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rms Envelope Equations in the Presence of Space Charge and Dispersion
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The matching of charged particle beams into transport lines is usually done by using the rms envelope
equations. The usual rms envelope equations, however, do not apply in the presence of bending magnets
and a longitudinal momentum spread. A new set of equations is needed that simultaneously describes
the rms envelopes of the beam and the dispersion function. A derivation is outlined in this paper. The
new equations will make it possible to achieve proper matching of the rms envelopes and dispersion in
the regime of highly space charge dominated beams. [S0031-9007(98)06476-X]

PACS numbers: 41.85.—p, 29.27.-a

A proper matching of the envelopes is usually necesthat the beam current is not too high. However, the grow-
sary for a successful transport of space charge dominatexg interest for space-charge dominated beams in spallation
beams. The matching forces the beam to undertake breatheutron sources, heavy ion inertial fusion, advanced high-
ing modes consistent with the lattice periodicity and mayenergy colliders (e.g., muon colliders) small recirculators,
prevent the onset of fast growing instabilities. To this pur-beam cooling, and other applications is pushing toward
pose the rms envelope equations are currently used. Tleehieving a tune depression in a range of values where
rms envelope equations were first derived in [1] by writ-proper matching can be obtained only with more accurate
ing the equations giving the evolution of the moments oftools. This is the case for the Maryland Electron Ring [5]
the beam distribution in phase space. In the general casehere a tune depression as small0asis planned to be
one finds an infinite hierarchy of equations where equareached.
tions for the lower moments involve moments of higher The aim of this paper is to present a new set of rms enve-
order. One can truncate the endless sequence and retdipe equations for continuous beams that can be applied to
only the equations for the second moments if the rms emitthe general case where bends and a longitudinal momen-
tance is known or it is an invariant. In a hydrodynamictum spread are present. The first step is to find a linear
approach this would be equivalent to assuming that thévariant that replaces the usual rms emittance in the more
pressure or the temperature are known or constant. Fgeneral case. Not surprisingly, the new rms invariant turns
a generic Hamiltonian system the rms emittance is an exaut to be dependent on the dispersion function. Since, on
act invariant only in the linear approximation. However, the other hand, the dispersion function must depend on the
in some cases it turns out to be roughly preserved even ispace charge forces and therefore on the envelopes of the
the presence of nonlinear forces. Such an approximate ifbeam, one realizes that a consistent treatment needs to in-
variance makes the rms envelope equations a useful amdlve both the equation for the envelopes and the disper-
widely used tool for matching. In addition, a proper rmssion function. The derivation of the new set of equations
matching itself can reduce the possibility of an increasdor the case of a continuous beam makes use of the follow-
in the emittance. However, it should be pointed out thaing two results proved in [1] for a generic beam density
even for a perfectly matched beam a number of phenondistribution displaying an elliptic symmetry: (i) the second
ena can still cause emittance growth. Among these arsmoments of the beam distribution depend only on the linear
the usually fast instabilities driven by possible resonancepart of the forces, and (ii) the linear part of the self-force
between the envelope breathing and the motion of the indidefined in an rms sense depends only on the second mo-
vidual particles [2]; the formation of a halo [3]; the equipar- ments (envelopes) of the distribution. Earlier attempts to
tioning between the longitudinal and transverse degrees aficorporate dispersion into the framework of the rms en-
freedom [4]. velope equations [2,6] are not satisfactory since they are

One limitation of the usual rms envelope equations iased on the assumption of the linear invariance of the
that they apply only to straight transport lines or monochrostandard rms emittance. We should mention that different
matic beams. The problem is that the rms emittance is napproaches also employing moment equations for space-
longer a linear invariant in the presence of the couplingcharge dominated beams have been introduced in [7] to
between the longitudinal momentum and the betatron mastudy the effect of longitudinal momentum spread in bends.
tion that occurs in the bending magnets. In some cases Finally, we show a simple application of the new equa-
the use of the standard rms envelope equations may stiilons by evaluating the transition of a continuous beam
be adequate even if bending magnets are present, providédm a straight transport line into a small recirculator in
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the smooth approximation. The main purpose is to offeHere, du = dxdp, dd, diw = dxdp,ds, and du =

a test of the new equations against a self-consistent calcdzw because the transformation is canonical. Notice that
lation as presented in [8]. The results from this particulasincef(x,p,, 8) is a generic function, thefi(x, p,, §) =
example also show that for a tune depression smaller thaf{x(x, p., 8),p,(x, px, 5),8] is also a generic function.
0.5 the new equations provide predictions that deviate fronThat is, the equality (2) holds for any distribution func-
the ones obtained from the usual rms envelope equationgion. By the same token one can evalugi) and(xp, )

Consider beam of charged patrticles of mass a trans-  in terms of the moments in the old variables, and finally
port line with local radius of curvaturg(z), subject to a  write the new invariant as
linear focusing (no space-charge forces for the moment)2 s ) -
on the horizontal plane and having a longitudinal momen€z = €, = ((x°) — 2D(x8) + D(57))
tum p, = p,(1 + &) with a relative deviatiord from the X ((p?) — 2D'{p,8) + D"(6%))
design momentunp,, with E, being the corresponding , a2
energy. We assume that there is no longitudinal focusing. ((xpy) = D(px8) = Dx8) + DDA3)". (3)
Such a system is described by the Hamiltonian We have introduced the notatiafy, for the new invari-

1, k@) ,  mPc* X ant, to which in the following we will refer as “gener-
H=—Zp+——x+ T 0 8. (1) alized emittance.” Notice that in a straight beam line,
¢ where no dispersion is presen® (= D' = 0) or for a

One can easily verify that because of the coupling termmonochromatic beam with vanishing longitudinal mo-
dx/p the standard rms emittance? = ((x2){p?) —  mentum spread §>) = 0), the quantity (3) coincides with
(xpy)?), is not an invariant for the system (1). Hef¢  the usual rms emittance. Incidentally, we notice that the
denotes the averaging over the phase space variablégvariant introduced here is different from the generalized
Our problem is to find a new quantity similar to the rms emittances defined, e.g., in [9]. Those quantities are ex-
emittance that is preserved in the presence of dispersioamples of “kinematic invariants” the invariance of which
The strategy is to write a canonical transformation thais preserved under any linear symplectic map. The quan-
removes the coupling and casts the Hamiltonian in a fornity defined here is more similar to a “dynamic invariant”
for which the invariant can be immediately written. The (see [9] for this terminology), the form of which depends
invariant in the original variables is then recovered byon the details of the physical system through the disper-
reversion of the canonical transformation. sion functionD(z).

A suitable canonical transformation is generated by Let us now introduce the space-charge forces into the
Gy(x,P,,2) =P, lx — 6D(z)] + x6D'(z), whereD(z) is  picture. The Hamiltonian describing a continuous beam
a function that will eventually be identified with the dis- with space charge and in the presence of dispersion reads
persion functionx = x — §D(z) andp, =p, + 6D'(2). (¢ is the charge,v, the longitudinal velocity,y the

The transformed Hamiltonian reads relativistic factor)
— 1 _, ke m2ct ) 1 2 2 ky(z) 2 ky(Z) 2
= — —= H=— + + +
H pr+2x+E35 5 (Pr + py) 5y X 5
é m2c*
+5¥<D”+kxD—i>+.... + qz TU(xy.2) — ——x + ——58%. (4)
p mvzy p(2) E;

The remaining terms. (.) in the Hamiltonian contain a The self-force is described by the potenilgland includes

combination of8 and functions of;. Since they affect the contribution from both the magnetic and electric field

only the evolution of the variable canonically conjugated(S€€; €.8-, [4]). In writing (4) we assumed that the nonlin-
to & (i.e., the RF phase), which we are not interestecg@rities due to the external focusing and the transverse cur-

in, they can be disregarded. Clearly, if the functibn rent due to the bending of the beam are negligible. From
is chosen in such a way that” + k,(z)D — 1/p(z) = the Vlasov equation associated with the Hamiltonian (4)

0, the coupling betwee and ¥ vanishes and we can ©N€ can derive the following equations for the second mo-

_ 2.,3Y-
immediately conclude that the quantity = ((x*)(p2) — ments g, = g/mv;y’):

(xp,)?) is a linear invariant for the Hamiltonial. Then, d , o

if we expresse, in terms of the old variables we obtaina 7 (%) = 2xp), (5a)

quantity invariant for our original system. We have J 5 5
- 2y = —2k, x) — 280\ Px T + —(psb),

) — ffzf(f,ﬁx,S)dﬁ 2z P (xpr) — 28 <p P ¢> p (px6)
(5b)

= f(x - 5D)2f(f(x’ Px» 5),5)(()(, Px> 5)» 6) d/*'L i <xpx> - <p2> _ kx<.X2> _ g0<x i ¢> + l <.X6>,

dz * ox o

= (x%) — 2D{(x8) + D*(5%). (2) (5¢)
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d _ As an application and a test of the theory outlined in this
dz (x8) = (px6), (6a) paper we now want to estimate the variation of the beam
parameters in the transition from a straight beam line into
a - _ _ < 9 > 152 Il ring. In the model we consider both the focusin
(Px8) ki(x8) — go{ 0 )+ (6%). (6b) asma 9 . - . 9
dz ax p functions and the radius of curvature in the circular channel
arez independent (smooth approximation). Furthermore,
the external focusing is the same in the straight and in
nt,he circular channel. We assume that the beam undergoes

with elliptic symmetry one can prove [1] that the terms ind transition between two stationary distributions before

; . _ . : and after injection. For the purposes of this calculation
Er?séff(sgj[i\(g);)2‘;22{(:2?;??;:!;r?ﬁtem'al can be derived bywe do not need to specify how this matched injection

can be achieved. In general the solution of the matching
K <x2 i y? problem would require the solution of the rms envelope-
mv?y3 4oy + oy)

o, a'_)> (7) dispersion differential equations (8),(10),(11) for specified
whereK is the perveance [4] and, = /(x?) and o, =

initial and final beam conditions. The stationary solution
J{y?). Given a self-potential of the form (7) the resulting

The equations foty?), { p3), (yp,) are similar to those
for (x2), (p2), (xp.) when the dispersive term in the
Hamiltonian is absent. Under the assumption of a beal

b(x,y,2) = —

before injection reads

2
equation for the dispersion function is (€)s _ K ~0 (12)
K ! ol TR 2oy + ooyy)
" + - = = — L. . . .
D [kx(z) Sy p— Gy)}D o) (8)  (similar equation forr,, with o, and o, interchanged).

] i ) _ The subscripts indicates that the various quantities re-
Use of Eq. (7) to write the equation for the dispersionser o the beam in the straight channel before injection.
function accounts to assuming a linear approximation, witheor 3 given value of the beam perveankeand emit-
the linear part of the force due to space charge defined igynce the equation above can be solved for the rms size of
an rms sense (as shown in [1]). To the extent that sucthe beamo,,, o,,. After injection in the circular chan-
an approximation holds, the generalized rms emittance ne| a stationary beam must satisfy the set of equations
definedin (3) is invariant. One can S|mpI|fythe_expressmr’(g)’(lo),(ll) witho) = o = D' = 0. The connection
for the generalized rms emittance by observing that th@etween the two sets of rms quantities is provided by the
two equations (6) can be combined into a single equatiogssumption that the generalized emittance (3) in the hori-
that has the same form as (8). This allows us to identify,ontal plane is conserved through injection. Of course,
(x8) = (8*)D(z) and{p, &) = (86°)D(z)'. Consequently, the vertical rms emittance is also preserved because dis-
persion in our model affects the motion only in the hori-
€1, = ((x?) — DX(8%) (py) — D"*(8%)) zontal plane. We have calculated a numerical solution for
— (xpy) — DD'(6%)). (9)  this set of equations for various values of the perveance
or beam current for the particular case of an initially round
Next, we can use,, to express p;) in terms of the peam o, = oys = 0.5 cm. The other parameters are
other moments. By doing so, one can rewrite the rm§10] x, = k, = 17.44 m, p = 1.82 m, corresponding to

equations as an undepressed rms tune @f, = v,, = 7.6. /(8%) =
€l + (o0l — DD'(5%))? 1 0.007. For any given value of the perveance, the emit-
o (02 — DX(82)) o, 0 tance(e,)s = (e,); is tuned in such a way that different
K (6% D beams with different perveance have the same rms radius
4+ 4 <_ + D’2>, at injection.
2oy + oy) Ox \ P In Fig. 1 we plot the rms horizontal size of the beam
(10)  after injection as a function of the tune depression. The
value is scaled with respect to the rms horizontal size
ol = =% — koy + . (11)  before injection. The tune depressiofv, (i.e., the ratio
' gy 20y + ay) between the rms tune in the presence of space charge
The three equations (8),(10),(11), in the varialilesr,, », and the tune in the absence of space chargeis
oy, provide a consistent description for the evolution of thealso calculated with respect to the beam before injection.
rms envelopes of a beam in a dispersive channel. TheWe observe that the effect of higher space charge is to
can be used to achieve a simultaneous matching of the rnenlarge the beam horizontally. The curve is compared to
beam envelopes and dispersion function. We emphasizesults obtained in [8] where the same system was studied
the fact that the invarian¢,; appearing in Eqg. (10) co- by looking for self-consistent solutions of the Vlasov-
incides with the rms emittance at those locations wher@oisson equations in the form of generalized KV beams

"
O-X

- kxo-x

€2 K

D = 0. Finally, notice that forl/p(z) = 0 or (62) = [11] in a recirculator (dots in the picture), with all the
0, we recover the usual envelope equations for straighhonlinearity due to space charge taken into account. The
transport lines. agreement corroborates the validity of the new set of
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FIG. 1. Scaled horizontal rms beam sizg, = o./o.,, after FIG. 2. Dispersion function in a small ring as a function of
injection into a small ring as a function of the tune depressiorthe tune depression/v, (solid line). The dashed line is the
v/v, (solid line). The curve is compared with the results (dots)value of the dispersion function as calculated without taking
obtained in [8] by studying self-consistent beam distributions ininto account the enlargement of the horizontal beam size in the
the ring satisfying the Vlasov-Poisson equation. ring due to dispersion.

equations. The relative growth of the horizontal beam This work was supported by the U.S. Department

envelope for this particular example is modest. Howeverof Energy. We thank C.M. Welch for reading the
if present, a mismatch in the dispersion could introducénanuscript.

a breathing in the horizontal beam size having a relative

amplitude a few times larger than the values shown in the

picture (see [8]). Moreover, a weaker external focusing

could cause the relative growth to be considerably higher.
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. . . . The generalized Kapchinsky-Vladimirsky (KV) beam dis-
the problem, i.e., the dispersion function. We expect the ™" v ition as defined in [8] has a KV-like distribution in

new equations will have useful applications in very high  (he transverse variables (delta function of the transverse
current regimes whenever proper envelope and dispersion  Hamiltonian) and a Gaussian distribution in the longitudi-
matching is needed or an accurate knowledge of dispersion  nal momentum spread. Because of dispersion the forces
is required for the purpose of chromaticity correction. due to the space charge are nonlinear.
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