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Stability, Multistability, and Wobbling of Optical Gap Solitons
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The stability of optical gap solitons is investigated in the framework of the generalized massive
Thirring model. The self-phase modulation can induce either oscillatory or nonoscillatory types of insta-
bility, the latter mechanism being described by an explicit criterion, and unfolded geometrically to reveal
gap soliton multistability, as well as different nonlinear evolution scenarios. [S0031-9007(98)06464-3]

PACS numbers: 42.65.Tg, 03.40.Kf, 42.65.Pc

One of the most intriguing manifestations of nonlinear- i0,us = OH _ Fidue — us — f i

P * *® 9 1

ity is the energy localization at frequencies such that the Sux oux @
propagation is otherwise forbidden, owing to periodicity-where H = Re[{u_, id,u_). — {us+, idu+)e — 2{uy,
induced gaps in the linear dispersion relation. This energyi_).] — [dz fu, and f.; = fu(u=,u) accounts for
trapping is mediated bhattice or grating self-transparent the nonlinearity [19]. Although our approach can be
solitary waves, or simplgap solitons(GS), which hence easily extended to parametric GS (i.e., multicomponent
constitute universal modes of periodic nonlinear media:+ [9]), and general nonlinearitieg,;, here we focus
[1-9]. Although this concept holds in different contexts for definiteness on the generalized Thirring model
such as photon-atom coupling [3], electrical circuits [4],such that f,; = plusu—|> + 5 (lus]* + lu—1*) [2].
solid-state lattice vibrations [5], and photonics band gaprhe invariance of Egs. (1) under the transformation
materials [6], the field of nonlinear optics [1,2,7-10] iS u«+, (z,t,p,0) = *u+,—(z,t,p, o), allow us to take
particularly attractive since a mature technology of gratwithout loss of generalityp = 1 letting eithero > 0
ing fabrication makes the observation of GS viable with(e.g., the fiber case [7]), or < 0 (e.g., Kerr limit in
different nonlinearities. Fiber gratings offer unsurpassedjuadratic media [8]). Solitary waves of Egs. (1) are
opportunities to observe GS sustained by cubic nonlineaknown to exist foro > 0 [2], whereas Lorentz invari-
ities [7], whereas bichromatic parametric GS [8,9] consti-ance and integrability by inverse scattering holds only
tute a formidable laboratory for quadratic solitons [10].for o = 0 [20]. Setting u+ = u’. + iu’, we rewrite
A stunning feature of optical GS not yet observed isEgs. (1) in terms of the elememt = [u’,, u", u’,,u' "
their unique capability to “freeze” the electromagneticof a real Hilbert space, as
energy at zero (or extremely low) velocity in the labo- du=—QH' )
ratory frame. However, thestability of GS, which is a
fundamental prerequisite for their observability, was no ; ! ol
assessed yet, except for a few numerical experiments [2 ments of the S|mp]ect|c oper_atﬁr =-Q'( gnd[ are

The stability of solitary waves is usually brought back X 2 null and un\n, respeqtlvgly), and the prime dgnotes
to the parameter dependence of their conservation laws, &§nceforth the Frechet de”‘{at"gﬁ_- Other conservations
well known, e.g., for generalized nonlinear Schrédinger®f EAs. (2) correspond to invariandgé(u) = H(Tu) of
equations (NLSEs, i.e., dispersion originating from aff undeflthe action of a unitary group, and are found
Laplacian) [11]. In spite of recent extensions of such cri-2S {—Q ™ T"u,u), whereT" is the |nf|n|t(?5|mal operator
teria for NLSEs [12—15] and noteworthy attempts to de-{16]. The rotationalTy = exp(—A/tQ), Ty = —0] and
velop general theories [16—18], a compiete understandinfjansiational T, = exp(—v1d;), T,, = —d.] symmetries
of solitons withmultiple parameters and invariantsuch ~ Of E@S. (2), wherev and A are the symmetry parame-
as GS, is still lacking. Here, we predict different insta-t€rs yield the conserved photon flgkand momentuna/
bility mechanisms for bright GS. Exponential instabilities  Q(u) = %(u, uy; M(u) = %(u, —Qauy. (3)
are described by a novekplicit criterion, whose geomet- | gt ys consider solutions of Egs. (2) in the fomz,
rical interpretation reveals for the first ime G&ultista- /) — 7,7, o (z,1) = exp(—AtQ — v1d,)e(z,1). It fol-
bility, and lead to distinct nonlinear evolution scenariosgws from Egs. (2) that obeys the equation
Because ofoscillatory instabilities that we also predict 90— —QF'" FeFo)=H — AO — vM
(e.g., for fibers [7]), not envisaged for other optical soli- % ’ (¢) = Q -~ vM,
tons [11-15], this criterion turns out to be only a suffi- (4)
cient one for instability. Specifically, the coupled-modewhereF plays the role of a Lyapunov functional. Solitary
approach for optical GS yields Hamiltonian equations forwaves are by definition two-parameter stationary= 0)
forward (+) and backward ) dimensionless envelopes solutions ¢ = ¢, of Eg. (4). Hence they are extrema
u~+ at Bragg (gap-center) carrier frequency [2,9] [F'(¢9) = 0] of F, representing moving envelopes with

twhere Q11 =Qy»p =0 and Oy = —Q, =1 are ele-
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frequency detuning\ (from gap center) measured in the following 2 X 2 system with unknowm,,, v,,
reference frame traveling with soliton velocity. Here A, (920 9,0
F'(¢o) = 0 admits analytical solutions recast as J(G"O)[ } =0 J(e) = <8AM a,,M>' (7)

1+ v\ < Th Ibll = = i
= C. [ r - ilBL—At+¢=(al)] e solvabilityJ = det J(¢o) = 0 of Egs. (7) determines
0 C‘(l * v) n(2ag)e > ) the threshold for the appearance of unstable modes,

where ¢ = y(z — vt — zy), zo is arbitrary, 3 = yvA  thereby defining the marginal stability condition

is the propagation constant = +/1 — 62 is the in- J = 02000,My — (8,Q0)* = 0, (8)
verse width, 8 = yA, and y = (1 — v?)"1/2 is the where we exploited the identiy, 0 = aAM. J = 0 has
Lorentz factor. The intensity profile is)(x) = 2¢?>/  an explicit but cumbersome expression /&, v) = 0.

[coshix) + s8], the nonlinear phases ¢+(x) =  To proceed and characterize stable and unstable domains
+sF+ tan '[\/(1 — s8)/(1 + s8)tanh(x)], and the con- we substitute the asymptotic expansign= ¢, + d¢
stants areC; = (y2|x|)"'/2, ¢ = —sC, with y = into F calculated over the perturbed functiap, and

(1 —v2) + ol +v?), s =sgy), and Fy = 3111}1 Taylor expanded around the soli'gon vallig = F(¢pyg),
Fo=3R  with R =1[1+ cy2(1 + v2)[1 + & F@)=Fo+(F(po),d¢) + 3(F"(¢0)d¢,0¢) +
oy2(1 1—+v,)2:| Below we make use of the soli- --:- A order €2, we obtain [exploiting the relations

ton invariants calculated from Egs. (3)-(5)Q0 = F'(¢o) = 0 and(F"(¢0)d¢.6¢) = (Lo1, ¢1)]
O(pg) = 4C3 tarfa™'(1 — S5):|_, and My = M(¢o) = F — Fy= mM A2 + o 52 4 AD (9)
3C2v{2aC2[(5 + vY)o + y 2] — 4560 Q). These 2

GS exist within the “dynamical” (i.e., measured in the where the dot stands for derivative with respect to the fast
soliton frame) frequency gap? < 1 — v?, where linear timer, andm;; = (Qd;¢0, L'Qd,¢0), With i, j = A, v.
solutions are exponentially decaying [1,2,9]. Inside theThe 2 degrees of freedom oscillator (9) can be further re-

gap, whenever-1 < o < 0 the GS (5) become singular duced by exploiting the relatioh = —S"Q b= 21
(x —0,Cs — »)asv? - v’ = FZ imposed by Eq. (7) close to the threshold where the

Linearization around the sollton, i.eg = @9 + 8¢, adiabatic approach holds true. Choosings variable (an
yields the evolution equationd,;6¢ = —QLé¢ where equivalent picture holds fad), Eg. (9) yields the energy

L = F"(¢o) is a self-adjointt X 4 first-order differential E = —H(¢) of a unidimensional oscillator governing the

operator. Exponentially growing perturbation¢f ~  evolution of the perturbed GS

exp(At), Re(A) > 0] fulfill the standard form eigenvalue My .,

problem with the nonself-adjoint operatetQ) L E=U+ v, (10)
—QL8¢ = A8¢; L =H"(pg) +vQa, — Al. where U = A(Qy — Q) + v(My — M) — Hy, and m, =

9, Qo »Qo

6)  2may 35 — Muy — mM(g 5.)%, are equivalent poten-
Here L has an unbounded negative and positive contial and mass, respectively. From Egs. (9) and (10), for
tinuum which makes it difficult to apply a rigorous Small variations of the parametet¢s) = Ag + €Acq(2),
derivation (e.g., using spectral decomposition bf v(t) = vo + eveq(t), we obtaln]the linearized oscilla-
[16,17]) of an invariant criterion for the appearance oftor § = —wgiq, where wy = ;=—5-. For |v| < v,
unstable eigenvalues of-QL. We adopt here a sincem,daQo is posmve we conclude that > 0 cor-
multiscale approach valid under the assumption ofesponds to stabilityd; > O bounded motion), whereas
adiabatic evolution [13]. Let us define slow time J <0 yields instability @j < 0, unbounded motion),

scales 1, = €'t (3, = dp + €9, + €29, + ..., and and vice versa fofv| > |vg|. The inspection of the
denote d,f as f,), and expand¢ = ¢, + §¢ =  condition (8) reveals that a change of stability occurs
0o + €p; + €2¢y + ..., assuming that the parameterswhenever o < 0. The unstable domainJ/(< 0) re-

p = (A,v) change over the slow time scales so thatduces progressively akr| decreases, and foo = 0
p = p(t1,1,...). Then we collect terms of the same only the stable regionJ(> 0) survives. In terms of
order ine after substitution in Eq. (4).

At zero order, we retrace the stationary equation ()

F'(¢g) = 0. At order €, we obtain the linear problem 20

Lo, = S whereS = Q(A,,0a¢0 + v;,0,¢0) does not 1.8
depend explicitly ong;. This equation can be solved j1-6
when S does not belong to the kernel &f sayKer(L) 1‘2

i.e., rotational and translational modes associated with the 1'0
symmetries: Q) o9 and 9, ¢, respectively. The orthogo- S
nality constraint(S, Ker(L)) = 0 yields two equations, N

in turn implying (Qo);, = (My),, = 0, i.e., constancy of

Qo, M over the slow time scale (i.e., adiabatic evolution).FiG. 1. Parametric GS surfa@@(A, v), Mo(A, v), Ho(A, v):
These equations can also be recast in the form of th@)s = 0.5; (b) ¢ = —0.1.
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of this surface whose singular points are such that
ranfA(¢o)] = 1. A necessary and sufficient condition
J=0 for this to occur is given by the threshold conditidr= 0.
In fact, the third column inA(¢y) is a linear combina-
tion of the first two columns due to the two relations
0.5 apH() - Aaon - v3pM0 =0,p= (A,v), which fol-
J=0 low from Z—g =(F', pp) + % particularized to the soli-
ton [F'(¢9) = 0]. To show the difference between the
full focusing and the defocusing cases, we show in Fig. 1
© the GS invariant surface: when > 0 it is a single-value
-1 . . .
-1 -05 0 0.5 14 435 47 smooth function of the parameters [Fig. 1(a)], whereas
Detuning A Q for ¢ < 0 a singular folding of the mapping [catastrophe
FIG. 2. (a) GS stability domains within the gay + v? < [18,21]]_take§.place [Fig.. 1(b)]. Asa consequence, soli-
1 (see text). Along the dashed lines = *v,, GS (5) ton multistability occurs, i.e., GS solutions with different
become singular. The insets show the GS surfakeM,, H;) values of the parameters, v, and HamiltonianH exist
projected on the planes (I = 4.4 and (c)M = 0.01 (thick  for the same given values @f and Q (see also Fig. 2).
lines). Its singular edges bound the range of multistability andrpig proves soliton multistability to be a general phenom-
are delimited by the marginal curve= 0 (thin fine). enon not restricted to non-Kerr nonlinearities and NLSEs
as in Refs. [22]. For a givemnr, the multistable region in
the plane(A, v) can be delimited geometrically search-
ing for multiple intersections ofQ, M = const curves.
The results are summarized in Fig. 2(a): within the gap
;i.e., existence domain? + v2 < 1), four bounded re-

Velocity v
o
(6]

the eigenvalue problem (6) the marginal conditibs= 0
describes pureexponentialinstabilities, i.e., real eigen-
value pairs bifurcating from the origin. However, in
principle GS can also undergoscillatory instabilities

associated with complex (allowed by nonadjointness}': o . .
eigenvalues of Egs. (6) witlRe(A) > 0. Such mecha- JioNS correspond to qualitatively different solutions: un-

nism, known in other contexts, cannot be related to arst@Ple £) and stable B) single-value GS; unstableCy
invariant description [17], and to the best of our knowl—_and stable ) branches of multistable GS. As shown

edge has not been reported for the linearization (6) aris™ Figs. 2(b) and 2(c), the prqjgctions .Of the surface
ing for other lowest-order optical solitary waves (e.g.,QO’MO’HO (calculated over a sufficiently wide range, e.g.,

nonintegrable NLSEs [12—15]). Our extensive numerical? > || < 0.7) fonhthe %IaneshQ,M - constblconfir(T the
solutions of Eq. (6) show that complex eigenvalues Origi_coet;ilstenqeho u rele hranc esf (one sltla € "?‘In two un-
nating from the collision of two imaginary eigenvalues stable), with typical shapes of a swallow-tail catastro-

destabilize the GS fos- > 0, indicating that the marginal phe [Fig. 2(b)] [21]. The marginal curvé =0 always
criterion (7) is only sufficient for instability. Far = 0.5 separates stable and unstable solutions in the parameter

[2,7], unstable complex are found in the lower half gap P!ane [Fig. 2(a)], and is confirmed [see Figs. 2(b) and
(A < 0): e.g., stationary« = 0) GS destabilize below 2(c)] to describe the singular edges of the GS surface
the critical valueA = 0. (QO’MO’HO):.

Let us return to thg = 0 instability transition forr < 1he stability results reported so far have been con-
0. An alternative approach, namely, the analysis of th irmed by extensive numerical integration of Egs. (1).

parametric soliton surfac@(A, v), Mo(A, v), Ho(A, v) he decay typical of oscillatory instabilities is shown in
permits us to disclose the mechanisms which underlie thi§!9: 3: foro > 0. The exponential growth rate and the

transition. The mappindA, v) — (Qo, Mo, Ho) defines oscillation peric_)d in Fig. 3(b) agree _WeII with, and
an associated Jacobian mathix= A(gg), with 27 /A;, respectively,A = A, + i); being the unstable
eigenvalue [inset of Fig. 3(b)] found numerically from

_(0A0 0dAM 0aH Eg. (6
Alp) = < ) (11) g. (6).
w0 M d,H For ¢ < 0 the evolution of unstable GS is more

The transition is accompanied by a nontrivial folding complicated: close to threshold, our analysis reveals that

23 (b)

o 2 FIG. 3. Oscillatory GS instability for

® -.g 2 o= 105 A=-09, v=0: (a) Spatio-

(% = temporal contour of intensity|u+|i;
o _ . (b) Evolution of peak intensityu (0)|*.
o 1 A=0.1+i1.7 The inset shows the unstable eigenvalue
Q. found numerically from Eq. (6).
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process is accompanied by radiative decay of one GS com-
ponent (also beyond the adiabatic regime), until the natural

group velocity|v| = 1 is reached leading to a linear for-
ward wave (backward fov; < 0).

In summary, we have predicted different instability
mechanisms for GS. An invariant criterion associated
with the appearance of real eigenvalues can be interpreted
geometrically to reveal multistability. Contrary to other
optical solitons [11-14] also oscillatory instability takes
place for GS. Our approach and results could be general-
ized to other physical situations (e.g., parametric walking
10 solitons [15], codirectional coupling [23], different non-
linearities) modeled by nonintegrable models which lack
0 Galilean or Lorentz invariance.
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