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We calculate, within the pseudopotential approximation, a one-dimensional scattering amplitude an
effective one-dimensional interaction potential for atoms confined transversally by an atom waveguid
or highly elongated “cigar”-shaped atomic trap. We show that, in the low-energy scattering regime
the scattering process degenerates to a total reflection, suggesting an experimental realization o
famous model in theoretical physics—a one-dimensional gas of impenetrable bosons (“Tonks” gas
We give an estimate for suitable experimental parameters for alkali atoms confined in waveguide
[S0031-9007(98)06769-6]
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Rapid progress in producing Bose condensates of alk
atoms [1] opened up new areas of ultralow energ
collisional physics. Concurrently, work has progresse
on confinement of atoms in the light-induced [2] an
magnetic-field-induced [3] atom waveguides.

We develop a theory for the binary atomic collision
in the presence of a transverse external confineme
Using the pseudopotential approximation, we derive
expression for an effective one-dimensional scatteri
amplitude and show that the interparticle interactio
can be approximated by an effective one-dimensionald

potential of a known strength. In the case of a dilu
atomic gas, when the three-body collisions are negligib
our effective potential can also be used to descri
quasi-one-dimensional many-body systems: a proje
on the experimental realization of the one-dimension
Bose condensate is already presented in the literature
Results of our paper will allow one to properly take int
account the trap-induced corrections to the strength of
atomic mean-field potential.

Furthermore, we show that in the low-energy scatteri
limit (kzja1Dj ø 1), the effective one-dimensional scat
tering degenerates to a total reflection (h̄kz is the longitu-
dinal component of the atomic momentum anda1D is the
one-dimensional scattering length defined below). Th
conclusion allows us to suggest an experimental realiz
tion of another famous model in theoretical physics—
a one-dimensional gas of impenetrable bosons [5] a
referred to as a “Tonks” gas. Such a system provid
us with an unusual example of a boson-fermion dua
ity: the elementary excitations of such a bosonic sy
tem obey Fermi statistics [6] (which is possible only i
one dimension [7]). The Tonks gas is, therefore, a sy
tem complementary to the one-dimensional Bose cond
sate: the latter requires the high-energy scattering regi
(kzja1D j ¿ 1) [8] and its excitation spectrum is repre
sented by the Bogoliubov bosons.

To describe the binary collisions between cold atom
confined in a waveguide, we suggest the following mod
0031-9007y98y81(5)y938(4)$15.00
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(a) The waveguide potential is replaced by an axiall
symmetric 2D harmonic potential of a frequencyv'. The
forces created by the potential act along theX-Y plane.

(b) Atomic motion along theZ axis is free.
(c) Interaction between the atoms is modeled by th

Huang’s pseudopotential [9]

Usrd  gdsrd
≠

≠r
sr ? d , (1)

whereg  2p h̄2aym is the potential strength,a is the
s-wave scattering length for the “true” interaction poten
tial, m  my2 is the reduced mass, andm is the mass
of the atoms. The regularization operator≠

≠r sr ? d that re-
moves the1yr divergence from the scattered wave (se
[9]) plays an important role in the derivation below.

(d) Atomic motion (both transverse and longitudina
components) is “cooled down” below the transvers
vibrational energyh̄v'. We will justify this condition
in the second subsequent paragraph.

The harmonic nature of the confining potential allows
the separation of the center of mass and relative motion
The Schrödinger equation governing the relative motio
readsΩ

p̂2
z

2m
1 gdsrd

≠

≠r
sr ? d 1 Ĥ'sp̂x , p̂y , x, yd

æ
C  EC ,

(2)

where r  r2 2 r1 is a relative coordinate for atoms1
and2 and

Ĥ' 
p̂2

x 1 p̂2
y

2m
1

mv
2
'sx2 1 y2d

2
(3)

is a 2D harmonic oscillator Hamiltonian.
We will suppose that (i) the incident wave

eikzzfn0,mz0srd corresponds to a particle in the ground
state of the transverse Hamiltonian (3) (r 

p
x2 1 y2),

and (ii) the longitudinal kinetic energy of the incident
wave is limited by the energy spacing between the groun
© 1998 The American Physical Society
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h̄2k2
z

2m
, En2,mz0 2 En0,mz0  2h̄v' . (4)

Here En,mz  h̄v'sn 1 1d is the energy spectrum of
the 2D harmonic oscillator;n  0, 1, 2, . . . , ` is the
principal quantum number,mz is the angular momen-
tum with respect to theZ axis, wheremz  0, 2, 4, . . . ,
n s1, 3, 5, . . . , nd if n is even (odd). The asymptotic form
of the scattering wave functionC then reads

Csz, rd jzj!`
! heikzz 1 feven eikz jzj

1 fodd signszdeikz jzjjf0,0srd , (5)

where the first term in the curly brackets represents t
incident wave, the second and third terms give the ev
and odd scattered waves, respectively, andfevenskzd and
foddskzd are theone-dimensional scattering amplitudesfor
the even and odd partial waves, respectively. Note th
the transverse state (n  0, mz  0) remains unchanged
after the collision. Transitions to the higher (n . 0)
modes are forbidden due to either angular momentum
energy conservation [if the condition (4) is satisfied]. W
would like to stress, however, that during the collisio
itself a virtual excitation of the high-energy axially
symmetric modes (n . 0, mz  0) is not forbidden and
it is properly taken into account below. One of the goa
of this paper is to calculate the amplitudes (5).

For the zero-range potential (1) the one-dimension
scattering amplitudes (5) can be calculated analytical
To perform this calculation we expand the wave fun
tion Csz, rd to a series over the eigenstates of the tran
verse Hamiltonian (3), substitute the expansion into t
Schrödinger equation (2) usingE  h̄2k2

z y2m 1 h̄v'

for the energy in the right-hand side, and then apply t
asymptotic conditions (5) along with the conditions o
the continuity of the wave function and its derivative
We obtain the following expression for the scatterin
amplitudes:

feven  2
im

h̄2kz
fp

0,0s0dgh; fodd  0 , (6)

whereh is ther ! 0 limit of the regular (free of the1yr
divergence) part of the solutionC,

h 
≠

≠r
fr Csrdgjr!0 

≠

≠z
fz Csz, r  0dgjz!01 . (7)

The expression for the wave function reads

Csz, r  0d 
1

p
p a'

expsikzzd

2
igmh

p h̄2kza2
'

expsikzjzjd

2
gmh

2p h̄2a'

L

∑
2jzj

a'

, 2

µ
kza'

2

∂2∏
, (8)
he
en

at

or
e
n

ls

al
ly.
c-
s-

he

he
f
.
g

where the function L is defined as Lfj, eg P
`
s01 exps2

p
s0 1 e jdy

p
s0 1 e [10], the sum over

s0  ny2 originates from a sum
P`

n0,2,4,... . . . over
the transverse statesfn,mz0, and a'  sh̄ymv'd1y2

is the size of the ground statefn0,mz0 of transverse
Hamiltonian (3). Above we have used a simple relati
jfn,mz0sr  0dj2  1ypa2

' for the wave functions of
the 2D harmonic oscillator. The valuef0,0sr  0d has
been chosen to be real and positive.

The regular parth of the wave function is not explic-
itly defined yet, being a solution of Eq. (7). Note that th
order of the partial derivative≠y≠z and the sum overs0

in the L function cannot be interchanged because the
riesL does not converge uniformly asj ! 0. The value
of h can be extracted from Eq. (7) using the followin
expansion for the functionL: Lfj, eg  2yj 1 L sed 1

L1sedj 1 · · · , where the zero-order term of the expa
sion has a formL sed  2 C 1 L̄ sed and

C  lim
s!`

√Z s

0

ds0

p
s0

2

sX
s01

1
p

s0

!
 1.4603 . . . , (9)

L̄ sed 
X̀
n1

s21dn z fs1 1 2ndy2g s2n 2 1d!! en

2nn!
. (10)

To prove this formula one should subtract and add a sP`
s01

Rs0

s021 ds00 exps2
p

s00 jdy
p

s00  2yj to the function
L. The sum of the differences between theL terms and
the terms of the above sum converges uniformly and
derivative in (7) can be easily calculated. Herez fjg is
the Riemann zeta function.

We now write the final expression for the one
dimensional scattering amplitude (5):

fevenskzd

 2
1

1 1 ikza1D 2 sikza'y2dL̄ s2k2
z a2

'y4d| {z }
O sssskza'd3ddd

, (11)

where the functionL̄ sed is given by (10). Here

a1D  2
a2

'

2a

µ
1 2 C

a
a'

∂
(12)

is theone-dimensional scattering lengthand the constant
C is given by (9). In analogy with three-dimensiona
scattering, the one-dimensional scattering length is
fined as a derivative2≠Dy≠kzjkz!01 of the even-wave
scattering phase. The scattering phaseDskzd is defined
through the even solutionC ~ sinfkzjzj 1 Dskzdgf0,0srd
of the Schrödinger Eq. (2). The formula for the on
dimensional scattering amplitude (11) is the key result
this paper.

The expression (11) is valid for any strength of th
transverse confinement. Note, however, that the ti
confinement limit a' ø jaj makes sense only if the
939
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s-wave scattering amplitude for the true 3D finite-rang
interatomic potential [approximated in this paper b
the Huang’s pseudopotential (1)] shows a zero-ener
resonance; namely, if thes-wave scattering lengtha
(the same for both potentials) is much greater than t
effective ranger0 of the true potential [11]. Indeed the
3D pseudopotential approximation (1) is valid only fo
velocities which are lower than the inverted effectiv
range (k ø r21

0 ) (see [12]), and therefore requires
lower bound for the transverse size:a' , k21

' ¿ r0.
This condition and the tight confinement regime criterio
(a' ø jaj) are consistent only in the resonant cas
jaj ¿ r0.

For low velocities the exact scattering amplitude (11
can be approximated by a scattering amplitudefd

evenskzd 
21ys1 1 ikza1Dd for a one-dimensionald potential

U1Dszd  g1Ddszd (13)

of a coupling strength

g1D  2
h̄2

ma1D
 gjf0,0s0dj2

µ
1 2 C

a
a'

∂21

, (14)

where jf0,0s0dj2  1ypa2
'. To illustrate this state-

ment we plot (Fig. 1) the transmission coefficien
T  j1 1 feven 1 foddj2 calculated using the exact
scattering amplitude (11) along with the results of the 1
d-potential approximationfeven ø fd

even. Recall that in
both cases the odd-wave scattering amplitude vanish
fodd  fd

odd  0.
The effective potential [(13) and (14)] can be show

to reproduce the low-energy scattering properties of t
radiusa hard spheres in the presence of a transverse tr
Recall that the Huang’s potential (1) plays exactly th
same role in the free space. By analogy with the “fre

FIG. 1. Transmission probability as a function of the inciden
momentum. Solid lines correspond to the exact 1D scatter
amplitude (11). Dashed lines correspond to the 1Dd-potential
approximationfeven ø fd

even. For a'ya  610 the result of
the d-potential approximation almost coincides with the exa
amplitude and is not shown.
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space” case [9], the limits of applicability of our potenti
can be extended to themany-body problemsto describe
interactions between the atoms confined to the grou
transverse state.

Note that the one-dimensional gas of bosons interac
via a d potential is already widely investigated in theo
retical physics [13]. One of the most interesting mod
belonging to this class is aone-dimensional gas of im
penetrable bosons. Formally this model corresponds t
the infinitely strong repulsive interaction between atom
g1D ! 1`. More rigorously the impenetrable boson
regime corresponds to the low-energy scattering limit

kzja1Dj ø 1 (15)

when the corresponding transmission coefficientT ap-
proaches zero (see Fig. 1). (Recall that for positive
teraction strengthg1D the corresponding one-dimension
scattering lengtha1D is negative.) A remarkable featur
of the gas of impenetrable bosons is a possibility of a o
to-one mapping between the bosonic system and a ga
noninteracting fermions.

For N impenetrable bosons confined in a period
boundary-conditions one-dimensional box of a lengthL
the ground state of the systemCb is given by an absolute
value of the ground state of theN-particle ideal Fermi gas:

Cb  jCf j , (16)

where

Cfsz1, z2, . . . , zN d 
1

p
N! LN

detseikjzj0 d , (17)

kj 
2p

L
j [ f2kFermi; 1kFermig , (18)

and kFermi  psN 2 1dyL is the one-dimensional Ferm
radius. In Fig. 2 the zero-temperature one-body m
mentum distributionwskzd for a system of impenetra
ble bosons in the thermodynamic limit is shown.
is normalized as

R1`

2`sdkzykFermidwskzd  1.] The dis-
tribution has been calculated using the short-range
long-range expansions for the one-body spatial corre
tion function given in [14]. The shape of the peak at t
origin is given bywskzd ø r`

p
kFermiy2pkz, wherer` 

pe1y2221y3A26  0.924 18 . . . , andA  1.2824 . . . is the
Glaisher’s constant. Note that for finite values ofN and
L the thermodynamic limit fails at small momentakz ,
2pyL , 2kFermiyN and the momentum density curve
not valid in this domain. For comparison, we plot als
the corresponding momentum distribution for an ide
Fermi gas.

The system of impenetrable bosons may be realized
the atom waveguides [2] combined with a longitudin
confinement between two potential barriers. The imp
etrable bosons regime may be identified by a presenc
the 1y

p
kz peak in the momentum distribution of atom

(see Fig. 2). Note that the low-energy scattering con
tion (15) puts an upper bound to the number of atom
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FIG. 2. Momentum distribution for a system of impenetrable
bosons at zero temperature in the thermodynamic limit. Co
responding distribution for an ideal Fermi gas is shown fo
comparison.

Indeed, using the fact that the maximal momentum o
the relative motion between a pair of atoms is given b
kmax  smymd maxj,j0skj 2 kj0 d  kFermi one could show
that the low-energy scattering conditionkmaxja1Dj ø 1
leads to a limit for the number of atoms

N ø Np 
L

pja1Dj
~ L v' , (19)

where a1D is given by (12). Forv'  2p 3 104 Hz
and L  3 cm the upper bound for the number of
atoms is given byNp

Rb  5 3 103 for rubidium 87
(F  2, mF  12, a  1110 aBohr [15]), and Np

Na 
6 3 102 for sodium (F  1, mF  21, a  152 aBohr
[16]). Note that the above numbers can be improved
stronger traps since the boundNp increases approximately
linearly with the confinement frequency.

In conclusion, we calculate the one-dimensional sca
tering amplitude and effective one-dimensional inter
action potential for atoms transversally confined by
two-dimensional harmonic potential. We suggest a re
alization of the Tonks gas—a one-dimensional gas o
impenetrable bosons. From the experimental point o
view the impenetrable bosons regime corresponds
highly elongated traps (waveguides) at low tempera
tures (kBT ø h̄v') and at low linear densities [ra ø
s2pd21saya'd2, a . 0]. We give an estimate for suit-
able experimental parameters for alkali atoms confined
waveguides.
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