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Nonlinear Stability Theorem for High-Intensity Charged Particle Beams
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Global conservation constraints based on the nonlinear Vlasov-Maxwell equations are used to derive
a three-dimensional kinetic stability theorem for an intense non-neutral ion beam (or charge bunch)
propagating with average axial velocity, = const. It is shown that a sufficient condition for linear
and nonlinear stability for perturbations with arbitrary polarization is that the equilibrium distribution
be a monotonically decreasing function of the single-particle enéfgyin the beam frame, i.e.,
dfeq(H')/0H' = 0. [S0031-9007(98)06765-9]

PACS numbers: 29.27.Bd, 41.75.—i, 41.85.—p

Periodic focusing accelerators [1—3] have a wide range The beam consists of positively charged ions with
of applications ranging from basic scientific research, tacharge+Z;e and rest mass: propagating in the positive
applications such as heavy ion fusion, tritium production; direction with characteristic kinetic ener@y, — 1)mc?
and spallation neutron sources. Of particular importancen the laboratory frame, wherg, = (1 — vi/c) V2 s
at the high beam currents and charge densities of practicéie relativistic mass factor. The particle motion in the
interest, are the effects of the intense self-fields producedeam frame (the “primed” frame) is assumed to be nonrela-
by the beam space charge and current. While considerabiiistic with |v/| << ¢, and the beam is assumed to have
progress can be made in understanding the evolution dufficiently high directed axial velocity that, > |v/|.
the beam distribution functiofi, (x, p, #) and the average The beam current and charge density are allowed to be
electric and magnetic fieldE(x, r) and B(x, ¢) in kinetic  sufficiently intense that the collective processes associ-
analyses [1,4—6] based on the nonlinear Vlasov-Maxwelated with space-charge effects and self-consistent changes
equations, the effects of finite geometry and space charga the beam current can play a controlling role in the
often make predictions of detailed stability behavior dif- nonlinear evolution of the distribution of beam particles
ficult. It is therefore important to develop a basic under-f;(x, p, ¢) in the six-dimensional phase spaocep). Fi-
standing of the class of distribution functions thatsteble  nally, it is assumed that transverse focusing of the beam
and can propagate quiescently over large distances, evenparticles is provided by the average effects of applied mag-
parameter regimes where space-charge effects are intensetic or electric focusing fields. We adopt a model widely
and play a controlling role in the nonlinear beam dynam-used in thesmooth-focusingpproximation, which corre-
ics. The present analysis makes use of global (spatiallgponds to a transverse focusing electric field of the form
averaged) conservation constraints [6] satisfied by the non- 0 1 , A
linear Vlasov-Maxwell equations to determine a suffi- Eg(x) = _Z mog, (x&; + yé,), 1)
cient condition for stability of an intense non-neutral Ionwherea)ﬁl — const is an effective betatron frequency for

peam (qr |s<_)|ated_charge bunch)_ propagr_;mng_m the POSE ahsverse oscillations. Equation (1) is often used to model
tive z direction with average axial velocity, = const

along the axis of a perfectly conducting cylindrical pipethe averagefocusing properties of an alternating-gradient
with wall radius r = (x> + y2)/2 = r,,. The theoreti- lattice of magnetic or electric quadrupoles.

. . Analysis of the nonlinear Vlasov-Maxwell equations is
cal approach used here is motivated by the early work [Q]reatly simplified by transforming to a frame of reference
of Newcomb, Gardner, and Fowler, carried out for per-

X . . ; moving at the average axial velocity, = const of the
oped by Davidson and Krall [6,8] for a one-component the particle motion is nonrelativistic in the beam frame.
nonrelativistic, non-neutral plas}na column confined radi,—The Lorentz transformation relating the pnmed va_nables

o . - x/,p’,t) in the beam frame to the “unprimed” variables
ally by a uniform axial magnetic field. The present analy—( ) in the laboratory frame is given b
sis is restricted to @ollisionlessmodel of intense beam X*P:/ , , y ) 9 y
propagation based on the nonlinear Vlasov-Maxwell equa- X=X y =5 2= vz = vpt),
tions. That is, the beam particles interact with the average Pl = p. pl=p 2)

. . . . . . X ’ y Vo
(applied plus collective) fields, but discrete-particle inter- . , 5
actions (such as binary collisions) aret included in the p: = vo(p: — ymup), 1 =yt — vpz/c?).
model. The ternequilibrium,as used in the present analy- Here, the particle momentum and velocity are related by
sis, does not refer to thermal equilibrium, but rather to g = ymv andp’ = y'mv’, where the kinematic mass fac-
quasisteady equilibrium state on a time scale short in comtorsy = (1 + p2/m?c?)2 andy’ = (1 + p’2/m?c?)"/?
parison with a binary collision time. transform accordingty’ = v, (y — vy p./mc?). Forthe
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smooth-focusing electric field defined in Eq. (1), someandV’ X E/' = —¢~19B’/9t' are automatically satisfied,
straightforward algebra shows that the corresponding amnd Poisson’s equation and tfie X B’ Maxwell equation
plied focusing forceFi,. = Z;e(Ef,. + ¢ 'v/ X Bf,.) are readily expressed in the beam frame as

on a particle in the beam frame is given by
V2 = —47TZi€f d*p' fi (8)

viv, R R
[Féoc]sf = —'y;,mwfﬂ{(l + 22 >(x’e)/c + y/e;,) 2 A/
2 Al 4 3.1/ 1 9°A
VA" = — — Zie d’p'vf, + =
vy, Al c c? 912
-3 (v + y'vper, (3) . 00
. . -V =, 9)
which can be approximated by c at’
[Fioelsy = —yomaog, (&, + y'e)) 4) Where_V’2 = a%/ax’z + a%/ay'z + (_92/81’2. The elec-
for |v'| < c. Here,(é!,&’,¢!) are unit Cartesian vectors trostatic potentialp/(x', ') is determ_lned self-consistently
in the beam frame. T in terms of the beam charge density by means of Eq. (8),

In the beam frame, the nonlinear Vlasov equation [1] forand A’(x’, ') is determined in terms of the beam current
the distribution functiory, (x, p’, ') can be expressed as density by means of Eq. (9). We impose the require-
ment that the tangential electric field and the normal mag-
afe + 9, vV'fp) + 9 {|:Zi€<E/ + lvf % B’) netic field vanish at radius = r,,. Thatis,[E,],=,, =
at' ox/ op’ c [Eg)—r, = [B/]r=r, = 0, WhereB,, E,, and E, denote
L field components in cylindrical polar coordinates in the
= Vi, }fb} =0, laboratory frame. In the beam frame, the corresponding
1 [ J—
whereE'(x’, ') andB/(x', ') are the self-generated electric gﬁléj g/; r:p;:z;}ts +arvaZBr /CE)Z ’ Si’ thazbtr(wir ctrfésfoec{ncc)iing
and magnetic fields, and the focusing force/: ‘,jef",]ed "houndary conditions in the beam frame are given by
Eq. (4) has been expressed H,.l;s = — Vi (x)), [E ]y, = [E}]o—y, = [BLl—r, = 0. In terms of the
where scalar and vector potentialg,(x’, ') andA’(x', 1), these
:,b;f(x’,y’) _ %ybmw%L(xQ + y2) (6) Iboundary conditions can be expressed in the equiva-
ent form
is the confining potential. Because the particle motion ¢'(r' = r,,6'.2,/') = AL(r' = r,, 0", 1)
is assumed to be nonrelativistic in the beam frame, we — AL =y 02 ) =0
approximatey’ = 1 + p?/2m?c? andp’ = mv/. The 0 w02 ’
static potential defined in Eq. (6) provides transverse con- (10)
finement of the beam particles in they’ plane, butnotin  Where the constant values @f, A/, andAy atr' = r,
the 7/ direction, which corresponds tocantinuousbeam.  have been set equal to zero.
A simple generalization to the case of a sinfifiéte-length The Vlasov-Maxwell equations (5), (8), and (9) pro-
charge bunchis to add to Eq. (6) a stationaty/or' = 0)  vide a complete nonlinear description of the collective
contribution in the beam frame that provides axial confineinteraction of the beam particles with the applied and self-
ment of the ions, e.g., aterm proportionalytpnwézz’z/z, generated eI(_actrlc and magnetic fields. Equations 5), (8),
wherew . = const is an effective betatron frequency for and (9), subject to the boundary conditions in Eq. (10),

the axial motion. This gives the confining potential can be used to derive certagtobal (spatially averaged)
conservation constraints [6] in the beam frame that are
2

g,y 7)) = %ybmwél(xlz + y?) + %wymwélz : useful in demonstrating a kinetic stability theorem. For
(7)  presentpurposes, itis assumed that the phase-space density
f»(x',p’,¢') is equal to zero beyond some radits i.e.,
» =0forr/ = (x2 + y)Y2 > ¢} < r,. Forthe case
of a charge bunch with finite axial length, i.e., whep, #
in Eq. (7), it is also assumed tha;, = 0 for |z/| >
0/2 whereLj is larger than the axial bunch leng2h,,.

Itis convenient to view Eq. (7) as modeling the average po
tential of an rf bucket that provides a stationary confinin
potential centered af = 0 in the beam frame. The rela-
tive axial and transverse dimensions of the charge bunc%
confined by Eq. (7) will, of course, depend on the ratio i | .
Oge/0p.. Moreo/vgr,_ when carrying out mtegra/tlons over momen-
Maxwell's equations in the beam frame rel@x’,/) UM P’ it is assumed thaf, = 0 as[p’| — <. 3)!;|nally,
andB'(x', 1) self-consistently to the distribution function the domain of spatial integration is defined b =
fr(x',p’,t). We introduce the scalar and vector poten-fL,L,z/2 G [ dr'y! [T d6'---. Here, two cases are dis-
tials, ¢/(x’,¢') and A/(x/,¢'), and expres8’ = V' X A’  tinguished. Case (a) corresponds to an infinite-length
andE’ = E; + E7, whereE; = —V/'¢/ is the longitu- beam wheraj;,(x',y’) is specified by Eq. (6), and’ is
dinal electric field, E7 = —c '9A’/a¢’ is the transverse viewed as a fundamental periodicity length for Fourier
electric field, and the Coulomb gauge condition with-  decomposition of the;’ dependence of the distribution
A’ = 0 is assumed. The Maxwell equatiokis- B’ = 0  function and field components. Case (b) corresponds to
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a finite-length charge bunch,whapéf(x’,y’,z’) is speci- The two global conservation constraints that are of
fied by Eq. (7) withwg, # 0, andL’ is chosen to be suf- particular utility correspond to the conservation of total
ficiently large thatz’ = L’/2 andz’ = —L'/2 are in the particle plus field energy//(¢'), and generalized entropy
far-field regions of the charge bunch, wh@keandB’ are S (/). Without presenting algebraic details [9], it can be
negligibly small. | shown from Egs. (5), (8), (9), and (10) that
! [E7]” + |B']? f p” 1
(41 3./ T 3.1 / /
= — - + pl\— +l, + —=2Z; =
U'(t) 7 /d x{ - &p'\ 5+ Yy + o Zied! |fyp = const (11)

and | three-dimensional kinetic stability theorem can be derived

1 \ 5 by introducing a generalized Helmholtz free energy
Se(t') = T fd‘x'j d’p'G(fp) =const (12) defined byF/(t') = U'(t)) + S&(¢') = const. We con-
] ] ) sider (arbitrary-amplitude) perturbations about a time-
no matter how complicated the nonlinear evolution ofstationary(a/a¢' = 0) equilibrium distributionf(x', p’)
fo(xp' 1), E'(x', 1), and B/(x,#'). Here,G(f») is@a in the beam frame and corresponding space-charge
smooth, differentiable (but otherwise unlspecn:led) fIU”Cpotential ¢ly(x)). Itis further assumed that the equilib-
tion with G(f — 0) = 0. In Eq. (11),B" = V' X A" jym distribution f.q(x’,p’) carries zero current in the
is the self-generated magnetic fieB; = —c '0A’/0t'  peam frame ie.d®p'v'fog = 0, S0 thatA!, = 0 and
is the transverse electric field, aff = —V'¢’ is the I —0=g Perturbeca quantities are denoted by
longitudinal space-charge field. Use has been made ]iq x'.p. 1) il'f (x'.p".t) — fug(x',p"), 8'(X.1) =
Egs. (8) and (10) to expres8« L)™' [d*x'|V'¢'|*> = ier N e
N=1 [ g3 [ 9350 / ¢'(x,t") — ¢ (x),  SEr(x',t) = Er(x',¢'),  and
() fd X fd p'(Zie/2)d' fb. SB'(x',) = B'(x',¢). DefiningAF'(t') = F'(t') — F!
Equations (11) and (12) represent very powerful con- ’ e p N eq
here F'(+') = U'(¢') + Sg(t'), some straightforward

straints on the nonlinear evolution of the system. AW )
|" algebra gives

112 + 112 + / 112
AF'(r') = % fd%’{"SET' '5;1 V'e¢]
2
+ fdap/[@_m + Lp;f + Z,-egbéq)(Sfb + G(feq + 6fp) — G(feq)ﬂ = const (13)

Here,5¢'(x',1') and ¢, (x') are related td f1,(x', p’, t') and feq (X', p’) by

V2s5¢' = —47Tzie/ d*p' 81, V2., = —47Tzie] d’p' feq (14)

and gbéf(x') is defined in Eq. (7) for an axially confined charge bunch, and in Eq. (6) for a continuous beam. The

coefficient of§ f5,(x', p’, t') in Eq. (13) will be recognized as the Hamiltonian

2
H' =24 g () + Ziedl () (15)

for single-particle motion in the combined applied focusing poten,td@l(x’) and equilibrium space-charge poten-
tial ¢y (x').

A linear (small-signal) stability theorem can be obtained from Eq. (13) as follows. We Taylor expéfid +
8fb) = G(feq) + G'(feqQ)Ofp + G"(feq) (8p)*/2 + -+, WhereG'(feq) = dG(feq)/dfeq, €tC., and retain terms to
quadratic order in perturbed quantities. This gives

112 12 / 2
[AF? = ~ [d3xfl'5ET' t 1B + Vool fd3p'[[H’ +G(f))(61) + 5 G (feg) (0Fs) + N

L’ 8
= const (16)

We now choos& ( f.q), Which has been arbitrary to this point, to satisty( f.q)/df.q = —H’ so that the term linear in
8 f, vanishes exactly in Eq. (13). This condition also gieY f.q) = —dH'/dfq, SO that Eq. (13) becomes (correct
to second order)

[AFe = L f d*x'

L' 8 2

Whenf.q(x’, p’) depends orix’, p’) only through the Hamiltoniai’, and whenf.,(H’) is a monotonically decreasing

ISE/|* + [6B']> + |[V'8 ¢ s fd3p’ (8£5)°
[_afeq/aH/]

} = const a7)
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function of H' with rem makes two successive applications of the mean-value
P theorem and proceeds as follows. The functional form of
ﬁfeq(H’) =0, (18) G(f»)inEq. (13)is quite general. Inthe subsequent proof

of the nonlinear stability theorem, we exploit this general-
it follows that the quantityfAF’]? defined in Eq. (17) ity and further assume thak( f,) is a monotonically de-
is a sum of positive-definite terms. Therefore, becausereasing function of, and has positive concavity, i.e.,
[AF']® = const, no one of the terms in Eq. (17) can grow )

Wltho_u_t bound_, and we c_o_nclude that Eq _(18) sufficient 9 G(fy) =0, 3_2 G(fp) =0, (19)
condition for linear stabilityof the equilibrium( feq, ¢eq) af afp

to small-amplitude perturbatiordsf,, 8 ¢’, SE7, andéB'. . o
@ver the entire range of values of the distribution func-

The exact global constraint condition (13) can be use ~ . .
to show that Eq. (18) is alsosaifficient condition for non- 10N f» = 0 accessible by the nonlinear Viasov-Maxwell

linear stability of the equilibrium to perturbations with ©duations. Two successive applications of the mean-value

arbitrary amplitude. Proof of this nonlinear stability theo- gh;‘;remG?l}o";’z CL:;Z rE?nge;(an;S(ltg;eir?itfr]:?ar(feorrﬁrff eq T
b) — eq .

oG G %G
G _ [E rG Sfbl}afb. (20)

0fb lfu+8fn fa o b rurofn
Here, for positive perturbatio8 f;,(x', p’, ') = 0, the quantitiess f,; and 8 f,; lie in the intervald) = §f,; = 6fp =

é f», whereas for negative perturbatién, = 0, the quantitie® f,; andé f; lieintheintervalss f, =< 6fp1 = 6fp =

0. In either case, the produétf,,d f, satisfiesd f,16 f, = 0. We substitute Eq. (20) into Eq. (13) and eliminate the
term linear iné f;, by choosindoG/af, 1y, = —H', which alsoimplies'[ha[tazG/af,f]feq = —9dH'/df.q. Equation (13)
then becomes

1 SE7|> + |6B/]> + |[V'§¢'|? 2
AF/(ZI) _ E fd3x/{| Tl | | | ¢ | + fd3pl<—G

G(feq + 5fb) - G(feq) =

8 afs

>(5fb15fb)} = const (21)

feq + asz

Because of the assumptioAG/af7 = 0in Eq. (19), and | that 1//S/f(x’) correspond to @onfiningpotential, i.e., that
becaused f,16f, = 0 follows by construction from the the focusing forcéFt,. ],y = — V', is restoring.
mean-value theorem, we conclude that the right-hand side This research was supported by the U.S. Department of
of Eq. (21) is a sum of positive-definite terms, no oneEnergy and by the APT Project and LANSCE Division of
of which can grow without bound. Therefore, becausethe Los Alamos National Laboratory.

[0°G/af7]y., = —9H'/dfeq = 0 by assumption, we con-
clude thatdf.q(H')/d9H' = 0 is a sufficient condition for
nonlinear stability.
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