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Delocalization in Coupled One-Dimensional Chains
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A weakly disordered quasi-one-dimensional tight-binding hopping model Mitbws is considered.
The probability distribution of the Landauer conductance is calculated exactly in the middle of the
band, wheres = 0, and it is shown that a delocalization transition at this energy takes place if and
only if N is odd. This even-odd effect is explained by level repulsion of the transmission eigenvalues.
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The existence of delocalization transitions in a disor-ductance exhibits large fluctuations superimposed on an
dered one-dimensional system is surprising, as it goeslgebraically decaying mean value [10]. By contrast,
against the general wisdom that disordered systems ifor nonzero energy the system described by Eq. (1) is
less than two dimensions are localized [1]. Neverthenoncriticial resulting in standard localized behavior: A
less a delocalization transition in one dimension goesypical sample is well characterized Kjogg), which
back to Dyson’'s work on models for a glass in 1953is proportional toL and has relatively small sample-to-
[2,3]. Dyson’s one-dimensional glass is related to a largessample fluctuations.
variety of disordered systems: a one-dimensional tight- A different type of delocalization in one-dimensional
binding model with nearest-neighbor random hoppingdisordered systems was considered recently by Hatano
[3], a two-dimensional asymmetric random bond Isingand Nelson [11], who considered a chain with on-
model [4] which is equivalent to the one-dimensionalsite disorder and an imaginary vector potential. As a
random quantum Ising chain [5], one-dimensional ran{function of the strength of the imaginary vector potential,
dom bond quantunXY models [6] and more generally the system reaches a critical point and goes through a
randomXYZ spin-1/2 Heisenberg models [7], and nar- delocalization transition.
row gap semiconductors [8]. These models are of current The discussion so far applies to the casestfctly
interest in view of their rich physics: new universality one-dimensional systems. In this Letter we address the
classes, logarithmic scaling, the existence of strong flucgquestion of whether aspects of the behavior described
tuations calling for a distinction between average andabove carry over to the multichannel case. Surprisingly,
typical properties. They might also be useful laborato4t will turn out that the answer depends on tparity
ries to address the problem of disorder induced quanturaf the channel numbeN: For N even, the system be-
phase transitions in higher dimensions such as the platednaves very much like standard disordered multichannel
transition between insulating Hall states in the quantunwires; i.e., in the limitL — « all states are localized.

Hall effect [9,10]. However, for N odd, precisely one mode remains crit-

The one-dimensional nearest-neighbor random hoppingal and, moreover, exhibits much of the behavior of

model is described by the Hamiltonian the single critical mode of strictly one-dimensional sys-
.t tems. For largd., where the contribution of all other—

H = =D (tactcpsr + ficpircn), (1) localized—modes is negligible, the phenomenology of

" the wire is determined by the contribution of the single
where the operators! andc, are creation and annihila- critical mode, and, in this sense, remains critical. To our
tion operators for spinless fermions, respectively, and th&nowledge, this parity effect was first noticed by Miller
hopping parameter, = r + 61, consists of a nonran- and Wang in their study of random flux and passive ad-
dom partr and a fluctuating parét,. The fundamen- vection models [12]. However, in that work, the effect
tal symmetry of the Hamiltonian (1) that distinguisheshas been washed out by taking a two-dimensional ther-
it from one-dimensional systems with on-site disordermodynamic limit. KeepingV finite, we here focus on
is the presence of a sublattice (or chiral) symmetrya different regime, where parity has pronounced phe-
particles can hop only from even- to odd-numbered sitesnomenological consequences.

The energye = 0 is special since it corresponds to To probe the onset of critical behavioras— 0 we cal-

a logarithmically diverging mean density of states [2].culate the probability distribution of the conductance. As
Furthermore, there are several independent correlatiowill be shown below the even/odd effect manifests itself in
lengths that diverge foe — 0 [7] indicating that the thelevel repulsiorbetween transmission eigenvalues. We
energy e = 0 represents a (disorder induced) quantumalso discuss the effect of staggering in the nonrandom part
critical point [4,6,7,9]. In particular, at = 0 the con- of the hopping parameter(connected, e.g., to a Peierls
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instability) and establish a relation between delocalizatiormission is exponentially suppressed if ajls are larger
transition in random hopping models and in non-Hermitianthan unity. Thex;’s are related to the channel-dependent
guantum mechanics. localization lengthsé; = L/|x;|. The largest length¢
To be specific, we consider the Hamiltonian determines the exponential decay of the conductance
N + + and serves as the localization length of the total system of
H =~ Z Z (twijcnjcnri + tyicn+1iCnj), (2)  coupled chains.

noij=1 To compute the distribution o¥f, we use the Fokker-
where the indices and j label the N chains. Weak Planck approach pioneered for disordered wires with ran-
staggering in the hopping is introduced by setting = dom on-site disorder by Dorokhov [14] and Mello, Pereyra,

t8;; + (=1)"t'8;; + 8t,,;, where {' < t. We distin- and Kumar [15]. Following the method of Refs. [14,15],
guish between the cases in which time-reversal symmetrye first consider the case of disorder confined to a small
is present 8 = 1, t,;; real) from those where it is absent Strip0 <y < 5L. Denoting the wave function for < 0
(B = 2, t,;; complex). The weakly fluctuating parts of by ;(L) and fory > 8L by ;(R), we find
the hopping amplitude8, ;; are taken to be independent N
and Gaussian distributed, with zero mean and with vari- Yi(R) = Z M (L), (5)
ance(dt,,;01t,,;) = Bv?/y, wherey = BN + 2 — B. k=1

Upon linearization of the spectrum in the vicinity of the \yhere the (random) transfer matd of the slice reads
Fermi energy = 0, the lattice model (2) can be approxi-

mated by a continuum model obeying the Schrédinger o . [°F . B

equa“on M = Ty ex UF 0 dy[lv(y) 0-3W(y)] . (6)
N

si(y) = Z hi(Vi(y), i=1,....N, (3a) HereT, denotes the ordering operator for thintegration.
j=1 For any given realization of the disorder, the transfer
hij = ivpdyo1d, + vi(y)oy + wii(y)oa. (3b) matrix has the following symmetry properties:

Here ¢ is a two-component wave function, correspond- o3Mo; = M (chiral symmetry, (7a)

ing to even- and odd—numbered sites in the original lattice Mo M' = &, (flux conservation (7b)

model,y = 2na, a being the lattice constant, ang- =

2ta is the Fermi velocity. The sublattice symmetry of M* =M (time reversal (7c)

the lattice model (2) translates tah;;03 = —h;;, which

_Taking the symmetries (7) into account, we find that the

we refer to as chiral symmetry. The chiral symmetry dis ) :
y y y y Hansfer matrix can be parametrized as

tinguishes this system from one-dimensional systems wit
on-site disorder, which do not show a delocalization transi- M = u expxo3)v, (8)
tion. The random potentialsandw are Hermitian ¢;; =

vji, wi; = wj;) while, in the presence of time-reversal
symmetry, one has the further conditioy = —v;; and
w;j = w;;. Apart from the symmetry constraints, the ran-
dom potentials are independent and Gaussian distribute
with mean(v;;(y)) = 0 and{w;;(y)) = 2t';;, and vari-
ance(? = 2v2aBy 1)

whereu andv are the tensor product & X N unitary
matrices (orthogonal i3 = 1) with the2 X 2 unit ma-
trix and x is a diagonalN X N matrix with real diago-
Hal elements,...,xy. The numbersy,...,xy are the
radial coordinates of the transfer matrix (eigenvalues of
% logMM1), and the matrices andv are the angular co-
ordinates. In contrast to systems without chiral symmetry,

(Bvij(y)8vi;(¥)*y = 728(y — y) (1 — 85184 thex; can be both positive and negative.
The transfer matrix of a system of lengthis found by
Swi (8w () = 728(y — Y) (1 + 8518,)). multiplication of the transfer matrices of the many individ-

ual slices of width6 L. As each multiplication results in

% small change of the radial coordinatgs they perform

a “Brownian motion” [14,15]. Upon multiplication with
the transfer matrix of a slice of widthL, we find that the
radial coordinates; change according to; — x; + dx;,
where the first two moments of the incremeht;, aver-
aged over the disorder configuration in the added slice, are

In order to find the conductance at zero energy, w
calculate the distribution of theN X 2N transfer matrix
M, which relates wave functions at the left and right
of a disordered strip of length [13]. The eigenvalues
of MMT, which arise in inverse pairs ekp2x;), de-
termine the transmission eigenvalu@s = 1/cosH x;
and hence the conductange through the Landauer

formula given by
i T i ! (4) (5x;) oL f+ > coth )], (9a)
= P= . X; = —| — Xi — X s
8 &) & coshy; JOL T gy & S
In the absence of disorder, all exponentsare zero, and _ oL
conduction is perfectg = N. On the other hand, trans- (0x;6x0)51 = Oy Ok - (9b)
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Here the mean free pathand dimensionless staggering- “dynamics” of thex;’'s (j = 1,...,N) separate, and that
disorder ratiof read they show small Gaussian fluctuations around equidistant

¢ = v2/4vla, £ = yt'up/v2aB. (9¢) equilibrium positions,

The first term on the right-hand side of Eq. (9a) results*?) = WV + 1. = 2j = /)LB/2¢y, varx; = L/y¢.
in a simultaneous drift of all radial coordinates. The (12)

nd term ribes repulsion between nearhby th . L
second term describes repulsion between neayby the This is the so-called “crystallization of transmission eigen-

Brownian motion process. The Fokker-Planck equatioq/alues,, [13], which is a signature of localization in wires
corresponding to Eq. (9) reads ' Y

with on-site disorder. Transmission is exponentially sup-
oP 1 &g o pressed ifall radial coordinates; are larger than unity,
6= 2y 2 ox (5f tJJ )P, (102)  cf. Eq. (4). For on-site disorder ak;'s grow linearly
j=r 7 ! with L [13], which inevitably leads to strong localization.
. 8 (Within the framework of the DMPK equation, this results
J = l_[ I sinhx; — x)[”. (10b)  from the repulsion betweery and the mirror image-x;.)
k= The situation is different for the coupled random hopping
The initial condition corresponding to perfect transmissionchains, where we find from Eq. (12) that the radial coordi-
atL = 0is P(xy,...,xy:0) = []; 8(x)). natex; remains (on average) close to zero, thus resulting
The Fokker-Planck equation (10) is the central resulin a delocalized state and a critical point, provided
of this Letter [16]. It contains all information on the
transport properties of the random hopping system at N+1-2j—f=0. (13)
zero energy. Equation (10) is the chiral analog of the . .
so-called Dorokhov-Mello-Pereyra-Kumar (DMPK) equa—AS.‘.a resylt, n the ab_sence B staggerlryg:é (.))’ a
tion, which governs the evolution of the transmissioncr't'cal point existsonly if the number of chains is odd.

eigenvalues of a disordered wire [13—15]. The key diﬁ‘er-hc ézerr?] r:s nci)nstaﬁgiirlngr,] 3\/” ﬁve)? nrllmr]\?ielrdOf coup;lter::l
ence between the two equations is the presence of “mirrof&NdoM NOppIng chains show an exponential decay of the

imaged” eigenvalues; in the DMPK equation, which are conductance. _The conductance distribution at the critical
absent in Eq. (10). [For wires with on-site disorder, thePoint follows directly from the Landauer formula (4) and

eigenvaluest; not only repel from different eigenvalues ;Eitﬁgt?grflsagfquSz‘:rrcl)tijur;[:;)rz]e?gtgree rl"::'ag [csoeoertgna}(elz?]s the
xi, cf. Eq. (9a), but also from the mirror imagex;; in / 9 9. ’

patcuar, s epe Conductance a1 e Srtca part shous g sameto
In the absence of time-reversal symmetg € 2), the P ’ pping

DMPK equation has been solved exactly by Beenakkerangg::galcas'?t can by no means be regarded as a “good
Rejaei [17] by a mapping to a problem of noninteracting uctor.

fermions. Using the method of Ref. [17], we have been The parity effect for the presence of a critical point
able to find an exact solution of Eq. (10) fgr = 2. It In the absence of staggering can be understood from

the “level repulsion” of the variables;. In the large-
reads - e
NE L limit, where x; < --- < xy, the coordinates; repel
P =c(L) l_[ex —fxj — sz» T) by constant forces; see Eq. (9a). For an even number of
J channels, there is a net force on alls, driving them
) away from0 and resulting in an exponential suppression of
X l_[ (cr — xj) sinhlx; — x;), (11)  the conductance (see Fig. 1a). However, as is depicted in
k=i Fig. 1b, if the number of channels is odd, there is no force
wherec(L) is a normalization constant. The exact solutionon the middle exponenty +1)2. Therefore, this variable
(10) has a formal analogy to the distribution of eigenvaluesvill remain close to zero and give rise to a diverging
of a random matrix: it consists of a pair interaction and aocalization lengthé = L/|xn+1)/2| and a critical state.
potential part. However, while for random matrices theFor comparison, in the case of a wire with on-site disorder,
eigenvalue interaction is quadratic, here we find a moréhe repulsion betweer; and its mirror image-x; results
complicated level repulsion. Comparing our result (11) toin a nonvanishing force for all radial coordinates [13] (see
the exact solution of Beenakker and Rejaei, we note th€&ig. 1c).
absence of the mirror-image eigenvalues in the interaction By fine-tuning the staggering parameter(9c), which
and potential factors. No exact solution of Eq. (10) formeasures the ratio of the uniform staggeritigand the
B = 1 could be found. random disorder strength, an additionalN /2] critical
To determine whether the system is at a critical pointpoints can be reached, for both even and odd numbers of
we investigate the distribution of;’s for L — o, which  chains [N /2] is the largest intege= N/2). According
can be obtained from Eq. (9) forboh= 1 andB = 2. to Eq. (12), as the staggering parameteapproaches the
For L > N¢, the radial coordinates; are well separated, critical value f = 2j — N — 1, the localization length
say,x; < --- < xy. We then find from Eq. (9) that the & = ¢; = L/|x;| diverges with (critical) exponerit
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¢ ; 3 ing, a series ofV critical points (and the corresponding
< : - branches of delocalized states with complex energy; see
@ o—© @ (a) Ref. [11]) can then be obtained by tuning the values of the
X X X X imaginary vector potential.
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