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Singular Behavior in Electron-Atom Scattering at Small Momentum Transfer
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At fixed energy, the electron-atom differential cross section is commonly believed to be an analytic
function of the momentum transfer squarkd aroundkK? = 0. We negate this by demonstrating the
presence ohonanalyticterms of the formv/K? coming from second-order long-range terms. This
result, combined with a Regge pole representation, yields a new generalized Lassettre expansion to
evaluate optical oscillator strengths through the extrapolation of apparent generalized oscillator strengths
to K? = 0. ElectronH scattering demonstrates our new formula over a wide range of impact energies.
[S0031-9007(98)06736-2]

PACS numbers: 34.80.Dp, 31.50.+w, 32.70.Cs, 34.10.+x

In electron-atom scattering, absolute differential crosthe AGOS that is not taken into account in the present

sections (DCSs) are difficult to obtain from relative state of the art, ak> = 0, can definitely worsen the situ-
measurements [1]. For optically allowed transitions, oneation when using very smalk?, and the second-order
of the most used techniques consists of extrapolatingpng-range terms are not negligible, as will be demon-
the experimental data down to zero momentum transfesstrated in this paper.
However, for these transitiong;> = 0 is unphysical and First, consider a typical example of a standard extrapo-
corresponds to a purely imaginary scattering angle at ankation procedure carried out for optically allowed tran-
finite energyE of the incoming electron. Therefore, this sitions at a few hundred eV. For such a case, one
extrapolation relies heavily on the known behavior of theintroduces the ordinary Lassettre expansion [2] (we drop
DCS neark? = 0 at finite E. the energy dependence of all the coefficients for clarity):

Because of the presence of an unphysical pole, the

inelastic DCS becomes infinite &> = 0. To remove AGOSK?) = ;6 [fo + fi S -
this pole, the apparent generalized oscillator strength (1 +x) (1 +x)
(AGOS) is introduced: x2
ki ,do RREITaE
AGOSE, K?) = B K? ) (E,K?), (1) ;
f X
+f3—=+...], (3
where w is the excitation energy, ankk andk; are the f3 (1 + x)3 } (3)
initial and final momenta of the electron, respectively., here
The limit of the AGOS a> — 0 is the optical oscillator s
strength (O0S), =K K2 = [V2I + /2(1 “ 0Pk @

00S~— lim AGOSIE.K?). @) K?
K*=0 with I andw being the ionization and the excitation ener-

ies, respectively, of the atom under consideration. Fol-
; . X owing Lassettre and different authors [4], the expansion
energies. The striking and crucial result of Lassedtral. Eq. (3) is supposed to converge in the neighborhood of
[2] is that, while the AGOS is energy dependent, the OOS. _ 0, typically for x < 1. For the typical example of
is not. This result, commonly known as the “Lassettreya axcited/ = 3/2 state of Xe at 100 eV [5] the coeffi-
limit theorem,” permits the estimation of the confidenceciemsfi are
of the extrapolated AGOS. By extrapolating the AGOS
at different energies, and comparing the results, one can fo = 0.222, f1 = —1.204, f> = —3.980,
get a very good estimate of the real precision of both the f3 = 3049; 5)
experimental data and the extrapolation procedure. e

To achieve the maximum precision of the OOS, experithe f;’s are experimental fitting parameters. One imme-
mentalists tend to use as high energies as possible witliately notices that the successive terms of this supposed
the smallest possible scattering angles. In this way, the\convergent” series increase dramatically; some of the
attempt to reduce as much as possible the challenginigrms being roughly 1 order of magnitude larger than the
“unphysical extrapolation” that involves imaginary scat- previous. Clearly, the series suffers from poor conver-
tering angles. Experimentally, reaching very small scatgence. In this Letter we show the presence of termgin
tering angles may increase significantly the experimentah the expansion near = 0 of the scattering amplitude.
errors [3]. Theoretically, the presence of a singularity inThe apparent GOS cannot, at a given fixed impact energy,

Absolute OOSs can be measured and therefore will fi
the absolute scale of the DCSs through Eq. (1) for al
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be expanded in a power seriesxgfbecause of the pres- Noting that
ence of nonexpandable terms jfx. The consequences

+o i
of this fact are not innocent at all. Most of the noise and j Sinkr dr=+7 ifK>0
gquantum fluctuation contributions will be picked up by the 0 r
higher-orderf; coefficient. Also, the values of the coef- =-—7 If K <O, (12)

ficients for the same resonant state but, at 500 eV [5], ar(\eN
fo = 0.222, f1 = —1.374, fo = 1.484, )
_ AreCy
f3 = 3.665. (6) Ty = e (12)

In this case, the coefficients do not grow as fast as those we note that Eq. (9) is a perfect analytic function of
at lower E. As will be seen, this is mainly because the k2 near K2 = 0, as it should be, and that long-range
second-order long-range terms are much smaller at thigotentials introduce nonanalytic contributions, Eq. (12),
higher energy. Nevertheless, the series certainly canngito the scattering amplitude at small momentum transfer.
be termed as convergent. The aim of this Letter is torhis is a general feature of any long-range potential.
demonstrate the causes of these divergences and propagere generally, a potential decreasing the same &%
a new generalized Lassettre representation that will tak@ill produce an amplitude that is onlyn — 2) times
care of them. differentiable in the variabl&? neark? = 0. All higher-
Second, we now come to the root of our paper, viz., therder derivatives do not exist. From this example, one
presence of a singularity at = 0 (rememberx = %) concludes that beyond the expected behavior of the

in the DCS, which is aJ/x singularity coming from Scattering amplitude at smati?,
the secor:d-order effective po_tent|aITh|s_ foIIowg, from T, = o + 111 K> + 112(K2)? + ..., (13)
Huo [6], “In exchange scattering associated with bound- _ _
bound transitions, the second-order potential has a longéhere is an unexpected behavior of the form
range than the first order and may be important at small I

. . . = + + ...
scattering angle.” In fact, the first-order potential has Tr =t + VK (14)
a finite range (exponential decrease at large distances) For the realistic second-order effective long-range po-
and therefore produces an analytic behavior of the crosential that behaves like the inverse fourth power of the
section at smallk?, just like the direct terms. This is distance at large distances, we can model it by
contrary to the second-order potential that has an infinite

e get

range (it decreases the same as the inverse fourth power of Vo(r) = % . (15)
the distance) and produces thi&? singularities. Before . S ta

going into the details of the mechanism that produced he corresponding amplitude is

these unexp_ected_ singularities_, the following extrem_ely t* sinkr Gy R

simple paradigmatic example will shed the necessary light I, =4m o Kr Tt at redr (16)

on this delicate matter. _ _ _ o

Let us represent the direct and first-order exchange ef¥hich, after a simple integration in the complex plane,
fective potentials by a symbolic fast decreasing exponen-educes to —
tial potential as _ 7Cy i sm(aﬁ) -
Vi(r) = Cre#r (7) L=n¢™ TWE (47)

ay\ 7

and the second-order long-range effective potential by a
symbolic slow decreasing™2 potential (the physical one  To clarify the content of Eq. (17) ned” = 0, let us
that decreases the samera$ will be analyzed later) as ~ €xpand it:

_G TG K2 a?

V=9 ® n-T2(i-aB Lo )

,
The corresponding amplitudes are the Fourier transform
of Egs. (7) and (8) and are

a2 2 6

Equation (18) clearly shows the presence of nonanalytic
terms in K> near K> = 0. Consequently, the AGOS

T\ = dar f+x sinkr Cie M rldr = 87 uCi should be expanded in a formal series of the variable
! 0 Kr ! (K2 + u?)? Kﬁ
9 ¢ = ——— = (19)
K
and 1+ <1<_L>
_ * sinkr C, , 10 The crux of the argument for expanding the AGOS in
Iy =dm 0 Kkr 2| dr. (10) powers of ¢ and not of £ is that the newly proposed
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expansion of the AGOS keeps both odd and even powers v(E) = 6 + ¢ (24)
of K. This “parity mixing” is due to the lack of ~InZ

EnnkE-
analytmty Of. the AGO.S neak™ = 0. TO understqnd Equation (24) can be derived by computing the next-order
this mechanism that is not at all obvious, we give &arm in the expansion (8-4), page 62, of Ref. [9]. The
very simple paradigmatic_example which contains all theconstantC could be computéd knowin,g the béha\}ior at
essence of the process V.V'thOUt complexity. small distances of the corresponding effective potential.
Suppose the DCS is given by Equations (23) and (24) give global analysisof the
do 00S K7 K2 AGOS in terms obnly threeenergy independent parame-
a0 k2 "ML T e TBLA 2 (20)  tersA, ¢, and OOS. To demonstrate the dramatic im-
L provement that this new analysis introduces, we consider
whereK7 is the usual Lassettre unit in which the square ofa realistic case where it is possible to separate, in the
the momentum transfer is measured. This is a perfectigvaluation of the OOS, the limit of the AGOS &3 — 0,
decent parity invariant function that is even k& The the effect, on the final precision, of the interpolation pro-

AGOS, up to a constant, is given by cedure, the experimental errors, and quantum fluctuations.
5 5 For the electron excitatio® 1s-2p, the OOS is known
AGOS = 00S + AK? /1 n KL + BK2.1 + K_. theoretically and reliable theoretical calculations [10] ex-
K? \ K} ist. We use the results of [10] at 35, 40, 54.4, 100, and

(21) 200 eV and scattering angles from zero9@" for the
illustration.

We first perform a fixed energy analysis using only
Eq. (23) and compare the precision obtained for the OOS
when the energy varies from 35 to 200 eV with val-
AGOS= O0S+ AK + BK? + ..., (22) ues from the corresponding standard Lassettre expansion.

. o . Then a global analysis is effected by combining Egs. (23)
where we have written the expansion in small posiivie 54 (24). The results are compared in Table I.

Now, if we analytically continue this expansion t0  The first striking fact in Table | is the outstanding

complex values oK and, in particular, to negative ones, 0OS values accomplished by the Regge approach even
we discover that we have a parity mixing. There is now &3¢ |ow energies. At 35 eV, for example, the OOS
mixture of even and odd powers &f. This phenomenon i ’ ;

This again is a perfectly decent parity invariant function
that is even inK. Let us now look at the smalk
expansion behavior. We get

X with only a three parameter fit) is within 22% error
can be related to the classical “Stokes phenomenon” [7}¢ the exact: this can be contrasted with tB&.2%

that may occur when expanding an analytical functiongror from the standard Lassettre analysis. The second
near a singular point. _ . important point is the use, for the first time, ofgtobal
What about the convergence of the new series in thg,nrgach that involves simultaneously all energies and all
variable£? At least, we proved thdormally the series  gcattering angles (less tha°) to extract the OOS within
exists, viz.,, the AGOS has derivatives of all orders injess thani% with only three parameters (including the
K = VK2 when taking the limit coming from positive ypknown 00S itself). A total of 75 data points were
values of K. The most optimistic situation would be seq (15 angles for each of the 5 energies). Finally, the
that the series is an asymptotic series with an anti-Stokess yata are globally reproduced within a few percent
line along the real axis. The series could behave as aRiih ¢ = 12.2 andA = —2.98. The exceptional results
“effective” convergent series up to a number of termSonfirm the physical content of the Regge pole approach
that increases with increasing energy. The full a”a_lys'%vhich should become the new formalism for medium
of such a structure requires the study of the delicatgy nigh energy electron-atom scattering. The theoretical

convergence of the Born series and will be the subjectycylation of the two paramete€sandA is in progress.
of forthcoming papers.

The second part of this Letter combines the previous
result with the very efficient Regge pole approach [8], tagLE|.

. . Extrapolated OOSs for th& 1s-2p transition.
where only the direct terms were taken into account

In the present case, where we analyz&’aregion before Regge pole Lassettre % error % error
the first minimum, we can neglect the imaginary partENergy —extrapolated  extrapolated  using using
of the leading Regge pole (that controls the oscillations (ev) OOSs OOSs Lassetire  Regge
in the DCS) and write the following generalized Lassettre 35 0.4072 0.3198 23.2 2.2
formula (with only one Regge pole): 40 0.4112 0.3341 19.8 13
ST A
2N . . . .
AGOSE.KT) = i e " A v @ @3 200 0.4124 0.4040 3 0.98
Global 0.4129 N.A. N.A. 0.86

where the OOS and do not depend on energy and
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