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The matching of charged particle beams into transport lines is usually done by using the rms envelope
equations. The usual rms envelope equations, however, do not apply in the presence of bending magnets
and a longitudinal momentum spread. A new set of equations is needed that simultaneously describes
the rms envelopes of the beam and the dispersion function. A derivation is outlined in this paper. The
new equations will make it possible to achieve proper matching of the rms envelopes and dispersion in
the regime of highly space charge dominated beams. [S0031-9007(98)06476-X]
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A proper matching of the envelopes is usually nece
sary for a successful transport of space charge domina
beams. The matching forces the beam to undertake brea
ing modes consistent with the lattice periodicity and ma
prevent the onset of fast growing instabilities. To this pur
pose the rms envelope equations are currently used. T
rms envelope equations were first derived in [1] by writ
ing the equations giving the evolution of the moments o
the beam distribution in phase space. In the general ca
one finds an infinite hierarchy of equations where equ
tions for the lower moments involve moments of highe
order. One can truncate the endless sequence and re
only the equations for the second moments if the rms em
tance is known or it is an invariant. In a hydrodynamic
approach this would be equivalent to assuming that th
pressure or the temperature are known or constant. F
a generic Hamiltonian system the rms emittance is an e
act invariant only in the linear approximation. However
in some cases it turns out to be roughly preserved even
the presence of nonlinear forces. Such an approximate
variance makes the rms envelope equations a useful a
widely used tool for matching. In addition, a proper rms
matching itself can reduce the possibility of an increas
in the emittance. However, it should be pointed out tha
even for a perfectly matched beam a number of phenom
ena can still cause emittance growth. Among these a
the usually fast instabilities driven by possible resonanc
between the envelope breathing and the motion of the ind
vidual particles [2]; the formation of a halo [3]; the equipar
tioning between the longitudinal and transverse degrees
freedom [4].

One limitation of the usual rms envelope equations
that they apply only to straight transport lines or monochro
matic beams. The problem is that the rms emittance is n
longer a linear invariant in the presence of the couplin
between the longitudinal momentum and the betatron m
tion that occurs in the bending magnets. In some cas
the use of the standard rms envelope equations may s
be adequate even if bending magnets are present, provid
96 0031-9007y98y81(1)y96(4)$15.00
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that the beam current is not too high. However, the grow
ing interest for space-charge dominated beams in spallat
neutron sources, heavy ion inertial fusion, advanced hig
energy colliders (e.g., muon colliders) small recirculator
beam cooling, and other applications is pushing towa
achieving a tune depression in a range of values whe
proper matching can be obtained only with more accura
tools. This is the case for the Maryland Electron Ring [5
where a tune depression as small as0.2 is planned to be
reached.

The aim of this paper is to present a new set of rms env
lope equations for continuous beams that can be applied
the general case where bends and a longitudinal mom
tum spread are present. The first step is to find a line
invariant that replaces the usual rms emittance in the mo
general case. Not surprisingly, the new rms invariant tur
out to be dependent on the dispersion function. Since,
the other hand, the dispersion function must depend on t
space charge forces and therefore on the envelopes of
beam, one realizes that a consistent treatment needs to
volve both the equation for the envelopes and the dispe
sion function. The derivation of the new set of equation
for the case of a continuous beam makes use of the follo
ing two results proved in [1] for a generic beam densit
distribution displaying an elliptic symmetry: (i) the second
moments of the beam distribution depend only on the line
part of the forces, and (ii) the linear part of the self-forc
defined in an rms sense depends only on the second m
ments (envelopes) of the distribution. Earlier attempts
incorporate dispersion into the framework of the rms en
velope equations [2,6] are not satisfactory since they a
based on the assumption of the linear invariance of t
standard rms emittance. We should mention that differe
approaches also employing moment equations for spa
charge dominated beams have been introduced in [7]
study the effect of longitudinal momentum spread in bend

Finally, we show a simple application of the new equa
tions by evaluating the transition of a continuous bea
from a straight transport line into a small recirculator in
© 1998 The American Physical Society
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the smooth approximation. The main purpose is to off
a test of the new equations against a self-consistent cal
lation as presented in [8]. The results from this particul
example also show that for a tune depression smaller th
0.5 the new equations provide predictions that deviate fro
the ones obtained from the usual rms envelope equatio

Consider beam of charged particles of massm in a trans-
port line with local radius of curvaturerszd, subject to a
linear focusing (no space-charge forces for the mome
on the horizontal plane and having a longitudinal mome
tum pz ­ pos1 1 dd with a relative deviationd from the
design momentumpo , with Eo being the corresponding
energy. We assume that there is no longitudinal focusin
Such a system is described by the Hamiltonian

H ­
1
2

p2
x 1

kxszd
2

x2 1
m2c4

E2
o

d2 2
x

rszd
d . (1)

One can easily verify that because of the coupling ter
dxyr the standard rms emittancee2

x ­ skx2l kp2
x l 2

kxpxl2d, is not an invariant for the system (1). Herek?l
denotes the averaging over the phase space variab
Our problem is to find a new quantity similar to the rm
emittance that is preserved in the presence of dispersi
The strategy is to write a canonical transformation th
removes the coupling and casts the Hamiltonian in a for
for which the invariant can be immediately written. Th
invariant in the original variables is then recovered b
reversion of the canonical transformation.

A suitable canonical transformation is generated b
G2sx, px , zd ­ pxfx 2 dDszdg 1 xdD0szd, whereDszd is
a function that will eventually be identified with the dis-
persion function:x ­ x 2 dDszd andpx ­ px 1 dD0szd.

The transformed Hamiltonian reads

H ­
1
2

p2
x 1

kx

2
x2 1

m2c4

E2
o

d2

1 dx

µ
D00 1 kxD 2

1
r

∂
1 . . . .

The remaining terms (. . .) in the Hamiltonian contain a
combination ofd and functions ofz. Since they affect
only the evolution of the variable canonically conjugate
to d (i.e., the RF phase), which we are not intereste
in, they can be disregarded. Clearly, if the functionD
is chosen in such a way thatD00 1 kxszdD 2 1yrszd ­
0, the coupling betweend and x vanishes and we can
immediately conclude that the quantitye2

x ­ skx2l kp2
xl 2

kxpxl2d is a linear invariant for the HamiltonianH. Then,
if we expressex in terms of the old variables we obtain a
quantity invariant for our original system. We have

kx2l ­
Z

x2fsx, px , dd dm

­
Z

sx 2 dDd2fsxsx, px , dd, pxsx, px , dd, dd dm

­ kx2l 2 2Dkxdl 1 D2kd2l . (2)
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Here, dm ­ dx dpx dd, dm ­ dx dpx dd, and dm ­
dm because the transformation is canonical. Notice th
sincefsx, px , dd is a generic function, theñfsx, px , dd ­
ffxsx, px , dd, pxsx, px , dd, dg is also a generic function.
That is, the equality (2) holds for any distribution func-
tion. By the same token one can evaluatekp2

xl andkxpxl
in terms of the moments in the old variables, and finall
write the new invariant as

e
2
x ­ e2

dx ­ skx2l 2 2Dkxdl 1 D2kd2ld
3 skp2

x l 2 2D0kpxdl 1 D02kd2ld
2 skxpxl 2 Dkpxdl 2 D0kxdl 1 DD0kd2ld2. (3)

We have introduced the notationedx for the new invari-
ant, to which in the following we will refer as “gener-
alized emittance.” Notice that in a straight beam line
where no dispersion is present (D ­ D0 ­ 0) or for a
monochromatic beam with vanishing longitudinal mo-
mentum spread (kd2l ­ 0), the quantity (3) coincides with
the usual rms emittance. Incidentally, we notice that th
invariant introduced here is different from the generalize
emittances defined, e.g., in [9]. Those quantities are e
amples of “kinematic invariants” the invariance of which
is preserved under any linear symplectic map. The qua
tity defined here is more similar to a “dynamic invariant”
(see [9] for this terminology), the form of which depends
on the details of the physical system through the dispe
sion functionDszd.

Let us now introduce the space-charge forces into th
picture. The Hamiltonian describing a continuous beam
with space charge and in the presence of dispersion rea
(q is the charge,yz the longitudinal velocity,g the
relativistic factor)

H ­
1
2

sp2
x 1 p2

y d 1
kxszd

2
x2 1

kyszd
2

y2

1
q

my2
z g3

csx, y, zd 2
d

rszd
x 1

m2c4

E2
o

d2. (4)

The self-force is described by the potentialc , and includes
the contribution from both the magnetic and electric field
(see, e.g., [4]). In writing (4) we assumed that the nonlin
earities due to the external focusing and the transverse c
rent due to the bending of the beam are negligible. Fro
the Vlasov equation associated with the Hamiltonian (4
one can derive the following equations for the second mo
ments (go ­ qymy2

z g3):

d
dz

kx2l ­ 2kxpxl , (5a)

d
dz

kp2
xl ­ 22kxkxpxl 2 2go

ø
px

≠

≠x
c

¿
1

2
r

kpxdl ,

(5b)

d
dz

kxpxl ­ kp2
xl 2 kxkx2l 2 go

ø
x

≠

≠x
c

¿
1

1
r

kxdl ,

(5c)
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kxdl ­ kpxdl , (6a)

d
dz

kpxdl ­ 2kxkxdl 2 go

ø
d

≠

≠x
c

¿
1

1
r

kd2l . (6b)

The equations fork y2l, kp2
yl, k ypyl are similar to those

for kx2l, kp2
xl, kxpxl when the dispersive term in the

Hamiltonian is absent. Under the assumption of a bea
with elliptic symmetry one can prove [1] that the terms i
Eqs. (5), (6) involving the self-potential can be derived b
an effective potential of the form

q
my2

z g3
csx, y, zd ­ 2

K
4ssx 1 syd

µ
x2

sx
1

y2

sy

∂
, (7)

whereK is the perveance [4] andsx ­
p

kx2l andsy ­p
k y2l. Given a self-potential of the form (7) the resulting

equation for the dispersion function is

D00 1

∑
kxszd 2

K
2sxssx 1 syd

∏
D ­

1
rszd

. (8)

Use of Eq. (7) to write the equation for the dispersio
function accounts to assuming a linear approximation, wi
the linear part of the force due to space charge defined
an rms sense (as shown in [1]). To the extent that su
an approximation holds, the generalized rms emittanceedx

defined in (3) is invariant. One can simplify the expressio
for the generalized rms emittance by observing that t
two equations (6) can be combined into a single equati
that has the same form as (8). This allows us to identi
kxdl ­ kd2lDszd andkpxdl ­ kd2lDszd0. Consequently,

e2
dx ­ skx2l 2 D2kd2ld skp2

xl 2 D02kd2ld
2 skxpxl 2 DD0kd2ld2. (9)

Next, we can useedx to expresskp2
x l in terms of the

other moments. By doing so, one can rewrite the rm
equations as

s00
x ­

e
2
dx 1 ssxs0

x 2 DD0kd2ld2

sxss2
x 2 D2kd2ld

2
1

sx
ss0

xd2

2 kxsx 1
K

2ssx 1 syd
1

kd2l
sx

µ
D
r

1 D02

∂
,

(10)

s00
y ­

e2
y

s3
y

2 kysy 1
K

2ssx 1 syd
. (11)

The three equations (8),(10),(11), in the variablesD, sx,
sy, provide a consistent description for the evolution of th
rms envelopes of a beam in a dispersive channel. Th
can be used to achieve a simultaneous matching of the r
beam envelopes and dispersion function. We emphas
the fact that the invarianteds appearing in Eq. (10) co-
incides with the rms emittance at those locations whe
D ­ 0. Finally, notice that for1yrszd ­ 0 or kd2l ­
0, we recover the usual envelope equations for straig
transport lines.
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As an application and a test of the theory outlined in th
paper we now want to estimate the variation of the bea
parameters in the transition from a straight beam line in
a small ring. In the model we consider both the focusin
functions and the radius of curvature in the circular chann
arez independent (smooth approximation). Furthermor
the external focusing is the same in the straight and
the circular channel. We assume that the beam underg
a transition between two stationary distributions befor
and after injection. For the purposes of this calculatio
we do not need to specify how this matched injectio
can be achieved. In general the solution of the matchin
problem would require the solution of the rms envelope
dispersion differential equations (8),(10),(11) for specifie
initial and final beam conditions. The stationary solutio
before injection reads

se2
x ds

s3
xs

2 kxsxs 1
K

2ssxs 1 sysd
­ 0 (12)

(similar equation forsys with sxs andsys interchanged).
The subscripts indicates that the various quantities re
fer to the beam in the straight channel before injectio
For a given value of the beam perveanceK and emit-
tance the equation above can be solved for the rms size
the beamsxs, sys. After injection in the circular chan-
nel a stationary beam must satisfy the set of equatio
(8),(10),(11) withs0

y ­ s0
x ­ D0 ­ 0. The connection

between the two sets of rms quantities is provided by th
assumption that the generalized emittance (3) in the ho
zontal plane is conserved through injection. Of cours
the vertical rms emittance is also preserved because d
persion in our model affects the motion only in the hori
zontal plane. We have calculated a numerical solution f
this set of equations for various values of the pervean
or beam current for the particular case of an initially roun
beam sxs ­ sys ­ 0.5 cm. The other parameters are
[10] kx ­ ky ­ 17.44 m, r ­ 1.82 m, corresponding to
an undepressed rms tune ofnox ­ noy ­ 7.6.

p
kd2l ­

0.007. For any given value of the perveance, the emi
tancesexds ­ seyds is tuned in such a way that different
beams with different perveance have the same rms rad
at injection.

In Fig. 1 we plot the rms horizontal size of the beam
after injection as a function of the tune depression. Th
value is scaled with respect to the rms horizontal siz
before injection. The tune depressionnyno (i.e., the ratio
between the rms tune in the presence of space cha
n, and the tune in the absence of space chargeno) is
also calculated with respect to the beam before injectio
We observe that the effect of higher space charge is
enlarge the beam horizontally. The curve is compared
results obtained in [8] where the same system was stud
by looking for self-consistent solutions of the Vlasov
Poisson equations in the form of generalized KV beam
[11] in a recirculator (dots in the picture), with all the
nonlinearity due to space charge taken into account. T
agreement corroborates the validity of the new set
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FIG. 1. Scaled horizontal rms beam sizexrms ­ sxysxs, after
injection into a small ring as a function of the tune depressio
nyno (solid line). The curve is compared with the results (dots
obtained in [8] by studying self-consistent beam distributions i
the ring satisfying the Vlasov-Poisson equation.

equations. The relative growth of the horizontal beam
envelope for this particular example is modest. Howeve
if present, a mismatch in the dispersion could introduc
a breathing in the horizontal beam size having a relativ
amplitude a few times larger than the values shown in th
picture (see [8]). Moreover, a weaker external focusin
could cause the relative growth to be considerably highe
Associated with the beam size growth is also a relativ
increase in the rms emittance (for this example it is abo
15% atnyno ­ 0.2). Again, a dispersion mismatch would
introduce oscillations in the rms emittance with a relativ
amplitude a few times larger (which could eventually turn
into an irreversible emittance growth in the relaxation
toward equilibrium).

In Fig. 2 we plot the value of the dispersion function
Since the smooth approximation has been assumed in t
simple model, the dispersion function is constant along th
ring. The result is compared (dashed line) to the dispersio
function that we would obtain if we did not take into
account the enlargement of the beam described in Fig.
One would get this result (dashed line) if the standar
rms envelope equations were to be used in combinati
with Eq. (8). As anticipated, the two curves begin to
get separated atnyno . 0.5. Such an effect should, for
example, be taken into account for a proper correction
chromaticity.

In conclusion, the goal of this paper was to present th
derivation of a set of equations that generalize the standa
rms envelope equations to the case where dispersion
present. The new set is made of three equations as oppo
to the two equations for the vertical and horizontal rm
envelopes of the beam in the usual approach, with the ex
equation needed to accommodate the additional variable
the problem, i.e., the dispersion function. We expect th
new equations will have useful applications in very high
current regimes whenever proper envelope and dispers
matching is needed or an accurate knowledge of dispersi
is required for the purpose of chromaticity correction.
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FIG. 2. Dispersion function in a small ring as a function of
the tune depressionnyno (solid line). The dashed line is the
value of the dispersion function as calculated without takin
into account the enlargement of the horizontal beam size in th
ring due to dispersion.
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