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Incommensurate Spin Correlations in Spin-1yyy2 Frustrated Two-Leg Heisenberg Ladders
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We develop a low-energy effective theory for spin-1y2 frustrated two-leg Heisenberg spin ladders.
We obtain a new type of interchain coupling that breaks parity symmetry. In the presence of anXXZ-
type anisotropy, this interaction gives rise to a novel ground state, characterized by incommensurate cor-
relations. In the case of a single ladder, this state corresponds to a spin nematic phase. For a frustrated
quasi-one-dimensional system of infinitely many weakly coupled chains, this state develops true three-
dimensional spiral order. We apply our theory to recent neutron scattering experiments on Cs2CuCl4.
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Quantum spin chains have for a long time attracted t
attention of both theorists and experimentalists. One
the main reasons for this continuing fascination is th
dominant role played by quantum fluctuations in thes
systems, which lead to a rich variety of observed physic
phenomena. In recent neutron scattering experiments
on the quasi-one-dimensional frustrated Heisenberg an
ferromagnet Cs2CuCl4, an intriguing type of spiral order
was observed and analyzed in the framework of sem
classical mean-field theory. However, on the quantu
level, the very existence of such spiral order, which
an incommensuratestructure, is rather puzzling. Accord-
ing to the standard lore, three-dimensional ordering
quasi-1D systems results from stabilization of the dom
nant spin correlations in the underlying 1D constituent
Therefore, 3D spiral order would require strong incom
mensurate 1D spin correlations. This is in contradictio
with the known properties of simple antiferromagneti
Heisenberg spin-1y2 chains and ladders, where the onl
known mechanisms for generating incommensurabiliti
are via external magnetic fields or Dzyaloshinskii-Mori
interaction.

In the present Letter we propose a novel mechanis
that naturally gives rise to incommensurate correlatio
in spin ladders and quasi-1D materials in the absence
external fields. Interestingly, we find that this phenome
non occurs in a standard model of two coupled spin-1y2
zigzag Heisenberg chains, which has attracted much
cent interest [2,3].

In the bulk of this Letter we shall concentrate on thi
simple frustrated ladder system in order to clearly exhib
the precise nature of the mechanism of incommensur
spin correlations. The application of our results to th
quasi-1D case relevant for Cs2CuCl4 is briefly discussed
at the end. In what follows we derive the low-energ
effective theory for the zigzag ladder system, which w
find to contain a parity-breaking interchain interaction
This “twist term,” which was not considered in previou
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studies, is an operator of conformal spin 1 [4] and ha
important consequences: We will show that, althoug
it alters the position of phase boundaries already
the spin rotationally invariant [SU(2)] case, it leads to
incommensurate correlations only in the presence of
easy planeXXZ anisotropy.

The Hamiltonian of the anisotropic zigzag Heisenber
ladder is

H ­ J
X

j­1,2

X
n

hSj,n ? Sj,n11 1 sD 2 1dSz
j,nSz

j,n11j

1 J 0
X
n

hS1,n 1 S1,n11j ? S2,n

1 J 0
X
n

sD0 2 1d hSz
1,n 1 Sz

1,n11jSz
2,n , (1)

where jJ 0j ø J are the exchange couplings, andjDj #

1, jD0j # 1 are the anisotropy parameters.
In order to derive the low-energy effective field theory

for (1) we use standard bosonization techniques [5].
the continuum limit the spin operators decompose
Sj,n ! a0fJjsxd 1 s21dnnjsxdg, where a0 is the lattice
spacing andx ­ na0. Here Jjsxd and njsxd are the
smooth and staggered components of the magneti
tion operator. In the framework of the bosonization
method these quantities are expressed in terms
canonical Bose fieldsFjsxd and their dual counter-
parts Qjsxd, where fQjst, xd, Fjst, x0dg ­ 2iusx 2 x0d.
Changing to symmetric/antisymmetric combination
F6 ­ sF1 6 F2dy

p
2, the Hamiltonian density consists

of several terms. The “free” part is

H0 ­
X

s­6

ys

2
fs≠xQsd2 1 s≠xFsd2g , (2)

whereys ~ Ja0 are the spin velocities. In addition, there
is an in-chain current-current perturbation
© 1998 The American Physical Society
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HJJ ­ g1 cos
p

4p F1 cos
p

4p F2

1 g2

X
s­6

fs≠xQsd2 2 s≠xFsd2g . (3)

The interchain interaction gives rise to two perturbation
which we denote byHCC andHPB, respectively,

HCC ­ g3 cos
p

4p F1 cos
p

4p Q2

2 g4

X
s­6

sfs≠xQsd2 2 s≠xFsd2g , (4)

HPB ­ g5s2≠xF2 sin
p

4p F1 1 ≠xF1 sin
p

4p F2d

1 g6≠xQ1 sin
p

4p Q2 . (5)

The perturbationHCC is the well-known current-current
interaction [2,3], which promotes dimerization and lead
to the formation of a spectral gap. The perturbationHPB

is the novel parity-breaking term, which in terms of th
staggered magnetizationn1,2sxd reads

HPB , n1 ? ≠xn2 2 n2 ? ≠xn1

1 sD0 2 1d fnz
1≠xnz

2 2 nz
2≠xnz

1g . (6)

The in-chain coupling constantsg1,2 are determined byJ
andD, whereasg3, . . . , g6 are functions ofJ 0, D0.

Close to the SU(2) symmetric pointD ­ D0 ­ 1,
the bosonized Hamiltonian can be expressed
terms of four Majorana fermions [3,5]. The Hamil
tonian of two decoupled chains simply become
H0 ­ 2i

ys

2

P3
j­0sjj

R≠xj
j
R 2 j

j
L≠xj

j
Ld. The perturba-

tion H 0 ­ HJJ 1 HCC 1 HPB is of the form

H 0 ­
3X

j­1

ajAj 1

4X
j­1

bjBj , (7)

where the operatorsAj andBj are given by

A1 ­ j0
Rj1

Lj2
Lj3

L 1 sR ! Ld ,

A2 ­ j0
Rj1

Rj2
Rj3

L 1 sR ! Ld ,

A3 ­ j0
Rsj1

Rj2
L 1 j1

Lj2
Rdj3

R 1 sR ! Ld ,

B1 ­ j0
Rj0

Lsj1
Rj1

L 1 j2
Rj2

Ld , (8)

B2 ­ j0
Rj0

Lj3
Rj3

L ,

B3 ­ j1
Rj1

Lj2
Rj2

L ,

B4 ­ sj1
Rj1

L 1 j2
Rj2

Ldj3
Rj3

L .

We note that in the above formulas we have neglect
terns that lead to a renormalization of the spin velociti
[3]. The couplingsaj , bk are easily expressed in term
of thegi. The operatorsAj originate fromHPB, whereas
theBk ’s stem fromHCC andHJJ .

All operators are marginal, but while theBk have con-
formal spin 0, theAj have conformal spin 1. We derived
the renormalization-group flow for the perturbationHpert
from the operator product expansion for the perturbin
s
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operators (see, e.g., [4])

Ùa1 ­ 2a2b2 1 4a3b1 ,

Ùa2 ­ 2a1b2 1 4a3b4 ,

Ùa3 ­ 2a1b1 1 2a2b4 1 2a3b3 ,

Ùb1 ­ 24a2a3 1 2b1b3 1 2b2b4 , (9)

Ùb2 ­ 24a2
3 1 4b1b4 ,

Ùb3 ­ 24a1a2 1 2b2
1 1 2b2

4 ,

Ùb4 ­ 24a1a3 1 2b1b2 1 2b3b4 .

Here a dot denotes the derivative with respect to the R
logarithm const3 lnsLysyjvjd, whereL is a momentum
cutoff [6]. The RG flow determined by (9) is clearly com
plicated. Therefore we performed a numerical analysis
(9). Our findings are the following.

(a) At the SU(2) symmetric point, the current-curren
interactions reach the strong coupling regime first (
the cases where the flow is towards strong couplin
This corresponds to a dimerized phase [3,7]. A ne
feature caused by the twist operators is that the tende
towards dimerization extends into part of the region
ferromagnetic current-current interchain interactions (s
Fig. 1).

(b) Away from the SU(2) symmetric pointboth twist
and current-current couplings generally (but not alway
flow towards strong coupling. However, it is now pos
sible for the twist terms to reach the strong couplin
regime first (see Fig. 2). We take this as evidence
the existence of a novel phase, the physics of which
determined by the twist terms.

In order to elucidate the physics of this new phase w
now turn to a mean-field analysis of the perturbation
The situation is particularly simple in the limit of very
strong anisotropy,jDj, jD0j ø 0, corresponding to two
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FIG. 1. RG flow in the SU(2) symmetric case. There are on
2 independent couplings for twistsa1,2d and current-current op-
eratorsfb6 ­ sb3 6 b1dy2g, respectively. The initial condi-
tions are chosen such that the couplingsb6s0d , 0 and in the
absence of the twist operators would flow to zero coupling (s
inset of figure).
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FIG. 2. Example of an RG flow where the twist coupling
reach strong coupling first. The structure of Eqs. (9) is su
that the twist couplings cannot grow without “help” of the
current-current interaction.

coupledXX chains. Using the bosonization formulas fo
the XX point [4] and retaining only the relevant part o
the perturbing operator we arrive at

H ­ H0 1 g≠xQ1 sin
p

2p Q2 , (10)

whereH0 is given by (2).
In order to analyze (10) we use a self-consistent me

field approach. Assuming that the ground state of t
system is found in the sector with a nonzero topologic
spin current≠xQ1, we arrive at the following mean-field
Hamiltonian

HMF ­ H0 1 k≠xQ1 2 mL sin
p

2p Q2 , (11)

wherek ­ gksin
p

2p Q2l andmL ­ 2gk≠xQ1l.
Thus HMF decomposes into two commuting parts

H1 1 H2, with

H2 ­
ys

2
fs≠xF2d2 1 s≠xQ2d2g 2 mL sin

p
2p Q2 ,

H1 ­
ys

2

∑
s≠xF1d2 1 s≠xQ1d2 1

2k

ys
≠xQ1

∏
. (12)

The “1” channel is solved by eliminating the≠xQ1 term
through a field redefinition:Q1sxd ! Q1sxd 2 kxyys.
The average value of≠xQ1 is then given byk≠xQ1l ­
2kyys. The “2” channel is a sine-Gordon model for th
dual field and can be solved exactly, the expectation va
of the mass beingksin

p
2p Q2l ­ csjmjyLysd1y3 sgnm,

where the constantc can be calculated [8]. The self-
consistency conditions then lead to the solution

m ­ 6Lysz3
0c3y2, k ­ 6Lysz2

0c3y2, (13)

wherez0 ­ gyLys is a dimensionless coupling constan
The expectation value ofQ2 is determined by the position
of the minima of the sine-Gordon potential;kQ2l ­p

py8 sgnmsmod
p

2p d. This allows us to express the
912
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dual fields in chains 1 and 2 as

Q1,2sxd ­
1

p
2

Q0
1sxd 2

kx
p

2 ys
6

p
p

4
, (14)

whereQ0
1sxd as well as its derivative have zero expec

tation value. Using this together with the bosonizatio
table at theXX point, we find the following asymptotic
behavior for spin-spin correlation functions in the strong
coupling phase

kS1
1 sxdS2

j s0dl ,
s21dxya0

jxj1y4 expf2i
p

py2 skxyysdg , (15)

wherej ­ 1, 2. The transverse spin correlations still fall
off with a power law, but their decay is much slower than
for an isolatedXX chain wherekn1sxdn2s0dl , jxj21y2.
Furthermore, the correlations areincommensurate. The
characteristic momentum of the magnetic spiral isq0 ­
pya0 2

p
py2 skyysd. The deviation from the antiferro-

magnetic wave vectorpya0 is very small for a weak inter-
chain coupling, which is in qualitative agreement with [1]
We have performed a stability analysis of the above mea
field solution and found only convergent corrections, e.g
to the exponent1y4 in (15).

The solution of theXX zigzag ladder (10) describes a
spin nematicground state of the model. This phase, with
unbroken time reversal symmetry [9] is characterized b
nonzero local spin currents polarized along the anisotrop
(z) axis. The longitudinal (in-chain) component of the to
tal spin current is given byJz

k sxd ­ 2
p

2yp ys≠xQ1sxd.
Using equations of motion for the spin densities, on
easily finds the transverse (interchain) part of the cu
rent, originating from the twist term in (10):Jz

'sxd ­
2

p
2yp g sin

p
2p Q2. From the above analysis we ob-

tain the important result thatkJz
k l ­ 2kJz

'l ­ 6
p

2yp g.
Thus, in the ground state the longitudinal and transver
spin currents are equal in magnitude but propagate in o
posite directions. The resulting picture shown in Fig.
demonstrates local currents circulating around the tria
gular plaquettes in an alternating way, with thetotal spin
current of the system being zero.

The spin nematic phase preserves the spin U(1) sym
metry but spontaneously breaks aZ2 symmetry of the
model. Indeed, the twist term (6) is invariant under
tensor product of the site-parity and link-parity transfor
mations [10] on the two chains,P12 ­ PS

1 ≠ PL
2 (though

it breaksP
SsLd
1 ≠ P

SsLd
2 ).

J)

(∆ ,J )

J)
1

2

(∆,

(∆,

FIG. 3. Structure of the spin currents in the spin nemati
phase.
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In the XX case (10), this transformation reverses th
signs of all currents, reflecting theZ2 degeneracy of
the ground state. The spectrum of the system conta
gapless excitations in the1 channel, massive quantum
solitons, and their bound states (breathers), as well
kinks carrying fractional topological charge.

Moving in parameter space fromD, D0 ­ 0 (XX point)
to D, D0 ­ 1 (XXX point) in the generalXXZ case, we
found the following.

(a) The spin-nematic phase occupies the whole reg
g4 # g2 beyond which a gap appears in the1 channel
as well, and the spin correlations become short rang
(although they remain incommensurate).

(b) In the fully gapped phase, the spin currents a
the incommensurate wave vectorq0 are reduced and
continuously vanish as the SU(2) symmetric point
approached.

In light of the experimental results [1] it is importan
to investigate the effects of an external magnetic fie
At the XX point we find that a longitudinal field has
essentially only trivial effects, whereas a transverse fie
leads to the formation of a gap in the1 channel and
completely destroys the spiral phase (above a critic
field). Indeed, the magnetic field oriented along thex axis
in spin space enters the Hamiltonian with the term [11]

Hmag ­ h
X

j­1,2

sin
p

4p Fj cos
p

p Qj ,

where h is proportional to the applied field. This per
turbation again has conformal spin 1 and, together w
the twist term (10), leads to a complicated RG flow
where an effectiveXY anisotropy, described by the fol-
lowing conformal spin zero operator, is generated [11
OXY , h2 cos

p
2p Q1 cos

p
2p Q2. This strongly rele-

vant operator locks the fieldsQ6 at the vacuum values
Q1 ­

p
py2, Q2 ­ 0, or vice versa, and gives rise to a

commensurate Néel ordering of the spins along they axis,
characterized by a nonzero average staggered magne
tion kny

1 1 n
y
2 l , ksin

p
py2 Q1l kcos

p
py2 Q2l.

Let us now turn to the case relevant for the experimen
[1], where we have two-dimensional arrays of weak
coupled chains. We illustrate our findings for the simpl
XX case. The perturbation to the free part of th
multichain Hamiltonian chain is

H 0 ­ g
X

j

≠xsQj 1 Qj11d sinf
p

p sQj 2 Qj11dg .

(16)

We perform a mean-field analysis in a way similar t
the two-chain case above. Assuming that the follow
ing averagesgksin

p
p sQj 2 Qj11dl ­ k, gk≠xsQj 1
e
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Qj11dl ­ 2m are nonzero and redefining the fields a
Qj ­ 22kx 1 j

p
py2 1 Q̄j , with kQ̄jl ­ 0 we obtain

a self-consistent mean-field Hamiltonian

HMF ­ H0fQ̄jg 2 2m
X

j

cos
p

p sQ̄j 2 Q̄j11d . (17)

The Hamiltonian (17) can be viewed as describin
coupled Josephson-junction arrays and leads to
pinning of the fieldsQ̄j . The resulting average staggere
magnetization is given by

kn6sxdl ­ exps6ipjy2 6 2
p

p kxd . (18)

This corresponds to incommensurate spiral order alo
the chains with a 90± rotation of the average staggere
magnetization in the transverse direction. This is
qualitative agreement with experiment [1]. Details o
the above calculations as well as a more quantitat
comparison to experiment will be presented in a separ
publication [12].
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