VOLUME 81, NUMBER 4 PHYSICAL REVIEW LETTERS 27 JLy 1998

Natural Orbital Functional for the Many-Electron Problem
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The exchange-correlation energy in Kohn-Sham density functional theory is expressed as a functional
of the electronic density and the Kohn-Sham orbitals. An alternative to Kohn-Sham theory is to express
the energy as a functional of the reduced first-order density matrix or equivalently the natural orbitals.
We present an approximate, simple, and parameter-free functional of the natural orbitals, based solely
on scaling arguments and the near satisfaction of a sum rule. Our tests on atoms show that it yields
on average more accurate energies and charge densities than the Hartree-Fock method, the local density
approximation, and the generalized gradient approximations. [S0031-9007(98)06532-6]

PACS numbers: 71.15.Mb, 71.10.—w

The solution of the quantum mechanical many-electrortorrelation functional is thus a sum of a kinetic en-
problem is one of the central problems of physics. Aergy contribution and a potential energy contribution,
great number of schemes that approximate the intractabknd partly for this reason it does not scale homoge-
many-electron Schrodinger equation have been devisawkously [6] under a uniform spatial scaling of the charge
to attack this problem. Most of them map the many-density.
body problem to a self-consistent one-particle problem. It has been known for a long time that one can
Probably the most popular method at present is densitglso construct a total energy functional using the first-
functional theory (DFT) [1] especially when employed order reduced density matrix. Several discussions of
with the generalized gradient approximation (GGA) [2,3]the existence and the properties of such a functional
for the exchange-correlation energy. DFT is based oman be found in the literature [7—10]. However, no
the Hohenberg-Kohn theorem [4] which asserts that thexplicit functional has ever been constructed and tested
electronic charge density completely determines a manyen real physical systems. An important advantage of this
electron system and that, in particular, the total energwpproach is that one employs an exact expression for the
is a functional of the charge density. Attempts to con-many-body kinetic energy. Only the small non-Hartree-
struct such a functional for the total energy have notFock-like part of the electronic repulsion is an unknown
been very successful because of the strong nonlocalitiunctional [9]. We propose in this paper an explicit form
of the kinetic energy term. The Kohn-Sham scheme [5pf such a functional in terms of the natural orbitals. The
where the main part of the kinetic energy, the single parhigh accuracy of this natural orbital functional theory
ticle kinetic energy, is calculated by solving one-particle(NOFT) is then established by applying it to several atoms
Schrédinger equations circumvented this problem. Thand ions.
difference between the one-particle kinetic energy and If W is an arbitrary trial wave function of an-electron
the many-body kinetic energy is a component of the unsystem, the first- and second-order reduced density matri-
known exchange-correlation functional. The exchang?eees [11,12],y, andy,, are

y1(x},x1) =Nf...]\I’(X’I,xz,...,XN)\I’(XI,XQ,...,XN)dxz...de, (1)
I o N(N — 1) I o
v2(X], X5; X1, Xp) = — v | W(XT], X5, X3, ..., Xy) WX, X0, X3, ..., Xy ) dX3 .. dXy . (2
The variablesx; contain both the position coorl p(x1) = y1(x1,Xx1); p(r)) = Zp(xl). 3)
dinates r; as well as the spin coordinate;. The 51

integration sign stands for a combined integration of . _ _
the spatial coordinates and summation of the discrete The natural orbitalsp; are the eigenfunctions of the

spin part. first-order reduced density matrix with eigenvalues
The electronic charge densip(r) is obtained from the
diagonal part of the first-order reduced density matrix, f yi1(x},x1) i(x1) dx; = n;pi(x}). 4)
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The natural spin orbitals and occupation numbegrspecify the reduced first-order density matrix completely.
The total energy can be written in terms of the natural orbitals and the diagonal elements of the second-order reduced
density matrix,

o(x1,x2) = ya(X1,X2;X1,X2), (5)

as

= ——Zn,[ di(x)V?i(x)dx + / V(x)p(x)dx + f/ a(x1,%2) dx; dx, . (6)

Iry — 1ol
In order to construct a natural orbital functional, it remains to find an approximatiosr fior terms of the natural
orbitals and occupation numbers. In the following, we assume the standard case of a Hamiltonian that is not spin
dependent. Each natural orbital can then be chosen to be either purely spin up or spin down and can be labeled by an

orbital indexi and a spin index;.
The approximater we propose has the following form:

olinh g1 = 325 e b - >
L]

ij

I/Rin;
N B, b0 (1) bi2) b (1) (7)

The primes indicate that the= j terms are omitted. To find the ground state, we minimize the functional with respect

to both the natural orbitals and the occupation numbers, under the constraint that the natural orbitals be orthogonal [13].
The functional derivatives are

OE b7 ’)
Ery v2¢ () + mV(E)pi(r) + Zn n,¢(r)f R r
- Zq/n nj 8,5, ¢;(r )f d)(r)_d)rl(lr)dr, (8)

61? = _l[ $:(r)V2¢;(r) dr +f V(r) ¢}(r)dr + Z f ¢j(rl)¢l( r) dr dr’

on; Ir —

LS, [ [ O e

In principle an infinite number of natural orbitals must (Table 1). The functional has, however, a much better
be included. For the systems studied in Table | at mostancellation of electron self-interactions than density
38 orbitals were needed to obtain good convergencdunctionals, as can be seen from the fact that negative
The occupation numbers of the core natural orbitals aréons are stable (Table I). In contrast LDA (local density
restricted to be unity, while the remaining occupationapproximation) and GGA bind only a fraction of an
numbers are allowed to vary freely and are found toadditional electron.
lie always between zero and one, which is a necessary Sum rule for second order reduced density: The
and sufficient condition for the density matrix to D&  density and the number of electron pairs are obtained by

representable [12]. integrating the exact second-order reduced density matrix:
We now discuss the properties of this functional. (N 1
Homogeneous scaling of exchange-correlation energy: ] o(ry,ry)dr, = p(ry), (10)

The exact exchange-correlation energy in first-order den-
sity matrix functional theory differs from the exact
. : : . NN — 1)

exchange-correlation energy in density functional theory ff o(ry,ry)dr dr, = —— . (11)
and scales homogeneously [9] under a uniform scaling of 2
the density matrix. The exchange-correlation energy, de©ur approximation for the second-order reduced density
duced from Egs. (6) and (7), exhibits this property. matrix would satisfy these equations if the sums in

No orbital self-interactions: In the case where oneEg. (7) also included thé = j terms. We omit these
has fractional occupation numbers one has to distinterms because we find that an exact cancellation of the
guish between orbital self-interactions and electrororbital self-interactions is more important than an exact
self-interactions. Our functional is free of orbital self- fulfillment of the sum rules in Egs. (10) and (11). The
interactions because the sum in Eq. (7) excludes termsum rules are violated only by terms of the order of
with i = j, but it is not perfectly electron self-interaction n;(1 — n;), which for most systems are small since all
free. The total energy for H is therefore not correctthe occupation numbers are close to either zero or one.
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TABLE |I. Comparison of errors in the energy, density, and transferability (see text) obtained from various functionals. Energies
are in hartree atomic units. No data are available (NA) for the nonspherical PBE ground state of C. The large Apoasih
the infinite errors inA7 for the H™ ion in LDA and PBE are because they bind only a fraction of the additional electron.

H H™ He Li Be C Ne
Energy
-E 0.5 0.5278 2.9037 7.4781 14.6674 37.8450 128.9376
LDA
AE 2 X 1072 6 X 1073 7 X 1072 1 X 107! 2 x 107! 4 X 107! 7 X 107!
(Ap)? 1 X 1073 6 X 10° 8 X 1073 2 X 1072 2 X 1072 5% 1072 2 X 107!
AT 4 % 107! o 2 X 107! -7 X 107! 2 X 1072 4 x 107! 3 % 107!
PBE
AE 8§ X 107° 2 x 1073 1 X 1072 2 X 1072 4 x 1072 NA 7 X 1072
(Ap)? 2 X 1074 6 X 10° 1 X103 3% 1073 3% 1073 NA 1 X 1072
AT 2 X 107! o 1 x 107! -1 % 10° 5% 107! NA 3 x 107!
HF
AE 0 4 X 1072 4 x 1072 5 X 1072 9 X 1072 2 X 107! 4 x 107!
(Ap)? 0 1 X 1073 1 x 1074 7 X 1073 8 X 1074 5% 1074 6 X 1073
AT 0 -5 % 10° -2 X 1072 3% 107! 1 X 10° -6 X 1072 -2 % 107!
NOFT
AE -2 X 1072 1 X 1072 6 X 1073 -1x1073 -2 X 1072 3 X 1072 5% 1072
(Ap)? 3 X 1073 4 x 1074 1 X107 2% 1074 6 X 1074 7 X 1074 4 x 1074
AT -2 X 1072 1 X 102 -1 X 1072 -5 % 107! 6 X 107! 5 X 1072 -5 X 1072

Hartree-Fock as limiting case: The functional coincidesa more strongly negative potential than do the strongly
with the Hartree-Fock (HF) functional if the occupation occupied orbitals, thereby helping to localize the weakly
numbers are constrained to be 1 or O. occupied natural orbitals.

No dissociation problems: Even though the functional Chemical potential: All natural orbitals with fractional
contains terms which are similar to the HF functional, itoccupationni share the same chemical potential [10],
should not suffer from some well established deficiencieg. = 7=
of the spin restricted HF functional such as the dissocia- Dlscontlnwty of the exchange-correlation potential: As
tion problem of the K molecule. As one separates the one adds fractions of an electron, one finds, at occupation
two H atoms, the large occupation numbers in the up- andumbers close to integers, a rapid change in the effective
down-spin o, molecular orbital get redistributed to the potential felt by all the electrons, which is due to the jump
up-spinls atomic orbital on one atom and the down-spinin the chemical potential. This quasidiscontinuous effect
1s atomic orbital on the other. In the infinitely separatedmight mimic the discontinuity [14] in the DFT exchange
limit each atom has nonzero occupation humbers in eithezorrelation potential, an effect missing in the LDA and
only the up-spin or only the down-spin orbitals. Conse-GGA functionals.
guently the energy is the sum of the energies of the indi- Correct description of correlations of different origin:
vidual atoms. In a1/Z expansion of the energy, the correlation energy

Transition states: In molecular calculations the effectof the two-electron series can be described by nondegen-
of this functional is expected to be particularly significanterate perturbation theory while the four-electron series re-
for transition states, which are poorly described by LDAquires degenerate perturbation theory. Consequently the
and HF. At transition states more than one determinantorrelation energy of the two-electron series tends to a
is needed for an adequate description, and releasing tlwnstant with increasing, whereas it increases linearly in
HF constraint of integer occupation numbers is thereforehe four-electron case. Both trends are correctly captured
important. by the NOFT functional as shown in Table Il. Any GGA

Orbital-dependent “potentials”: The weakly occupiedfunctional can at best describe only one of the trends.
natural orbitals are localized in the same region of space Correct qualitative behavior of natural occupation num-
as the highest strongly occupied natural orbitals. This iders: As seen from Table Ill, the NOFT occupation num-
in contrast to the unoccupied Kohn-Sham and Hartreebers may differ considerably from the ones obtained from
Fock orbitals which have a larger extent than the occupiedonfiguration interaction calculations, but the main trends
ones. The manner in which this comes about can be seeme correctly reproduced.
from Eg. (8) which has an orbital-dependent “potential.” Accurate results: In Table I, we give a compila-
One term in the potential goes §8:;;—an enhancement tion of the errors in the total energ¥E and the errors
by a factor of1/,/n; relative to Hartree-Fock—which has in the charge densitieAp. The charge density errors
the consequence that weakly occupied natural orbitals see defined by(Ap)?> = [[pex(r) — p(r)]? dr, with the
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TABLE II. Correlation energies, in hartrees, for the two- and
four-electron series. The exact values ofEQC = EMF —
E®*aet taken from Ref. [15], are compared B'Ff — ENOFT,

fication by adding a confining parabolic potential to the
atom. The change in the total energy due to the variation
of this parabolic potential is again given by the Hellmann-

Feynman theorem, and we define the transferability error

Two-electron Four-electron

Z —EQC EHF _ pNOFT 7 _poc  pHF _ pNOFT  Ar therefore as\t = [[p(r) — pex(r)]r? dr.

1 0.040 0.031 4 0094 0.110 In conclusion, we have made a first attempt at con-
2 0.042 0.036 6 0.126 0.141 structing an approximate total energy functional of the
4 0.044 0.040 8 0.154 0.171 first-order reduced density matrix. We have listed and
6 0.045 0.042 10 0.180 0.200 discussed the properties that make it superior to the HF

and approximate DFT functionals and have also shown
that it yields better energies and densities than HF and
“exact” charge densities.x obtained from accurate quan- current DFT schemes. The high accuracy of quantities
tum Monte Carlo calculations. Both total energies andrelated to the charge density leads one to expect that this
charge densities are improved on average compared to Hkew functional will give accurate molecular geometries
and DFT calculations. In particular, the improvementsas well as accurate energy differences between different
over the HF densities are impressive since they are knowgeometric configurations. In view of the fact that the
to be rather accurate. The GGA schemes yield improvedunctional is parameter-free and based on a few simple
total energies compared to both LDA and HF while theconsiderations, we think this to be a remarkable success.
GGA densities are better than those from LDA but not ast is likely that it will be possible to construct even better
good as those from HF. In the case of C, the error in thgunctionals along these lines.
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