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Atomic Scattering in the Presence of an External Confinement
and a Gas of Impenetrable Bosons
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We calculate, within the pseudopotential approximation, a one-dimensional scattering amplitude and
effective one-dimensional interaction potential for atoms confined transversally by an atom waveguide
or highly elongated “cigar’-shaped atomic trap. We show that, in the low-energy scattering regime,
the scattering process degenerates to a total reflection, suggesting an experimental realization of a
famous model in theoretical physics—a one-dimensional gas of impenetrable bosons (“Tonks” gas).
We give an estimate for suitable experimental parameters for alkali atoms confined in waveguides.
[S0031-9007(98)06769-6]
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Rapid progress in producing Bose condensates of alkali (a) The waveguide potential is replaced by an axially
atoms [1] opened up new areas of ultralow energysymmetric 2D harmonic potential of a frequensy. The
collisional physics. Concurrently, work has progressedorces created by the potential act along & plane.
on confinement of atoms in the light-induced [2] and (b) Atomic motion along th& axis is free.
magnetic-field-induced [3] atom waveguides. (c) Interaction between the atoms is modeled by the

We develop a theory for the binary atomic collisions Huang's pseudopotential [9]
in the presence of a transverse external confinement. 3
Using the pseudopotential approximation, we derive an U(r) = gér)—(r-), (1)
expression for an effective one-dimensional scattering ar
amplitude and show that the interparticle interactionwherez = 27 /%a/u is the potential strengthg is the
can be approximated by an effective one-dimensighal s-wave scattering length for the “true” interaction poten-
potential of a known strength. In the case of a dilutetial, u = m/2 is the reduced mass, and is the mass
atomic gas, when the three-body collisions are negligiblegf the atoms. The regularization operag%r(r -) that re-
our effective potential can also be used to describgnoves thel/r divergence from the scattered wave (see
quasi-one-dimensional many-body systems: a projeqy]) plays an important role in the derivation below.
on the experimental realization of the one-dimensional (d) Atomic motion (both transverse and longitudinal
Bose condensate is already presented in the literature [4domponents) is “cooled down” below the transverse
Results of our paper will allow one to properly take into yiprational energyiiw,. We will justify this condition
account the trap-induced corrections to the strength of thgy the second subsequent paragraph.
atomic mean-field potential. The harmonic nature of the confining potential allows

Furthermore, we show that in the low-energy scatteringhe separation of the center of mass and relative motions.

limit (k:laip| < 1), the effective one-dimensional scat- The Schrédinger equation governing the relative motion
tering degenerates to a total reflectidik{ is the longitu-  reads

dinal component of the atomic momentum ang is the o
one-dlmensmnal scattering length deflneq below). T_hls {P_ + g5(r)i(,,.) + I:IL(ﬁx,ﬁy,x,y)}‘I’ = EV,
conclusion allows us to suggest an experimental realiza- | 2u ar
tion of another famous model in theoretical physics— (2)
a one-dimensional gas of impenetrable bosons [5] also
referred to as a “Tonks” gas. Such a system provide¥herer =r; —r, is a relative coordinate for atomis
us with an unusual example of a boson-fermion dual2nd2 and
ity: the elemenf[ary gx_citations of suph a b_osonic Sys- . P2+ f,y2 pol (2 + y?)
tem obey Fermi statistics [6] (which is possible only in H, = > + >
one dimension [7]). The Tonks gas is, therefore, a sys- K
tem complementary to the one-dimensional Bose condens a 2D harmonic oscillator Hamiltonian.
sate: the latter requires the high-energy scattering regime We  will suppose that (i) the incident wave
(k-laip| > 1) [8] and its excitation spectrum is repre- e’*<*¢,—o...—o(p) corresponds to a particle in the ground
sented by the Bogoliubov bosons. state of the transverse Hamiltonian (3) & /x2 + y2),

To describe the binary collisions between cold atomsand (ii) the longitudinal kinetic energy of the incident
confined in a waveguide, we suggest the following modelwave is limited by the energy spacing between the ground

3)
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and firstaxially symmetrieexcited state: where the function A is defined as A[¢, €] =
22 So_exp—+/s' + €€)/+/s' + € [10], the sum over

S < Epcom—0 — Enmom—0 = 2w, . (4) s’ =n/2 originates from a sum}, _o,, ... over

2p the transverse state®, ,. —o, and a, = (h/pw . )/?

Here E,,. = ko, (n + 1) is the energy spectrum of IS the size of the ground stai@,—om —o Of transverse
the 2D harmonic oscillatorn = 0,1,2,..., is the Hamiltonian (3). Above we have used a simple relation

LR

. . 2 :
principal quantum numberny, is the angular momen- |¢nm —o(p = 0)I* = 1/7al for the wave functions of

tum with respect to the& axis, wherem. = 0,2,4,..., the 2D harmonic oscillator. The valugyo(p = 0) has
n(1,3,5,...,n) if nis even (odd). The asymptotic form been chosen to be real and positive.
of the scattering wave functiol then reads ~ The regular part; of the wave function is not explic-
HE— el itly defined yet, being a solution of Eq. (7). Note that the
W(z,p) = {e™° + feven €™ order of the partial derivativé/dz and the sum oves’

+ Si ik. |z ’ 5 in the A function cannot be interchanged because the se-
foaa sigriz)e™ i doolp) ®) ries A does not converge uniformly @&— 0. The value
where the first term in the curly brackets represents thef n can be extracted from Eqg. (7) using the following
incident wave, the second and third terms give the everxpansion for the functiod: A[¢, €] = 2/& + L (e) +

and odd scattered waves, respectively, @nd,(k;) and  Li(e)¢é + ---, where the zero-order term of the expan-
foda(k,) are theone-dimensional scattering amplitudies  sion has a formf (e) = — C + L (e) and

the even and odd partial waves, respectively. Note that s gyl s

the transverse stata & 0, m, = 0) remains unchanged C = lim ([ as _> = 1.4603..., (9)
after the collision. Transitions to the higher & 0) s==\Jo Vs SV

modes are forbidden due to either angular momentum or

energy conservation [if the condition (4) is satisfied]. We _ i L L+ 2n)/2]1(2n — D1

would like to stress, however, that during the collision L(e) = Z(_l) np - (10)

n=1

itself a virtual excitation of the high-energy axially

symmetric modesn( > 0, m, = 0) is not forbidden and To prove this formula one should subtract and add a sum

it is properly taken into account below. One of the goalsy},_, fé, L ds" exp(—+/s" €)/\/s" = 2/¢ to the function

of this paper is to calculate the amplitudes (5). A. The sum of the differences between thgerms and
For the zero-range potential (1) the one-dimensionathe terms of the above sum converges uniformly and the

scattering amplitudes (5) can be calculated analyticallyderivative in (7) can be easily calculated. Hefg] is

To perform this calculation we expand the wave func-the Riemann zeta function.

tion W(z, p) to a series over the eigenstates of the trans- We now write the final expression for the one-

verse Hamiltonian (3), substitute the expansion into thelimensional scattering amplitude (5):

Schrédinger equation (2) using = h%*k2/2u + ho,

for the energy in the right-hand side, and then apply the feven(kz)

asymptotic conditions (5) along with the conditions of 1 1)
the continuity of the wave function and its derivative. ~— — : : ~ 2 2 )

) ] ; _ 1+ ik — (ik )L (—k 4
We obtain the following expression for the scattering tkearp = (ik:a1/2) V( a1/ Z
amplitudes: 0((k.a,))

where the function is given by (10). Here
feven = ﬁzk d)oo(o)g"% fodd =0, (6) (E) 9 y( )

2
_ 41y _ 4
where is ther — 0 limit of the regular (free of the /r @b = —5 (1 c M) (12)

divergence) part of the solutio#, . . . .
d )P is the one-dimensional scattering lengémd the constant

C is given by (9). In analogy with three-dimensional
scattering, the one-dimensional scattering length is de-
fined as a derivative-9A/dk.|r.—o+ Of the even-wave
scattering phase. The scattering phadé,) is defined
through the even solutiol « sink,|z| + A(k.)]poo(p)

n = V@m0 = 2oV p = Ollaos . (7)
r 9z

The expression for the wave function reads

Yz p =0 = JTal explik;z) of the Schrédinger Eq. (2). The formula for the one-
dimensional scattering amplitude (11) is the key result of
8#772 explik.|z]) this paper.
7h*k.a The expression (11) is valid for any strength of the
MM 2|z| k.a,\? transverse confinement. Note, however, that the tight
27ha, [Z _<T> } 8 confinement limita, < |a|] makes sense only if the
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s-wave scattering amplitude for the true 3D finite-rangespace” case [9], the limits of applicability of our potential
interatomic potential [approximated in this paper bycan be extended to thmany-body problem# describe
the Huang's pseudopotential (1)] shows a zero-energinteractions between the atoms confined to the ground
resonance; namely, if the-wave scattering lengtly  transverse state.

(the same for both potentials) is much greater than the Note that the one-dimensional gas of bosons interacting
effective ranger, of the true potential [11]. Indeed the via a § potential is already widely investigated in theo-
3D pseudopotential approximation (1) is valid only for retical physics [13]. One of the most interesting models
velocities which are lower than the inverted effectivebelonging to this class is ane-dimensional gas of im-
range k < r,') (see [12]), and therefore requires a penetrable bosons Formally this model corresponds to
lower bound for the transverse size; ~ k' > r,.  the infinitely strong repulsive interaction between atoms:
This condition and the tight confinement regime criteriongip — +%. More rigorously the impenetrable bosons
(a. < |a|) are consistent only in the resonant caseregime corresponds to the low-energy scattering limit

lal > ro. . _ kelaip] < 1 (15)
For low velocities the exact scattering amplitude (11) ] o o
can be approximated by a scattering amplitéifie, (k.) = when the correspondllng transmission coefﬂméﬁt.qp— _
—1/(1 + ik.aip) for aone-dimensionab potential proaches zero (see Fig. 1). (Reca!l that for'posmye in-
teraction strengtlg,p the corresponding one-dimensional
Uip(z) = g1p6(z) (13) scattering lengthp is negative.) A remarkable feature
of a coupling strength of the gas of impenetrable bosons is a possibility of a one-

2

i a to-one mapping between the bosonic system and a gas of
8D = —
Mmaip

-1
= g|¢0,0(0)|2<1 -C —) , (14)  noninteracting fermions.
a1 For N impenetrable bosons confined in a periodic-
where |¢o0(0)|> = l/wai. To illustrate this state- boundary-conditions one-dimensional box of a length
ment we plot (Fig. 1) the transmission coefficientthe ground state of the syste#r? is given by an absolute
T =1 + feven + foaal® calculated using the exact value of the ground state of thé-particle ideal Fermi gas:

scattering amplitude (11) along with the results of the 1D Wb = |/ (16)
S-potential approximatiorfeyen = fjven. Recall that in ’
both casgzs the odd-wave scattering amplitude vanishe¥here
fodd = foda = 0. f _ 1 ikizi
The effective potential [(13) and (14)] can be shown Wiz, 22,0 2w) = Wdet(e ), (17)
to reproduce the low-energy scattering properties of the
radiusa hard spheres in the presence of a transverse trap. _ 27 . _ .
Recall that the Huang's potential (1) plays exactly the kj = L /€ [=KFermis +kpermi ] (18)

same role in the free space. By analogy with the “freeand kpemy = (N — 1)/L is the one-dimensional Fermi
radius. In Fig. 2 the zero-temperature one-body mo-
mentum distributionw(k,) for a system of impenetra-
ble bosons in the thermodynamic limit is shown. [It

__ is_ no_rmalized asffz(dkz/k}:ermi)w_(kz) = 1] The dis-
— D tribution has been calculated using the short-range and
- long-range expansions for the one-body spatial correla-
_______ tion function given in [14]. The shape of the peak at the
origin is given byw(k;) = poos/kfermi/27k;, Wherep, =
mel/22713A76 = 092418 ..., andA = 1.2824.. . is the
Glaisher’s constant. Note that for finite valuesifand
L the thermodynamic limit fails at small momenta ~
27 /L ~ 2kgemi/N and the momentum density curve is
not valid in this domain. For comparison, we plot also
0 —T—T—T— T the corresponding momentum distribution for an ideal
0 02040608 1 12 14 16 Fermi gas.

kz aJ_ The system of impenetrable bosons may be realized in

the atom waveguides [2] combined with a longitudinal

FIG. 1. Transmission probability as a function of the incidentconfinement between two potential barriers. The impen-

momentum. Solid lines correspond to the exact 1D scatterin ; ; e
amplitude (11). Dashed lines correspond to thedtpotential 2trable bosons regime may be identified by a presence of

apprOXimationfeven =~ fgven' For ai/a = +10 the result of the 1/\/k—z peak in the momentum distribution Of atomS.
the 8-potential approximation almost coincides with the exact(See Fig. 2). Note that the low-energy scattering condi-
amplitude and is not shown. tion (15) puts an upper bound to the number of atoms.

0.5-

exact
——— 1D $-potential

Transmission coefficient, T
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