
algebra gives
The
DF0st0d ­
1
L0

Z
d3x0

(
jdE0

T j2 1 jdB0j2 1 j=0df0j2

8p

1
Z

d3p0

"√
p02

2m
1 c 0

sf 1 Zief0
eq

!
dfb 1 Gs feq 1 dfbd 2 Gs feqd

#)
­ const. (13)

Here,df0sx0, t0d andf0
eqsx0d are related todfbsx0, p0, t0d andfeqsx0, p0d by

=02df0 ­ 24pZie
Z

d3p0 dfb, =02f0
eq ­ 24pZie

Z
d3p0 feq , (14)

and c
0
sfsx0d is defined in Eq. (7) for an axially confined charge bunch, and in Eq. (6) for a continuous beam.

coefficient ofdfbsx0, p0, t0d in Eq. (13) will be recognized as the Hamiltonian

H 0 ­
p02

2m
1 c 0

sfsx0d 1 Zief0
eqsx0d (15)

for single-particle motion in the combined applied focusing potentialc
0
sfsx0d and equilibrium space-charge poten-

tial f0
eqsx0d.

A linear (small-signal) stability theorem can be obtained from Eq. (13) as follows. We Taylor expandGs feq 1

dfbd ­ Gs feqd 1 G0s feqddfb 1 G00s feqd sdfbd2y2 1 · · ·, whereG0s feqd ­ ≠Gs feqdy≠feq, etc., and retain terms to
quadratic order in perturbed quantities. This gives

fDF0gs2d ­
1
L0

Z
d3x0

(
jdE0

T j2 1 jdB0j2 1 j=0dfj2

8p
1

Z
d3p0

"
fH 0 1 G0s feqdg sdfbd 1

1
2

G00s feqd sdfbd2 1 · · ·

#)
­ const. (16)

We now chooseGs feqd, which has been arbitrary to this point, to satisfy≠Gs feqdy≠feq ­ 2H 0 so that the term linear in
dfb vanishes exactly in Eq. (13). This condition also givesG00s feqd ­ 2≠H 0y≠feq, so that Eq. (13) becomes (correct
to second order)

fDF0gs2d ­
1
L0

Z
d3x0

(
jdE0

tj
2 1 jdB0j2 1 j=0dfj2

8p
1

1
2

Z
d3p0 sdfbd2

f2≠feqy≠H 0g

)
­ const. (17)

Whenfeqsx0, p0d depends onsx0, p0d only through the HamiltonianH 0, and whenfeqsH 0d is a monotonically decreasing
993
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function ofH 0 with

≠

≠H 0
feqsH 0d # 0 , (18)

it follows that the quantityfDF0gs2d defined in Eq. (17)
is a sum of positive-definite terms. Therefore, becau
fDF0gs2d ­ const, no one of the terms in Eq. (17) can gro
without bound, and we conclude that Eq. (18) is asufficient
condition for linear stabilityof the equilibriums feq, feqd
to small-amplitude perturbationsdfb, df0, dE0

T , anddB0.
The exact global constraint condition (13) can be us

to show that Eq. (18) is also asufficient condition for non-
linear stability of the equilibrium to perturbations with
arbitrary amplitude. Proof of this nonlinear stability theo
994
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rem makes two successive applications of the mean-va
theorem and proceeds as follows. The functional form
Gs fbd in Eq. (13) is quite general. In the subsequent pro
of the nonlinear stability theorem, we exploit this genera
ity and further assume thatGs fbd is a monotonically de-
creasing function offb and has positive concavity, i.e.,

≠

≠fb
Gs fbd # 0,

≠2

≠f2
b

Gs fbd $ 0 , (19)

over the entire range of values of the distribution fun
tion fb $ 0 accessible by the nonlinear Vlasov-Maxwe
equations. Two successive applications of the mean-va
theorem allows us to express the differenceGs feq 1

dfbd 2 Gs feqd occurring in Eq. (13) in the form
he
Gs feq 1 dfbd 2 Gs feqd ­
≠G
≠fb

Ç
feq1dfb1

dfb ­

∑
≠G
≠fb

Ç
feq

1
≠2G

≠f2
b

Ç
feq1dfb2

dfb1

∏
dfb . (20)

Here, for positive perturbationdfbsx0, p0, t0d $ 0, the quantitiesdfb1 anddfb2 lie in the intervals0 # dfb2 # dfb1 #

dfb, whereas for negative perturbationdfb # 0, the quantitiesdfb1 anddfb2 lie in the intervalsdfb # dfb1 # dfb2 #

0. In either case, the productdfb1dfb satisfiesdfb1dfb $ 0. We substitute Eq. (20) into Eq. (13) and eliminate t
term linear indfb by choosingf≠Gy≠fbgfeq ­ 2H 0, which also implies thatf≠2Gy≠f2

bgfeq ­ 2≠H 0y≠feq. Equation (13)
then becomes

DF0st0d ­
1
L0

Z
d3x0

(
jdE0

T j2 1 jdB0j2 1 j=0df0j2

8p
1

Z
d3p0

√
≠2G

≠f2
b

É
feq1dfb2

!
sdfb1dfbd

)
­ const. (21)
of
f

-

of

.

Because of the assumption≠2Gy≠f2
b $ 0 in Eq. (19), and

becausedfb1dfb $ 0 follows by construction from the
mean-value theorem, we conclude that the right-hand s
of Eq. (21) is a sum of positive-definite terms, no on
of which can grow without bound. Therefore, becaus
f≠2Gy≠f2

bgfeq ­ 2≠H 0y≠feq $ 0 by assumption, we con-
clude that≠feqsH 0dy≠H 0 # 0 is a sufficient condition for
nonlinear stability.

It is important to recognize the wide range of appl
cability of the three-dimensional stability theorem de
veloped here. For example, there are many choices
distribution functionfeqsH 0d for which ≠feqy≠H 0 # 0,
and the equilibrium is therefore stable. One such cho
is the isotropic thermal equilibrium [1,8,10,11] distributio
feq ­ gsH 0d ; b0 exps2H 0yT 0

bd, where b0 and T 0
b are

positive constants. Most importantly, the stability theo
rem applies to perturbations about equilibriafeqsH 0d with
arbitrary polarization and initial amplitude; tocontinuous
beamsthat are radially confined and infinite in axial ex
tent (vb' fi 0, vbz ­ 0); to charge bunchesthat are ra-
dially andaxially confined (vb' fi 0 andvbz fi 0); and
to beams with arbitrary space-charge intensity consist
with the requirement that the applied potentialc

0
sfsx0d pro-

vide confinement of the beam particles. As a final poin
it should be emphasized that the stability theorem has
wider applicability than to the case wherec

0
sfsx0d has the

simple quadratic dependence onx0, y0, andz0 in Eq. (7),
provided the confining potential is time stationary in th
beam frame, i.e.,≠c

0
sfy≠t0 ­ 0. The main requirement is
ide
e
e

i-
-
of
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ent
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that c
0
sfsx0d correspond to aconfiningpotential, i.e., that

the focusing forcefF0
focgsf ­ 2=0c

0
sf is restoring.
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