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Stability, Multistability, and Wobbling of Optical Gap Solitons
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The stability of optical gap solitons is investigated in the framework of the generalized ma
Thirring model. The self-phase modulation can induce either oscillatory or nonoscillatory types of
bility, the latter mechanism being described by an explicit criterion, and unfolded geometrically to r
gap soliton multistability, as well as different nonlinear evolution scenarios. [S0031-9007(98)064
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One of the most intriguing manifestations of nonlinear
ity is the energy localization at frequencies such that th
propagation is otherwise forbidden, owing to periodicity
induced gaps in the linear dispersion relation. This ener
trapping is mediated bylattice or grating self-transparent
solitary waves, or simplygap solitons(GS), which hence
constitute universal modes of periodic nonlinear med
[1–9]. Although this concept holds in different contexts
such as photon-atom coupling [3], electrical circuits [4
solid-state lattice vibrations [5], and photonics band ga
materials [6], the field of nonlinear optics [1,2,7–10] is
particularly attractive since a mature technology of gra
ing fabrication makes the observation of GS viable wit
different nonlinearities. Fiber gratings offer unsurpasse
opportunities to observe GS sustained by cubic nonlinea
ities [7], whereas bichromatic parametric GS [8,9] const
tute a formidable laboratory for quadratic solitons [10]
A stunning feature of optical GS not yet observed i
their unique capability to “freeze” the electromagneti
energy at zero (or extremely low) velocity in the labo
ratory frame. However, thestability of GS, which is a
fundamental prerequisite for their observability, was no
assessed yet, except for a few numerical experiments [2

The stability of solitary waves is usually brought bac
to the parameter dependence of their conservation laws
well known, e.g., for generalized nonlinear Schrödinge
equations (NLSEs, i.e., dispersion originating from
Laplacian) [11]. In spite of recent extensions of such cr
teria for NLSEs [12–15] and noteworthy attempts to de
velop general theories [16–18], a complete understandi
of solitons withmultiple parameters and invariants, such
as GS, is still lacking. Here, we predict different insta
bility mechanisms for bright GS. Exponential instabilities
are described by a novelexplicit criterion, whose geomet-
rical interpretation reveals for the first time GSmultista-
bility, and lead to distinct nonlinear evolution scenario
Because ofoscillatory instabilities that we also predict
(e.g., for fibers [7]), not envisaged for other optical soli
tons [11–15], this criterion turns out to be only a suffi
cient one for instability. Specifically, the coupled-mod
approach for optical GS yields Hamiltonian equations fo
forward (1) and backward (2) dimensionless envelopes
u6 at Bragg (gap-center) carrier frequency [2,9]
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 7i≠zu6 2 u7 2
≠fnl

≠up
6

, (1)

where H  Refku2, i≠zu2lc 2 ku1, i≠zu1lc 2 2ku1,
u2lcg 2

R
dz fnl , and fnl  fnlsu6, up

6d accounts for
the nonlinearity [19]. Although our approach can b
easily extended to parametric GS (i.e., multicompone
u6 [9]), and general nonlinearitiesfnl , here we focus
for definiteness on the generalized Thirring mod
such that fnl  rju1u2j2 1

s

2 sju1j4 1 ju2j4d [2].
The invariance of Eqs. (1) under the transformatio
u6, sz, t, r, sd ! 6u6, 2sz, t, r, sd, allow us to take
without loss of generalityr  1 letting either s . 0
(e.g., the fiber case [7]), ors , 0 (e.g., Kerr limit in
quadratic media [8]). Solitary waves of Eqs. (1) ar
known to exist fors . 0 [2], whereas Lorentz invari-
ance and integrability by inverse scattering holds on
for s  0 [20]. Setting u6  ur

6 1 iui
6 we rewrite

Eqs. (1) in terms of the elementu  fur
1, ur

2, ui
1, ui

2gT

of a real Hilbert space, as

≠tu  2VH 0, (2)

where V11  V22  0 and V21  2V12  I are ele-
ments of the simplectic operatorV  2V21 (0 andI are
2 3 2 null and unit, respectively), and the prime denote
henceforth the Frèchet derivativeddu . Other conservations
of Eqs. (2) correspond to invarianceHsud  HsTud of
H under the action of a unitary groupT , and are found
as k2V21T 0u, ul, whereT 0 is the infinitesimal operator
[16]. The rotational [TD  exps2DtVd, T 0

D  2V], and
translational [Ty  exps2yt≠z d, T 0

y  2≠z] symmetries
of Eqs. (2), wherey and D are the symmetry parame-
ters yield the conserved photon fluxQ and momentumM

Qsud 
1
2 ku, ul ; Msud 

1
2 ku, 2V≠zul . (3)

Let us consider solutions of Eqs. (2) in the formusz,
td  TDTywsz, td  exps2DtV 2 yt≠zdwsz, td. It fol-
lows from Eqs. (2) thatw obeys the equation

≠tw  2VF0; F  Fswd ; H 2 DQ 2 yM ,
(4)

whereF plays the role of a Lyapunov functional. Solitary
waves are by definition two-parameter stationary (≠t  0)
solutions w  w0 of Eq. (4). Hence they are extrema
[F0sw0d  0] of F, representing moving envelopes with
© 1998 The American Physical Society 85
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frequency detuningD (from gap center) measured in the
reference frame traveling with soliton velocityy. Here
F0sw0d  0 admits analytical solutions recast as

u6,0  C6

µ
1 6 y

1 7 y

∂1y4p
hs2az d eifbz2Dt1f6saz dg, (5)

where z ; gsz 2 yt 2 z0d, z0 is arbitrary, b ; gyD

is the propagation constant,a ;
p

1 2 d2 is the in-
verse width, d ; gD, and g ; s1 2 y2d21y2 is the
Lorentz factor. The intensity profile ishsxd  2a2y
fcoshsxd 1 sdg, the nonlinear phases f6sxd 
6sF6 tan21f

p
s1 2 sddys1 1 sdd tanhsxdg, and the con-

stants areC1  sg2jxjd21y2, C2  2sC1, with x 

s1 2 y2d 1 ss1 1 y2d, s  sgnsxd, and F1 
3R21
11R ,

F2 
32R
11R , with R  f1 1 sg2s1 1 yd2gyf1 1

sg2s1 2 yd2g. Below we make use of the soli-
ton invariants calculated from Eqs. (3)–(5):Q0 
Qsw0d  4C2

1 tanfa21s1 2 sddg, and M0  Msw0d 
g3C2

1yh2aC2
1fs5 1 y2ds 1 g22g 2 4sdsQ0j. These

GS exist within the “dynamical” (i.e., measured in th
soliton frame) frequency gapD2 , 1 2 y2, where linear
solutions are exponentially decaying [1,2,9]. Inside th
gap, whenever21 , s , 0 the GS (5) become singular
(x ! 0, C6 ! `) asy2 ! y2

s 
11s

12s .
Linearization around the soliton, i.e.,w  w0 1 dw,

yields the evolution equation≠tdw  2VLdw where
L ; F00sw0d is a self-adjoint4 3 4 first-order differential
operator. Exponentially growing perturbations [dw ,
expsltd, Resld . 0] fulfill the standard form eigenvalue
problem with the nonself-adjoint operator2VL

2VLdw  ldw; L  H 00sw0d 1 yV≠z 2 DI .
(6)

Here L has an unbounded negative and positive co
tinuum which makes it difficult to apply a rigorous
derivation (e.g., using spectral decomposition ofL
[16,17]) of an invariant criterion for the appearance o
unstable eigenvalues of2VL. We adopt here a
multiscale approach valid under the assumption
adiabatic evolution [13]. Let us define slow time
scales tn  ent (≠t  ≠0 1 e≠1 1 e2≠2 1 . . . , and
denote ≠nf as ftn

), and expand w  w0 1 dw 
w0 1 ew1 1 e2w2 1 . . . , assuming that the parameter
p ; sD, yd change over the slow time scales so tha
p  pst1, t2, ...d. Then we collect terms of the same
order ine after substitution in Eq. (4).

At zero order, we retrace the stationary equatio
F0sw0d  0. At order e, we obtain the linear problem
Lw1  S where S ; VsDt1 ≠Dw0 1 yt1 ≠yw0d does not
depend explicitly onw1. This equation can be solved
when S does not belong to the kernel ofL, say KersLd
i.e., rotational and translational modes associated with t
symmetries:Vw0 and ≠zw0, respectively. The orthogo-
nality constraintkS, KersLdl  0 yields two equations,
in turn implying sQ0dt1  sM0dt1  0, i.e., constancy of
Q0, M0 over the slow time scale (i.e., adiabatic evolution
These equations can also be recast in the form of t
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following 2 3 2 system with unknownDt1 , yt1

J sw0d
∑

Dt1

yt1

∏
 0; J swd ;

µ
≠DQ ≠yQ
≠DM ≠yM

∂
. (7)

The solvabilityJ ; detJ sw0d  0 of Eqs. (7) determines
the threshold for the appearance of unstable mod
thereby defining the marginal stability condition

J  ≠DQ0≠yM0 2 s≠yQ0d2  0 , (8)
where we exploited the identity≠yQ  ≠DM. J  0 has
an explicit but cumbersome expression asfsD, yd  0.
To proceed and characterize stable and unstable dom
we substitute the asymptotic expansionw  w0 1 dw

into F calculated over the perturbed functionw, and
Taylor expanded around the soliton valueF0  Fsw0d,
i.e., Fswd  F0 1 kF0sw0d, dwl 1

1
2 kF00sw0ddw, dwl 1

. . . . At order e2, we obtain [exploiting the relations
F0sw0d  0 andkF00sw0ddw, dwl  kLw1, w1l]

F 2 F0 
mDD

2
ÙD2 1

myy

2
Ùy2 1 mDy

ÙD Ùy , (9)

where the dot stands for derivative with respect to the f
time t, andmij  kV≠iw0, L21V≠jw0l, with i, j  D, y.
The 2 degrees of freedom oscillator (9) can be further
duced by exploiting the relationÙD  2

≠yQ
≠DQ Ùy  2

≠DM
≠yM Ùy

imposed by Eq. (7) close to the threshold where t
adiabatic approach holds true. Choosingy as variable (an
equivalent picture holds forD), Eq. (9) yields the energy
E ; 2Hswd of a unidimensional oscillator governing th
evolution of the perturbed GS

E  U 1
my

2
Ùy2, (10)

where U ; DsQ0 2 Qd 1 ysM0 2 Md 2 H0, and my 
2mDy

≠yQ0

≠DQ0
2 myy 2 mDDs ≠yQ0

≠DQ0
d2, are equivalent poten-

tial and mass, respectively. From Eqs. (9) and (10),
small variations of the parametersDstd  D0 1 eDeqstd,
ystd  y0 1 eyeqstd, we obtain the linearized oscilla
tor q̈  2v

2
0q, where v

2
0 ; J

my≠DQ0
. For jyj , jysj,

since my≠DQ0 is positive, we conclude thatJ . 0 cor-
responds to stability (v

2
0 . 0, bounded motion), whereas

J , 0 yields instability (v2
0 , 0, unbounded motion),

and vice versa forjyj . jysj. The inspection of the
condition (8) reveals that a change of stability occu
whenever s , 0. The unstable domain (J , 0) re-
duces progressively asjsj decreases, and fors $ 0
only the stable region (J . 0) survives. In terms of

FIG. 1. Parametric GS surfaceQ0sD, yd, M0sD, yd, H0sD, yd:
(a) s  0.5; (b) s  20.1.
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FIG. 2. (a) GS stability domains within the gapD2 1 y2 ,
1 (see text). Along the dashed linesy  6ys, GS (5)
become singular. The insets show the GS surfacesQ0, M0, H0d
projected on the planes (b)Q  4.4 and (c)M  0.01 (thick
lines). Its singular edges bound the range of multistability a
are delimited by the marginal curveJ  0 (thin line).

the eigenvalue problem (6) the marginal conditionJ  0
describes pureexponentialinstabilities, i.e., real eigen-
value pairs bifurcating from the origin. However, i
principle GS can also undergooscillatory instabilities
associated with complex (allowed by nonadjointne
eigenvalues of Eqs. (6) withResld . 0. Such mecha-
nism, known in other contexts, cannot be related to
invariant description [17], and to the best of our know
edge has not been reported for the linearization (6) a
ing for other lowest-order optical solitary waves (e.g
nonintegrable NLSEs [12–15]). Our extensive numeri
solutions of Eq. (6) show that complex eigenvalues ori
nating from the collision of two imaginary eigenvalue
destabilize the GS fors . 0, indicating that the margina
criterion (7) is only sufficient for instability. Fors  0.5
[2,7], unstable complexl are found in the lower half gap
(D , 0): e.g., stationary (y  0) GS destabilize below
the critical valueD . 0.

Let us return to theJ  0 instability transition fors ,

0. An alternative approach, namely, the analysis of
parametric soliton surfaceQ0sD, yd, M0sD, yd, H0sD, yd,
permits us to disclose the mechanisms which underlie
transition. The mappingsD, yd ! sQ0, M0, H0d defines
an associated Jacobian matrixA  Asw0d, with

Aswd ;
µ

≠DQ ≠DM ≠DH
≠yQ ≠yM ≠yH

∂
. (11)

The transition is accompanied by a nontrivial foldin
FIG. 3. Oscillatory GS instability for
s  10.5, D  20.9, y  0: (a) Spatio-
temporal contour of intensity ju1j2;
(b) Evolution of peak intensityju1s0dj2.
The inset shows the unstable eigenvaluel
found numerically from Eq. (6).
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of this surface whose singular points are such th
rankfAsw0dg  1. A necessary and sufficient condition
for this to occur is given by the threshold conditionJ  0.
In fact, the third column inAsw0d is a linear combina-
tion of the first two columns due to the two relation
≠pH0 2 D≠pQ0 2 y≠pM0  0, p  sD, yd, which fol-

low from dF
dp  kF0, wpl 1

≠F
≠p particularized to the soli-

ton [F0sw0d  0]. To show the difference between the
full focusing and the defocusing cases, we show in Fig.
the GS invariant surface: whens . 0 it is a single-value
smooth function of the parameters [Fig. 1(a)], where
for s , 0 a singular folding of the mapping [catastroph
[18,21] ] takes place [Fig. 1(b)]. As a consequence, so
ton multistability occurs, i.e., GS solutions with differen
values of the parametersD, y, and HamiltonianH exist
for the same given values ofM and Q (see also Fig. 2).
This proves soliton multistability to be a general phenom
enon not restricted to non-Kerr nonlinearities and NLSE
as in Refs. [22]. For a givens, the multistable region in
the planesD, yd can be delimited geometrically search
ing for multiple intersections ofQ, M  const curves.
The results are summarized in Fig. 2(a): within the ga
(i.e., existence domainD2 1 y2 , 1), four bounded re-
gions correspond to qualitatively different solutions: un
stable (A) and stable (B) single-value GS; unstable (C)
and stable (D) branches of multistable GS. As show
in Figs. 2(b) and 2(c), the projections of the surfac
Q0, M0, H0 (calculated over a sufficiently wide range, e.g
jyj, jDj , 0.7) on the planesQ, M  const confirm the
coexistence of three branches (one stable and two
stable), with typical shapes of a swallow-tail catastr
phe [Fig. 2(b)] [21]. The marginal curveJ  0 always
separates stable and unstable solutions in the param
plane [Fig. 2(a)], and is confirmed [see Figs. 2(b) an
2(c)] to describe the singular edges of the GS surfa
sQ0, M0, H0d.

The stability results reported so far have been co
firmed by extensive numerical integration of Eqs. (1
The decay typical of oscillatory instabilities is shown i
Fig. 3, for s . 0. The exponential growth rate and th
oscillation period in Fig. 3(b) agree well withlr and
2pyli, respectively,l  lr 1 ili being the unstable
eigenvalue [inset of Fig. 3(b)] found numerically from
Eq. (6).

For s , 0 the evolution of unstable GS is more
complicated: close to threshold, our analysis reveals t
87
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FIG. 4. (a) Phase-planesy, Ùyd from Eq. (10),s  20.1. The
fixed points (full circles) represent one stable (S) and two
unstable (U) GS. Evolutions (the grey scale is proportional to
ju1j2); (b) Soliton wobbling around the stable soliton S from
input with yi  0.54, Dsyid  20.18, circle in (a); (c) soliton
decay into a foward linear wave traveling withy  1 from
input with yi  0.6, Dsyid  20.12, triangle in (a).

unstable neighboring GS evolve in two qualitatively dis
tinct ways. Consider perturbed inputsui  ust  0d in
Eqs. (1) which correspond to given valuesQ  Qi and
M  Mi, and examine the nonlinear evolutions describe
by Eq. (10). Close to the thresholdJ  0, the curves
Qi  const approach the curvesMi  const, and we can
calculate the massmy and the potentialU  Usyd from
the parametric dependenceD  Dsyd calculated along
the curveQ  Qi (or M  Mi). The level curves of
E in the phase planesy, Ùyd are shown in Fig. 4(a) for
Qi  4.4 and Mi  0 (for Mi fi 0 the curves are no
longer symmetric). The elliptic (S) and hyperbolic (U)
points in Fig. 3(a) represent stable and unstable branch
of multistable GS such thatsQ0, M0d  sQi , Mid. More-
over, the open curves accumulate due to divergence ofmy

(cf. relativistic oscillator) as the singularityy  6ys 
60.9 is approached (i.e., limit of validity of nonlinear
model). Now consider a generic initial condition on this
phase planesy, Ùyd  syi , 0d, describing a soliton with ve-
locity yi perturbed to have fluxQi and momentumMi .
Two different types of motion are expected depending o
yi : wobbling and decay correspond to closed (aroundS)
and open orbits, respectively. Integration of Eq. (1) con
firms such expectations. In Fig. 4(b) we have chosenyi

to yield an oscillatory orbit. As predicted the perturbe
unstable GS gives rise to long-range oscillations arou
a soliton with zero mean velocity (dynamical GS multi
stability) or, in other words, a wobbling soliton, which
experience also a coupled periodic change of frequenc
Velocity and frequency changes induce out of phase amp
tude oscillation ofu1 andu2, and soliton breathing (i.e.,
width and in-phase amplitude changes), respectively.
Fig. 4(c) yi corresponds to an open orbit: the perturba
tion induces the velocity to increase monotonically. Thi
88
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process is accompanied by radiative decay of one GS co
ponent (also beyond the adiabatic regime), until the natur
group velocityjyj  1 is reached leading to a linear for-
ward wave (backward foryi , 0).

In summary, we have predicted different instability
mechanisms for GS. An invariant criterion associate
with the appearance of real eigenvalues can be interpre
geometrically to reveal multistability. Contrary to other
optical solitons [11–14] also oscillatory instability takes
place for GS. Our approach and results could be gener
ized to other physical situations (e.g., parametric walkin
solitons [15], codirectional coupling [23], different non-
linearities) modeled by nonintegrable models which lac
Galilean or Lorentz invariance.
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