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We develop a low-energy effective theory for sgif2 frustrated two-leg Heisenberg spin ladders.
We obtain a new type of interchain coupling that breaks parity symmetry. In the presenc&&¥an
type anisotropy, this interaction gives rise to a novel ground state, characterized by incommensurate cor-
relations. In the case of a single ladder, this state corresponds to a spin nematic phase. For a frustrated
quasi-one-dimensional system of infinitely many weakly coupled chains, this state develops true three-
dimensional spiral order. We apply our theory to recent neutron scattering experimentsQuCgs
[S0031-9007(98)06682-4]

PACS numbers: 75.10.Jm, 75.40.Gb

Quantum spin chains have for a long time attracted thatudies, is an operator of conformal spin 1 [4] and has
attention of both theorists and experimentalists. One ofmportant consequences: We will show that, although
the main reasons for this continuing fascination is thet alters the position of phase boundaries already in
dominant role played by quantum fluctuations in thesedhe spin rotationally invariant [SU(2)] case, it leads to
systems, which lead to a rich variety of observed physicaincommensurate correlations only in the presence of an
phenomena. In recent neutron scattering experiments [Hasy plan&XXZ anisotropy.
on the quasi-one-dimensional frustrated Heisenberg anti- The Hamiltonian of the anisotropic zigzag Heisenberg
ferromagnet C£CuCl,, an intriguing type of spiral order ladder is
was observed and analyzed in the framework of semi-
classical mean-field theory. However, on the quantum o : oz
level, the very existence )o/f such spiral order, \?vhich is 1= D DS Sjmer + (A = DS, 85,0}

. _ _ i=1,2
anincommensuratstructure, is rather puzzling. Accord- ! !
ing to the standard lore, three-dimensional ordering of +J! Z{Sl,n + Sia+1} * Som
quasi-1D systems results from stabilization of the domi- n
nant spin correlations in the underlying 1D constituents. / / Z z 2
; . , + - +
Therefore, 3D spiral order would require strong incom- J g(A DAST, + STas1}S3, 1)

mensurate 1D spin correlations. This is in contradiction

with the known properties of simple antiferromagneticwhere|J’| < J are the exchange couplings, ahtl] =
Heisenberg spin/2 chains and ladders, where the only 1,|A’| < 1 are the anisotropy parameters.

known mechanisms for generating incommensurabilities In order to derive the low-energy effective field theory
are via external magnetic fields or Dzyaloshinskii-Moriafor (1) we use standard bosonization techniques [5]. In
interaction. the continuum limit the spin operators decompose as

In the present Letter we propose a novel mechanisr§;, — ao[J;(x) + (—1)"n;(x)], whereqy is the lattice
that naturally gives rise to incommensurate correlationgpacing andx = nay. Here J;(x) and n;(x) are the
in spin ladders and quasi-1D materials in the absence afmooth and staggered components of the magnetiza-
external fields. Interestingly, we find that this phenometion operator. In the framework of the bosonization
non occurs in a standard model of two coupled spia- method these quantities are expressed in terms of
zigzag Heisenberg chains, which has attracted much rezanonical Bose fieldsP;(x) and their dual counter-
cent interest [2,3]. parts ©;(x), where[0;(z,x), ®;(r,x')] = —if(x — x').

In the bulk of this Letter we shall concentrate on thisChanging to symmetric/antisymmetric combinations
simple frustrated ladder system in order to clearly exhibithb. = (d; + ®,)/+/2, the Hamiltonian density consists
the precise nature of the mechanism of incommensuratef several terms. The “free” part is
spin correlations. The application of our results to the
quasi-1D case relevant for g3uCl, is briefly discussed A — Z
at the end. In what follows we derive the low-energy 0
effective theory for the zigzag ladder system, which we
find to contain a parity-breaking interchain interaction.wherev, o Jay are the spin velocities. In addition, there
This “twist term,” which was not considered in previous is an in-chain current-current perturbation

TL6:0,° + 00,0, ()

o=*
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H;; = g1 cosvar @, cosvdr d_ operators (see, e.g., [4])

a; =2« + 4o ,

t e Y00, — 00,7 @ N 2aaf E daf
o=%* ay =2a1By + 4a3B4,
The interchain interaction gives rise to two perturbations &3 = 2181 + 2284 + 2a3 B3,

which we denote byH - and Hpg, respectively,

3, = —4 +2 + 2,84, 9
Hee = g3 cosvar O, cosvar O [.31 ai% P P ®)
B = —4a3 + 4614,
~ & 2 ol@:0,7 — 0.0, @ By = ~daras + 267 + 261,

_ _ By = —4aras + 28182 + 2B
Hep = g5(=0xP-sinvam & + 9,0y sinVdm &) Here a dot denotes the derivative with respect to the RG

+ 60,0, sinVar O _ . (5) logarithm constx In(Av,/|wl), whereA is a momentum

cutoff [6]. The RG flow determined by (9) is clearly com-

Splicated. Therefore we performed a numerical analysis of
(9). Our findings are the following.

(a) At the SU(2) symmetric point, the current-current
interactions reach the strong coupling regime first (in
the cases where the flow is towards strong coupling).
Hpg ~mny - 9,my — ny - 9,14 This corresponds to a dimerized phase [3,7]. A new

, e e feature caused by the twist operators is that the tendency
+ (A" = Dnjan; — n3dnil. (6)  towards dimerization extends into part of the region of
The in-chain coupling constants » are determined by fe_rromagnetic current-current interchain interactions (see
andA, whereass, . . ., g6 are functions of/’, A’ Fig. 1). S _

Close to the SU(2) symmetric poinh = A/ = 1, (b) Away from the SU(2) symmetric poirioth twist
the bosonized Hamiltonian can be expressed ifhd current-current couplings generally (but not always)
terms of four Majorana fermions [3,5]. The Hamil- flow towards strong coupling. However, it is now pos-
tonian of two decoupled chains simply becomessSible for the twist terms to reach the strong coupling
Hy=—i% ;=O(§£ax§:{? _ ‘fiaxfi)- The perturba- regime first (see Fig. 2). We take this as evidence for

. ;_ . the existence of a novel phase, the physics of which is
tion ' = 3,y + Hee + Hpp is of the form determined by the twist terms.

The perturbation ¢ is the well-known current-current
interaction [2,3], which promotes dimerization and lead
to the formation of a spectral gap. The perturbatitlp

is the novel parity-breaking term, which in terms of the
staggered magnetizatian ,(x) reads

3 4 . . .
In order to elucidate the physics of this new phase we
H = ; ajdj + ; BiB; () now turn to a mean-field analysis of the perturbations.
! ’ _ The situation is particularly simple in the limit of very
where the operators; andB; are given by strong anisotropy,|A|,|A’| = 0, corresponding to two

Al = ERELELE + R— L),

Ay = Epérérél + R— L),

Ay = Ep(épéi + E1ERD)ER + (R — L),

B = £pE1(ERéL + €RéD). 8)

By = £R€1EREL

By = £ré1€RéT

By = (épé] + EREDEREL.
We note that in the above formulas we have neglected
terns that lead to a renormalization of the spin velocities

[3]. The couplingsa;, B; are easily expressed in terms

of theg;. The operatorg; originate fromHH pg, whereas
the B;’s stem fromH ¢ and H;. FIG. 1. RG flow in the SU(2) symmetric case. There are only

All operators are marginal, but while th, have con- 2 independent couplings for twist, ;) and current-current op-

. . . erators[ 8- = (B3 = B1)/2], respectively. The initial condi-
formal spin 0, the; have conformal spin 1. We derived jong are chosen such that the couplings(0) < 0 and in the

the renormalization-group flow for the perturbatiftfl,.c  absence of the twist operators would flow to zero coupling (see
from the operator product expansion for the perturbingnset of figure).

coupling strength

0.0 2.0 4.0 6.0
RG logarithm
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1.0 ; : : dual fields in chains 1 and 2 as
1 KX J7
C) = —0%)) - + Y 14
120 = 50000 - 5 = (14)

where ®% (x) as well as its derivative have zero expec-
tation value. Using this together with the bosonization
table at theXX point, we find the following asymptotic
behavior for spin-spin correlation functions in the strong-
coupling phase

coupling strength

_ (—1)*/
()" (x)S; (0)) ~ NN exg—ivm/2(kx/vy)], (15)
~0.0 20 40 6.0 wherej = 1,2. The transverse spin correlations still fall
RG logarithm off with a power law, but their decay is much slower than

FIG. 2. Example of an RG flow where the twist couplings for an isolatedXX chain V\/_here<n_+(x)n_(0)) ~ |x|71/2,
reach strong coupling first. The structure of Egs. (9) is suctFurthermore, the correlations aicommensurate The

that the twist couplings cannot grow without “help” of the characteristic momentum of the magnetic spirakis=
current-current interaction. w/ay — /2 (x/vs). The deviation from the antiferro-
magnetic wave vectat /ag is very small for a weak inter-
chain coupling, which is in qualitative agreement with [1].
We have performed a stability analysis of the above mean-
field solution and found only convergent corrections, e.g.,
to the exponent /4 in (15).

The solution of theXX zigzag ladder (10) describes a

H = Hy + y9,0., sinv2m ©_, (10)  spin nematiground state of the model. This phase, with

where H, is given by (2). unbroken time reversal symmetry [9] is characterized by

In order to analyze (10) we use a self-consistent mearl; nonzero local spin currents polarized along the anisotropy
field approach. Assuming that the ground state of thf) axis. The longitudinal (in-chain) component of the to-

coupledXX chains. Using the bosonization formulas for
the XX point [4] and retaining only the relevant part of
the perturbing operator we arrive at

system is found in the sector with a nonzero topologica al spin current is given byji(x) = =2/ v,0,0 . (x).

spin currentd, ® ., we arrive at the following mean-field sing equatlons of motion f_or the Spin densities, one
Hamiltonian easily finds the transverse (interchain) part of the cur-

rent, originating from the twist term in (10)5(x) =
Hyr = Ho + k0,04 — uAsinV27 O, (11) —/2/7 ysinv/27 O_. From the above analysis we ob-

. tain the important result thdtii) = —(J7) = =2/7 vy.
wherex = y(sinV2r O_)anduA = —y{3,0,). ; l N
Thus Hjyr decomposes into two commuting parts Thus, in the ground state the longitudinal and transverse

. + 3 with "spin currents are equal in magnitude but propagate in op-
" - posite directions. The resulting picture shown in Fig. 3

o = &[(a DR+ (0,0)2] - WA sinvar © demonstrates local currents circulating around the trian-
- X - X -

gular plaquettes in an alternating way, with tio¢al spin
) current of the system being zero.
H, = Us [(ax@+)2 +(0,0,) + <K ax@+] (12) The spin nematic phase preserves the spin U(1) sym-
2 Us metry but spontaneously breaksZza symmetry of the
The “+” channel is solved by eliminating thie,® . term  model. Indeed, the twist term (6) is invariant under a
through a field redefinition®.(x) — @, (x) — kx/v,.  tensor product of the site-parity and link-parity transfor-
The average value of, 0, is then given byd,®,) =  mations [10] on the two chain®,, = P{ ® P (though
—k/v,. The “~" channel is a sine-Gordon model for the it breaksr, " ® P>")).
dual field and can be solved exactly, the expectation value
of the mass beingsinv27 ©_) = ¢(|ul/Av,)"/? sgnu, (A )
where the constant can be calculated [8]. The self-

consistency conditions then lead to the solution \ / \/
p=FAvgie?? k= xAuggl (19) / \ / \\/ / \ @

wherezy = y/Av; is a dimensionless coupling constant. 2
The expectation value @ _ is determined by the position @A, ‘])
of the minima of the sine-Gordon potential®-) =  FIG. 3. Structure of the spin currents in the spin nematic

J/8sgnu(mod+/27). This allows us to express the phase.
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In the XX case (10), this transformation reverses the®;.)) = 2u are nonzero and redefining the fields as
signs of all currents, reflecting th&, degeneracy of ©; = —2«kx + j/7/2 + 0;, with (®;) = 0 we obtain
the ground state. The spectrum of the system contains self-consistent mean-field Hamiltonian
gapless excitations in the- channel, massive quantum
solitons, and their bound states (breathers), as well as{,,, = Ho[0;] - ZMZcosﬁ(@), - 041). (17)
kinks carrying fractional topological charge. ;

Moving in parameter space fro, A’ = 0 (XX point)
to A,A’ = 1 (XXX point) in the generakXZ case, we
found the following.

(a) The spin-nematic phase occupies the whole regio
g4 = g, beyond which a gap appears in the channel
as well, and the spin correlations become short ranged (n*(x)) = exp(*imj/2 * 27 kx). (18)
(although they remain incommensurate). ] ] )

(b) In the fully gapped phase, the spin currents and' his co_rrequnds to incommensurate spiral order along
the incommensurate wave vectgs are reduced and the cha_ms _Wlth_ a 90rotation of the_ave_rage sta_gg(_areq
continuously vanish as the SU(2) symmetric point ismag_net_lzatlon in the tra_msverse _dlrect|on. Thls_ls in
approached. qualitative agreement with experiment [1]. Details of

In light of the experimental results [1] it is important the above calculations as well as a more quantitative
to investigate the effects of an external magnetic fieldcOmparison to experiment will be presented in a separate
At the XX point we find that a longitudinal field has Publication [12]. . _
essentially only trivial effects, whereas a transverse field We thank P. Azaria, R. Coldea, R. Cowley, T. Gia-
leads to the formation of a gap in the channel and Marchi, P. Lecheminant, and A. M. Tsvelik for important
completely destroys the spiral phase (above a criticafliscussions. A.A.N.was supported by the DFG.
field). Indeed, the magnetic field oriented along thexis
in spin space enters the Hamiltonian with the term [11]

The Hamiltonian (17) can be viewed as describing

coupled Josephson-junction arrays and leads to the
Rinning of the field®®,. The resulting average staggered

magnetization is given by

Hiag = h Z sinvdm ®; cosy/7 09, [1] R. Coldea, D.A. Tennant, R. A. Cowley, D. F. McMorrow,
j=12 B. Dorner, and Z. Tylczynski, J. Phys. Condens. Ma8er
where i is proportional to the applied field. This per- 7473 (1996); Phys. Rev. Leff9, 151 (1997).

turbation again has conformal spin 1 and, together with [2] S-R. White and I. Affleck, Phys. Rev. B4, 9862 (1996).

the twist term (10), leads to a complicated RG flow, [i] g'h’;‘"e_? ?/mljikD. Se”ﬁfhr‘;"' Eihxﬁ- $§V'E:5' Zir?géla?])r'l g

where an effectiveXY anisotropy, described by the fol- [*! Viatt the i guabgd Ue. .teoF}’ CO s.je

lowing conformal spin zero operator, is generated [11]: ateer Physics(Cambridge University Press, Cambridge,
’ " 1995),

Oxy ~ h?cosy2m O cosy2m ©_. This strongly rele- 5] b, Shelton, A.A. Nersesyan, and A.M. Tsvelik, Phys.

vant operator locks the field®- at the vacuum values Rev. B53, 8521 (1996).

0, =.7/2,0_ =0, or vice versa, and gives rise to a [6] We note that the presence of the operators with nonzero
commensurate Néel ordering of the spins alongythis, conformal spin leads to a renormalization of the velocities
characterized by a nonzero average staggered magnetiza- at one loop order [8].

tion (n + n3) ~ (siny/7/20,){cos\/7/20_). [7] The presence of the twist may introduce incommensura-

Let us now turn to the case relevant for the experiments ~ bilities on top (the numerical results of [2], obtained in
[1], where we have two-dimensional arrays of weakly 2 different range of parameters, may suggest such a sce-
coupled chains. We illustrate our findings for the simpler nario). This question is under investigation.
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