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Natural Orbital Functional for the Many-Electron Problem
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The exchange-correlation energy in Kohn-Sham density functional theory is expressed as a functio
of the electronic density and the Kohn-Sham orbitals. An alternative to Kohn-Sham theory is to expre
the energy as a functional of the reduced first-order density matrix or equivalently the natural orbita
We present an approximate, simple, and parameter-free functional of the natural orbitals, based so
on scaling arguments and the near satisfaction of a sum rule. Our tests on atoms show that it yie
on average more accurate energies and charge densities than the Hartree-Fock method, the local de
approximation, and the generalized gradient approximations. [S0031-9007(98)06532-6]
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The solution of the quantum mechanical many-electr
problem is one of the central problems of physics.
great number of schemes that approximate the intracta
many-electron Schrödinger equation have been devi
to attack this problem. Most of them map the man
body problem to a self-consistent one-particle proble
Probably the most popular method at present is dens
functional theory (DFT) [1] especially when employe
with the generalized gradient approximation (GGA) [2,3
for the exchange-correlation energy. DFT is based
the Hohenberg-Kohn theorem [4] which asserts that t
electronic charge density completely determines a ma
electron system and that, in particular, the total ener
is a functional of the charge density. Attempts to co
struct such a functional for the total energy have n
been very successful because of the strong nonloca
of the kinetic energy term. The Kohn-Sham scheme [
where the main part of the kinetic energy, the single pa
ticle kinetic energy, is calculated by solving one-partic
Schrödinger equations circumvented this problem. T
difference between the one-particle kinetic energy a
the many-body kinetic energy is a component of the u
known exchange-correlation functional. The exchang
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correlation functional is thus a sum of a kinetic en
ergy contribution and a potential energy contributio
and partly for this reason it does not scale homog
neously [6] under a uniform spatial scaling of the char
density.

It has been known for a long time that one ca
also construct a total energy functional using the firs
order reduced density matrix. Several discussions
the existence and the properties of such a functio
can be found in the literature [7–10]. However, n
explicit functional has ever been constructed and tes
on real physical systems. An important advantage of t
approach is that one employs an exact expression for
many-body kinetic energy. Only the small non-Hartre
Fock-like part of the electronic repulsion is an unknow
functional [9]. We propose in this paper an explicit form
of such a functional in terms of the natural orbitals. Th
high accuracy of this natural orbital functional theor
(NOFT) is then established by applying it to several atom
and ions.

If C is an arbitrary trial wave function of anN-electron
system, the first- and second-order reduced density ma
ces [11,12],g1 andg2, are
g1sx0
1, x1d ­ N

Z
. . .

Z
Csx0

1, x2, . . . , xN dCsx1, x2, . . . , xN d dx2 . . . dxN , (1)

g2sx0
1, x0

2; x1, x2d ­
NsN 2 1d

2

Z
. . .

Z
Csx0

1, x0
2, x3, . . . , xN dCsx1, x2, x3, . . . , xN d dx3 . . . dxN . (2)
o
e

The variables xi contain both the position coor-
dinates ri as well as the spin coordinatesi . The
integration sign stands for a combined integration
the spatial coordinates and summation of the discr
spin part.

The electronic charge densityrsrd is obtained from the
diagonal part of the first-order reduced density matrix,
f
te

rsx1d ­ g1sx1, x1d; rsr1d ­
X
s1

rsx1d . (3)

The natural orbitalsfi are the eigenfunctions of the
first-order reduced density matrix with eigenvaluesni:Z

g1sx0
1, x1d fisx1d dx1 ­ nifisx0

1d . (4)
© 1998 The American Physical Society
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The natural spin orbitals and occupation numbersni specify the reduced first-order density matrix completely.
The total energy can be written in terms of the natural orbitals and the diagonal elements of the second-order

density matrix,

ssx1, x2d ­ g2sx1, x2; x1, x2d , (5)

as

E ­ 2
1
2

X
i

ni

Z
fisxd=2fisxd dx 1

Z
V sxdrsxd dx 1

Z Z ssx1, x2d
jr1 2 r2j

dx1 dx2 . (6)

In order to construct a natural orbital functional, it remains to find an approximation fors in terms of the natural
orbitals and occupation numbers. In the following, we assume the standard case of a Hamiltonian that is n
dependent. Each natural orbital can then be chosen to be either purely spin up or spin down and can be label
orbital indexi and a spin indexsi .

The approximates we propose has the following form:

sfhnj, hfjg ­
X
i,j

0 ninj

2
f2

i sr1df2
j sr2d 2

X
i,j

0
p

ninj

2
dsi ,sj fisr1dfjsr1dfisr2dfjsr2d . (7)

The primes indicate that thei ­ j terms are omitted. To find the ground state, we minimize the functional with res
to both the natural orbitals and the occupation numbers, under the constraint that the natural orbitals be orthogo
The functional derivatives are

≠E
≠fisrd

­ 2
ni

2
=2fisrd 1 niV srdfisrd 1

X
j

0
ninjfisrd

Z f
2
j sr0d

jr 2 r0j
dr0

2
X

j

0p
ninj dsi,sj fjsrd

Z fisr0dfjsr0d
jr 2 r0j

dr0, (8)

≠E
≠ni

­ 2
1
2

Z
fisrd=2fisrd dr 1

Z
V srd f2

i srd dr 1
X

j

0
nj

Z Z f
2
j sr0df2

i srd
jr 2 r0j

dr dr0

2
1
2

X
j

0

s
nj

ni
dsi,sj

Z Z fisr0dfjsr0dfisrdfjsrd
jr 2 r0j

dr dr0. (9)
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In principle an infinite number of natural orbitals mus
be included. For the systems studied in Table I at mo
38 orbitals were needed to obtain good convergenc
The occupation numbers of the core natural orbitals a
restricted to be unity, while the remaining occupatio
numbers are allowed to vary freely and are found t
lie always between zero and one, which is a necessa
and sufficient condition for the density matrix to beN
representable [12].

We now discuss the properties of this functional.
Homogeneous scaling of exchange-correlation energ

The exact exchange-correlation energy in first-order de
sity matrix functional theory differs from the exact
exchange-correlation energy in density functional theo
and scales homogeneously [9] under a uniform scaling
the density matrix. The exchange-correlation energy, d
duced from Eqs. (6) and (7), exhibits this property.

No orbital self-interactions: In the case where on
has fractional occupation numbers one has to disti
guish between orbital self-interactions and electro
self-interactions. Our functional is free of orbital self-
interactions because the sum in Eq. (7) excludes term
with i ­ j, but it is not perfectly electron self-interaction
free. The total energy for H is therefore not correc
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(Table I). The functional has, however, a much bett
cancellation of electron self-interactions than dens
functionals, as can be seen from the fact that negat
ions are stable (Table I). In contrast LDA (local densi
approximation) and GGA bind only a fraction of a
additional electron.

Sum rule for second order reduced density: T
density and the number of electron pairs are obtained
integrating the exact second-order reduced density matZ

ssr1, r2d dr2 ­
sN 2 1d

2
rsr1d , (10)

Z Z
ssr1, r2d dr1 dr2 ­

NsN 2 1d
2

. (11)

Our approximation for the second-order reduced dens
matrix would satisfy these equations if the sums
Eq. (7) also included thei ­ j terms. We omit these
terms because we find that an exact cancellation of
orbital self-interactions is more important than an exa
fulfillment of the sum rules in Eqs. (10) and (11). Th
sum rules are violated only by terms of the order
nis1 2 nid, which for most systems are small since a
the occupation numbers are close to either zero or one
867
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TABLE I. Comparison of errors in the energy, density, and transferability (see text) obtained from various functionals. Ene
are in hartree atomic units. No data are available (NA) for the nonspherical PBE ground state of C. The large errors inDr and
the infinite errors inDt for the H2 ion in LDA and PBE are because they bind only a fraction of the additional electron.

H H2 He Li Be C Ne

Energy

2E 0.5 0.5278 2.9037 7.4781 14.6674 37.8450 128.9376

LDA

DE 2 3 1022 6 3 1023 7 3 1022 1 3 1021 2 3 1021 4 3 1021 7 3 1021

sDrd2 1 3 1023 6 3 100 8 3 1023 2 3 1022 2 3 1022 5 3 1022 2 3 1021

Dt 4 3 1021 ` 2 3 1021 27 3 1021 2 3 1022 4 3 1021 3 3 1021

PBE

DE 8 3 1025 2 3 1023 1 3 1022 2 3 1022 4 3 1022 NA 7 3 1022

sDrd2 2 3 1024 6 3 100 1 3 1023 3 3 1023 3 3 1023 NA 1 3 1022

Dt 2 3 1021 ` 1 3 1021 21 3 100 5 3 1021 NA 3 3 1021

HF

DE 0 4 3 1022 4 3 1022 5 3 1022 9 3 1022 2 3 1021 4 3 1021

sDrd2 0 1 3 1023 1 3 1024 7 3 1025 8 3 1024 5 3 1024 6 3 1023

Dt 0 25 3 100 22 3 1022 3 3 1021 1 3 100 26 3 1022 22 3 1021

NOFT

DE 22 3 1022 1 3 1022 6 3 1023 21 3 1023 22 3 1022 3 3 1022 5 3 1022

sDrd2 3 3 1025 4 3 1024 1 3 1025 2 3 1024 6 3 1024 7 3 1024 4 3 1024

Dt 22 3 1022 1 3 102 21 3 1022 25 3 1021 6 3 1021 5 3 1022 25 3 1022
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Hartree-Fock as limiting case: The functional coincide
with the Hartree-Fock (HF) functional if the occupation
numbers are constrained to be 1 or 0.

No dissociation problems: Even though the functiona
contains terms which are similar to the HF functional,
should not suffer from some well established deficiencie
of the spin restricted HF functional such as the dissoci
tion problem of the H2 molecule. As one separates the
two H atoms, the large occupation numbers in the up- a
down-spinsg molecular orbital get redistributed to the
up-spin1s atomic orbital on one atom and the down-spi
1s atomic orbital on the other. In the infinitely separate
limit each atom has nonzero occupation numbers in eith
only the up-spin or only the down-spin orbitals. Conse
quently the energy is the sum of the energies of the ind
vidual atoms.

Transition states: In molecular calculations the effe
of this functional is expected to be particularly significan
for transition states, which are poorly described by LDA
and HF. At transition states more than one determina
is needed for an adequate description, and releasing
HF constraint of integer occupation numbers is therefo
important.

Orbital-dependent “potentials”: The weakly occupie
natural orbitals are localized in the same region of spa
as the highest strongly occupied natural orbitals. This
in contrast to the unoccupied Kohn-Sham and Hartre
Fock orbitals which have a larger extent than the occupi
ones. The manner in which this comes about can be se
from Eq. (8) which has an orbital-dependent “potential.
One term in the potential goes as

p
ni —an enhancement

by a factor of1y
p

ni relative to Hartree-Fock—which has
the consequence that weakly occupied natural orbitals s
868
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a more strongly negative potential than do the strong
occupied orbitals, thereby helping to localize the weak
occupied natural orbitals.

Chemical potential: All natural orbitals with fractiona
occupationni share the same chemical potential [10
m ­ ≠E

≠ni
.

Discontinuity of the exchange-correlation potential: A
one adds fractions of an electron, one finds, at occupat
numbers close to integers, a rapid change in the effect
potential felt by all the electrons, which is due to the jum
in the chemical potential. This quasidiscontinuous effe
might mimic the discontinuity [14] in the DFT exchang
correlation potential, an effect missing in the LDA an
GGA functionals.

Correct description of correlations of different origin
In a 1yZ expansion of the energy, the correlation ener
of the two-electron series can be described by nondeg
erate perturbation theory while the four-electron series
quires degenerate perturbation theory. Consequently
correlation energy of the two-electron series tends to
constant with increasingZ, whereas it increases linearly in
the four-electron case. Both trends are correctly captu
by the NOFT functional as shown in Table II. Any GGA
functional can at best describe only one of the trends.

Correct qualitative behavior of natural occupation num
bers: As seen from Table III, the NOFT occupation num
bers may differ considerably from the ones obtained fro
configuration interaction calculations, but the main tren
are correctly reproduced.

Accurate results: In Table I, we give a compila
tion of the errors in the total energyDE and the errors
in the charge densitiesDr. The charge density errors
are defined bysDrd2 ­

R
frexsrd 2 rsrdg2 dr, with the
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TABLE II. Correlation energies, in hartrees, for the two- and
four-electron series. The exact values of2EQC

c ­ EHF 2

Eexact, taken from Ref. [15], are compared toEHF 2 ENOFT .

Two-electron Four-electron
Z 2EQC

c EHF 2 ENOFT Z 2EQC
c EHF 2 ENOFT

1 0.040 0.031 4 0.094 0.110
2 0.042 0.036 6 0.126 0.141
4 0.044 0.040 8 0.154 0.171
6 0.045 0.042 10 0.180 0.200

“exact” charge densitiesrex obtained from accurate quan-
tum Monte Carlo calculations. Both total energies an
charge densities are improved on average compared to
and DFT calculations. In particular, the improvement
over the HF densities are impressive since they are kno
to be rather accurate. The GGA schemes yield improv
total energies compared to both LDA and HF while th
GGA densities are better than those from LDA but not a
good as those from HF. In the case of C, the error in th
spherically averaged charge density is quoted. The ex
total energies were obtained from Ref. [15]. The LDA
energies and densities were obtained by a standard sph
cal atomic program. As a representative of a GG
functional we have chosen the recent Perdew-Beck
Ernzerhof (PBE) [2] functional. All the HF and NOFT
calculations were done with a nonspherical atom
program developed by the authors. All calculation
were done in a spin restricted scheme. In the case
C the correct nonspherical3P ground state was cho-
sen. Since we do no molecular calculations, we mon
tor a third quantity, the transferability errorDt, to make
predictions about the behavior of this scheme in molec
lar and solid state calculations. Molecular geometries a
determined via the Hellmann-Feynman theorem by th
charge densities in the valence region. The external p
tential in the valence region is modified in a molecul
compared to the atomic case. We simulated this mod

TABLE III. Deviation of the occupation numbers for the two-
electron series from the Hartree-Fock values in units of1025

electrons. For eachZ, the first column gives the exact values
of Kutzelnigg [16] and the second column our NOFT values.

nl Z ­ 1 Z ­ 2 Z ­ 4 Z ­ 6

1s 23536 23339 2691 2566 2162 2154 268 265
2s 2352 1038 322 217 63 55 25 24
2p 1115 825 337 276 89 84 39 39
3s 7 1038 3 11 0 2 0 1
3p 15 174 7 23 2 5 1 0
4s 0 27 0 0 0 0 0 0
3d 37 165 16 31 5 6 2 3
4p 1 13 0 3 0 0 0 2
5s 0 8 0 0 0 0 0 0
4d 3 29 2 4 0 1 0 0
5p 1 17 0 0 0 0 0 0
6s 0 1 0 0 0 0 0 0
6p 0 3 0 0 0 0 0 0
d
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fication by adding a confining parabolic potential to th
atom. The change in the total energy due to the variatio
of this parabolic potential is again given by the Hellmann
Feynman theorem, and we define the transferability err
Dt therefore asDt ­

R
frsrd 2 rexsrdgr2 dr.

In conclusion, we have made a first attempt at con
structing an approximate total energy functional of th
first-order reduced density matrix. We have listed an
discussed the properties that make it superior to the H
and approximate DFT functionals and have also show
that it yields better energies and densities than HF a
current DFT schemes. The high accuracy of quantitie
related to the charge density leads one to expect that t
new functional will give accurate molecular geometrie
as well as accurate energy differences between differe
geometric configurations. In view of the fact that the
functional is parameter-free and based on a few simp
considerations, we think this to be a remarkable succe
It is likely that it will be possible to construct even bette
functionals along these lines.

We thank M. Levy for interesting discussions.
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