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Singular Behavior in Electron-Atom Scattering at Small Momentum Transfer
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At fixed energy, the electron-atom differential cross section is commonly believed to be an analytic
function of the momentum transfer squaredK2 aroundK2 ­ 0. We negate this by demonstrating the
presence ofnonanalytic terms of the form

p
K2 coming from second-order long-range terms. This

result, combined with a Regge pole representation, yields a new generalized Lassettre expansion to
evaluate optical oscillator strengths through the extrapolation of apparent generalized oscillator strengths
to K2 ­ 0. Electron-H scattering demonstrates our new formula over a wide range of impact energies.
[S0031-9007(98)06736-2]

PACS numbers: 34.80.Dp, 31.50.+w, 32.70.Cs, 34.10.+x
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In electron-atom scattering, absolute differential cro
sections (DCSs) are difficult to obtain from relative
measurements [1]. For optically allowed transitions, on
of the most used techniques consists of extrapolati
the experimental data down to zero momentum transf
However, for these transitions,K2 ­ 0 is unphysical and
corresponds to a purely imaginary scattering angle at a
finite energyE of the incoming electron. Therefore, this
extrapolation relies heavily on the known behavior of th
DCS nearK2 ­ 0 at finiteE.

Because of the presence of an unphysical pole, t
inelastic DCS becomes infinite atK2 ­ 0. To remove
this pole, the apparent generalized oscillator streng
(AGOS) is introduced:

AGOSsE, K2d ­
v

2
ki

kf
K2 ds

dV
sE, K2d , (1)

wherev is the excitation energy, andki and kf are the
initial and final momenta of the electron, respectively
The limit of the AGOS asK2 ! 0 is the optical oscillator
strength (OOS),

OOS­ lim
K2!0

AGOSsE, K2d . (2)

Absolute OOSs can be measured and therefore will
the absolute scale of the DCSs through Eq. (1) for a
energies. The striking and crucial result of Lassettreet al.
[2] is that, while the AGOS is energy dependent, the OO
is not. This result, commonly known as the “Lassettr
limit theorem,” permits the estimation of the confidenc
of the extrapolated AGOS. By extrapolating the AGO
at different energies, and comparing the results, one c
get a very good estimate of the real precision of both th
experimental data and the extrapolation procedure.

To achieve the maximum precision of the OOS, expe
mentalists tend to use as high energies as possible w
the smallest possible scattering angles. In this way, th
attempt to reduce as much as possible the challeng
“unphysical extrapolation” that involves imaginary scat
tering angles. Experimentally, reaching very small sca
tering angles may increase significantly the experimen
errors [3]. Theoretically, the presence of a singularity i
0031-9007y98y81(5)y963(4)$15.00
ss

e
ng
er.

ny

e

he

th

.

fix
ll

S
e
e
S
an
e

ri-
ith
ey
ing
-
t-
tal
n

the AGOS that is not taken into account in the prese
state of the art, atK2 ­ 0, can definitely worsen the situ-
ation when using very smallK2, and the second-order
long-range terms are not negligible, as will be demo
strated in this paper.

First, consider a typical example of a standard extrap
lation procedure carried out for optically allowed tran
sitions at a few hundred eV. For such a case, o
introduces the ordinary Lassettre expansion [2] (we dr
the energy dependence of all the coefficients for clarity)

AGOSsK2d ­
1

s1 1 xd6

∑
f0 1 f1

x
s1 1 xd

1 f2
x2

s1 1 xd2

1 f3
x3

s1 1 xd3 1 . . .

∏
, (3)

where

x ­
K2

K2
L

, K2
L ­ f

p
2I 1

q
2sI 2 vdg2, (4)

with I andv being the ionization and the excitation ene
gies, respectively, of the atom under consideration. F
lowing Lassettre and different authors [4], the expansi
of Eq. (3) is supposed to converge in the neighborhood
x ­ 0, typically for x , 1. For the typical example of
the excitedJ ­ 3y2 state of Xe at 100 eV [5] the coeffi-
cientsfi are

f0 ­ 0.222, f1 ­ 21.204, f2 ­ 23.980,

f3 ­ 30.49 ; (5)

the fi ’s are experimental fitting parameters. One imm
diately notices that the successive terms of this suppo
“convergent” series increase dramatically; some of t
terms being roughly 1 order of magnitude larger than t
previous. Clearly, the series suffers from poor conve
gence. In this Letter we show the presence of terms in

p
x

in the expansion nearx ­ 0 of the scattering amplitude.
The apparent GOS cannot, at a given fixed impact ener
© 1998 The American Physical Society 963
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be expanded in a power series ofx, because of the pres-
ence of nonexpandable terms in

p
x. The consequences

of this fact are not innocent at all. Most of the noise an
quantum fluctuation contributions will be picked up by th
higher-orderf3 coefficient. Also, the values of the coef
ficients for the same resonant state but, at 500 eV [5], a

f0 ­ 0.222, f1 ­ 21.374, f2 ­ 1.484,

f3 ­ 3.665 . (6)

In this case, the coefficients do not grow as fast as tho
at lower E. As will be seen, this is mainly because th
second-order long-range terms are much smaller at
higher energy. Nevertheless, the series certainly can
be termed as convergent. The aim of this Letter is
demonstrate the causes of these divergences and pro
a new generalized Lassettre representation that will ta
care of them.

Second, we now come to the root of our paper, viz., t
presence of a singularity atx ­ 0 (rememberx ­

K2

K2
L
d

in the DCS, which is a
p

x singularity coming from
the second-order effective potential. This follows from
Huo [6], “In exchange scattering associated with boun
bound transitions, the second-order potential has a lon
range than the first order and may be important at sm
scattering angle.” In fact, the first-order potential ha
a finite range (exponential decrease at large distanc
and therefore produces an analytic behavior of the cr
section at smallK2, just like the direct terms. This is
contrary to the second-order potential that has an infin
range (it decreases the same as the inverse fourth powe
the distance) and produces the

p
K2 singularities. Before

going into the details of the mechanism that produc
these unexpected singularities, the following extreme
simple paradigmatic example will shed the necessary lig
on this delicate matter.

Let us represent the direct and first-order exchange
fective potentials by a symbolic fast decreasing expone
tial potential as

V1srd ­ C1e2mr (7)

and the second-order long-range effective potential by
symbolic slow decreasingr22 potential (the physical one
that decreases the same asr24 will be analyzed later) as

V2 ­
C2

r2 . (8)

The corresponding amplitudes are the Fourier transfo
of Eqs. (7) and (8) and are

T1 ­ 4p
Z 1`

0

sinKr
Kr

C1e2mrr2dr ­
8pmC1

sK2 1 m2d2

(9)

and

T2 ­ 4p
Z 1`

0

sinKr
Kr

C2

r2 r2dr . (10)
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Noting thatZ 1`

0

sinKr
r

dr ­ 1p if K . 0

­ 2p if K , 0 , (11)

we get

T2 ­
4p2C2p

K2
. (12)

We note that Eq. (9) is a perfect analytic function o
K2 near K2 ­ 0, as it should be, and that long-range
potentials introduce nonanalytic contributions, Eq. (12
into the scattering amplitude at small momentum transfe
This is a general feature of any long-range potentia
More generally, a potential decreasing the same asr22n

will produce an amplitude that is onlysn 2 2d times
differentiable in the variableK2 nearK2 ­ 0. All higher-
order derivatives do not exist. From this example, on
concludes that beyond the expected behavior of th
scattering amplitude at smallK2,

T1 ­ t10 1 t11K2 1 t12sK2d2 1 . . . , (13)

there is an unexpected behavior of the form

T2 ­ t20 1 t21

p
K2 1 . . . . (14)

For the realistic second-order effective long-range po
tential that behaves like the inverse fourth power of th
distance at large distances, we can model it by

V2srd ­
C2

r4 1 a4 . (15)

The corresponding amplitude is

T2 ­ 4p
Z 1`

0

sinKr
Kr

C2

r4 1 a4 r2dr (16)

which, after a simple integration in the complex plane
reduces to

T2 ­
p2C2

a
p

2
e2a

p
K2y2

sin

µ
a

q
K2

2

∂
a

q
K2

2

. (17)

To clarify the content of Eq. (17) nearK2 ­ 0, let us
expand it:

T2 ­
p2C2

a
p

2

√
1 2 a

s
K2

2
1

a2

6
K2 1 . . .

!
. (18)

Equation (18) clearly shows the presence of nonanalyt
terms in K2 near K2 ­ 0. Consequently, the AGOS
should be expanded in a formal series of the variable

j ­

K
KLr

1 1

≥
K
KL

¥2
. (19)

The crux of the argument for expanding the AGOS in
powers ofj and not ofj2 is that the newly proposed
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expansion of the AGOS keeps both odd and even pow
of K. This “parity mixing” is due to the lack of
analyticity of the AGOS nearK2 ­ 0. To understand
this mechanism that is not at all obvious, we give
very simple paradigmatic example which contains all t
essence of the process without complexity.

Suppose the DCS is given by

ds

dV
­

OOS
K2 1 A

s
1 1

K2
L

K2 1 B

s
1 1

K2

K2
L

, (20)

whereK2
L is the usual Lassettre unit in which the square

the momentum transfer is measured. This is a perfec
decent parity invariant function that is even inK. The
AGOS, up to a constant, is given by

AGOS ­ OOS1 AK2

s
1 1

K2
L

K2 1 BK2

s
1 1

K2

K2
L

.

(21)

This again is a perfectly decent parity invariant functio
that is even inK. Let us now look at the smallK
expansion behavior. We get

AGOS ­ OOS1 AK 1 BK2 1 . . . , (22)

where we have written the expansion in small positiveK.
Now, if we analytically continue this expansion to

complex values ofK and, in particular, to negative ones
we discover that we have a parity mixing. There is now
mixture of even and odd powers ofK. This phenomenon
can be related to the classical “Stokes phenomenon”
that may occur when expanding an analytical functio
near a singular point.

What about the convergence of the new series in
variablej? At least, we proved thatformally the series
exists, viz., the AGOS has derivatives of all orders
K ­

p
K2 when taking the limit coming from positive

values of K. The most optimistic situation would be
that the series is an asymptotic series with an anti-Sto
line along the real axis. The series could behave as
“effective” convergent series up to a number of term
that increases with increasing energy. The full analy
of such a structure requires the study of the delica
convergence of the Born series and will be the subje
of forthcoming papers.

The second part of this Letter combines the previo
result with the very efficient Regge pole approach [8
where only the direct terms were taken into accou
In the present case, where we analyze aK2 region before
the first minimum, we can neglect the imaginary pa
of the leading Regge pole (that controls the oscillatio
in the DCS) and write the following generalized Lassett
formula (with only one Regge pole):

AGOSsE, K2d ­
OOS

s1 1 xd6 1 A
v

E

p
x

s1 1 xdnsEd , (23)

where the OOS andA do not depend on energy and
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nsEd ­ 6 1
C

E
v ln E

v

. (24)

Equation (24) can be derived by computing the next-ord
term in the expansion (8-4), page 62, of Ref. [9]. Th
constantC could be computed knowing the behavior a
small distances of the corresponding effective potential.

Equations (23) and (24) give aglobal analysisof the
AGOS in terms ofonly threeenergy independent parame
ters A, C, and OOS. To demonstrate the dramatic im
provement that this new analysis introduces, we consid
a realistic case where it is possible to separate, in t
evaluation of the OOS, the limit of the AGOS asK2 ! 0,
the effect, on the final precision, of the interpolation pro
cedure, the experimental errors, and quantum fluctuatio
For the electron excitationH 1s-2p, the OOS is known
theoretically and reliable theoretical calculations [10] ex
ist. We use the results of [10] at 35, 40, 54.4, 100, an
200 eV and scattering angles from zero to90± for the
illustration.

We first perform a fixed energy analysis using onl
Eq. (23) and compare the precision obtained for the OO
when the energy varies from 35 to 200 eV with val
ues from the corresponding standard Lassettre expansi
Then a global analysis is effected by combining Eqs. (2
and (24). The results are compared in Table I.

The first striking fact in Table I is the outstanding
OOS values accomplished by the Regge approach ev
at low energies. At 35 eV, for example, the OOS
(with only a three parameter fit) is within a2.2% error
of the exact; this can be contrasted with the23.2%
error from the standard Lassettre analysis. The seco
important point is the use, for the first time, of aglobal
approach that involves simultaneously all energies and
scattering angles (less than90±) to extract the OOS within
less than1% with only three parameters (including the
unknown OOS itself). A total of 75 data points were
used (15 angles for each of the 5 energies). Finally, t
75 data are globally reproduced within a few percen
with C ­ 12.2 andA ­ 22.98. The exceptional results
confirm the physical content of the Regge pole approa
which should become the new formalism for medium
to high energy electron-atom scattering. The theoretic
calculation of the two parametersC andA is in progress.

TABLE I. Extrapolated OOSs for theH 1s-2p transition.

Regge pole Lassettre % error % error
Energy extrapolated extrapolated using using
(eV) OOSs OOSs Lassettre Regge

35 0.4072 0.3198 23.2 2.2
40 0.4112 0.3341 19.8 1.3
54.4 0.4115 0.3593 13.8 1.2

100 0.4122 0.3885 6.7 1.03
200 0.4124 0.4040 3 0.98
Global 0.4129 N.A. N.A. 0.86
965
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Finally, the Regge pole formalism will henceforth be
extended to electron-ion scattering and will be use
immediately in the normalization of measured relativ
electron DCSs [11].

The experimental investigation of Eq. (23) using elec
tron and positron projectiles on suitable atomic targe
may reveal the exchange component of the second-or
long-range potential.
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