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Phase Nucleation of Elastic Defects in Crystals Undergoing a Phase Transition

A. A. Boulbitch*
Department E22, Technische Universitdt Minchen, James-Frank-Strasse, D-85747 Garching bei Miinchen, Germany

P. Tolédano

Department of Physics, University of Amiens, 33, rue Saint-Leu, 80039 Amiens Cedex, France
(Received 1 December 1997

General properties of nucleation of elastic defects in crystals undergoing a phase transition are
described in the framework of a Landau-type approach. For static defects the phase diagram topology
of a nucleus is shown to be independent of the nature and geometry of the defects and may contain
additional phases which are unstable in the bulk. For moving defects the nuclei have a specific
configuration and arise only below a critical speed of the defects. [S0031-9007(98)06687-3]
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Elastic defects such as dislocations, cracks, inclusionsyhere the sum runs over the volumeé of the crystal.
or twin boundaries often give rise, in the vicinity of a phasee () = an?/2 + Bn*/4 + yn®/6 is the standard free
transition, to nuclei of a new phase close to the defectenergy density describing the transition7at AnZu;; is
[L-8]. These nuclei have been observed in many catehe striction coupling between the order parameter and
gories of transitions and materials, i.e., in martensitic-typaehe dilatation, u;; is the strain tensor, ang.(u;) =
transformations in metals and alloys [1], in ceramics [2],Cixmuiruinm/2 is the elastic energy. The Ginsburg invari-
in magnetic [3] and ferroelectric or ferroelastic transitionsant~(V5)? accounts for the space dependence of the order
[4,5], in Mott transitions [6], in semicrystalline polymers parameter. The equations minimizifgare

[7], as well as in superconducting materials [8]. An — (a + 24u:) 1 = 34 5.
In contrast to the unstable Frenkel nuclei which are ghn —( i)m =B+ ym
due to thermal fluctuations [9], nuclei associated with doi/dxy =0, (2)

elastic defects are stabilized by the strain field inducethereU_k
by the defects. This fact was firs_t recognized by C"?‘hrbending on the space variables The second Eq. (2) ex-

[10], who proposed thermodynamic model of nucleation, ogqes the mechanical equilibrium of the system. Assum-
in the case of dislocations. Further theoretical approache{ég a single isolated defect with a finite size, the system of

= Cimitin + An?8j; is the stress tensor de-

[11] described nucleation for specific elastic defects an 0. (2) possesses two solutions:yl= 0; u;; = uf? (r),

geometries. There exists, however, a number of genera o 0
static and dynamic properties, which are common to th&/here t(g)e strain field of the defeaij (r) obeys (g\e con-
nucleation processes and are independent from the natu@éion u;; (©) = 0 and lln = n(r) # O;u;; = u;; (r) +
and geometry of the defects. The aim of this Letter is to0(n?). One has the conditior () = 0, corresponding
describe these properties in a unified way, in the frameworko the existence of a nucleus in the vicinity of the defect.
of a Landau-type approach [12]. More precisely, we Solutions | and Il describe stable states for different
will demonstrate successively the following: (i) The phasepositive values ofa. In order to determine the value
diagram topology of the nuclei is independent from thea: corresponding to the bifurcation from one solution to
nature and geometry of the defects. (ii) In the vicinity another, one has to linearize Egs. (2) around the valee
of a multiphase point the structure of the nucleus may [13]. One gets the auxiliary Schrodinger-type equation;
correspond to a symmetry which cannot be obtained in the gAY, = {a. + 2Au§?) ()}, 3)
bulk. (iii) The nucleation does not occur above a critical
speed of the defects. (iv) Nuclei at moving defects displa
a specific configuration.

Let us first consider a crystal undergoing a phase tra
sition taking place af’., associated with a one-component
order parameter;. The Landau-Ginsburg free energy of n =&¢.(r) + 0(£);

herey. is the eigenfunction corresponding to the eigen-
alue .. of its basic state. Fow = a., the solution Il
r,}c_)ranches off solution I. The main term of this solution is
determined by the eigenfunctiagn [13]. It takes the form

a crystal involving elastic defects can be expressed under ©0)
the general form, uij(r) =u;; (r)
Ag? . 3
F(n,ui) = f {<P(77) + AN ui + fer(uip) + Q) Gir(a)g;q1Q(q) expliq - 1) d"q, (4)
\%4
g 5 where¢ is the amplitude. The second term in the expres-
+ 2 V)~ rav, (1) " sion for the strain (4) is a Fourier transform gnspace
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representing the contribution of the strain induced by the po
nucleus. G (q) is the Fourier transform of the elastic a \ PHASE n=
Green function, and2(q) = [ ¢2(r)exp(—iq - r)d’r. 4

The asymptotic solution of Egs. (4) for the order pa- \\ I At
rameter isy ~ £exp(—r/r,), wherer, = (g/a:)'/? is

the size of the nucleus. Assuming a linear dependence
a =a(T — T.) (a > 0), one findsr, = (g/a)"*(T, —
T.)~'/2. Therefore, even at the point of nucleatitn= F’HAEiE n#0
T,, the nucleus has a finite size.

The expression ohﬁ?)(r) in Eq. (4) depends on the b
particular type of defects which determines the specific PHASE n1=12=0
form of .. and the value o&.. Since we aim to establish
the general properties of nucleation on elastic defects NUCLEUS .. NUCLEUS
independently from the type of defect, we will assume that W p1er20  SNUCLEUS . 6170; €250
Y. and a. are known. Substituting (4) into Eq. (1), the [ S mEmeo
free energy of the nucleus takes the form : - B

PHASE PHASE
F(&) = Fo + r2 {3 (@ — a.) (y2)&2 n1=n2=const£0 n1=const#0; n2=0

o

L 5 1 FIG. 1. (a) Phase diagram of nucleation on a static defect for
ta Blydet + 6 YWY () a one-cor(ng)onent ordegr] parameter. 1 and 2 denote a second-
) ] order and a first-order transition line within the bulk. 3 and 4

Fy is the free energy of the defect in the parent piase=  are the corresponding nucleation lines. (b) Phase diagram for
0). W2y =r73 [¢2(kx)d*r with n =1,2,3; B =  atwo-component order parameter.
B — 24 [ Gi(@)qiqxQ*(@)d>q/(27)*.  Equation (5)
shows thatF(¢) and ¢ play, respectively, the role of the
Landau free energy and of the order parameter associ and 8 with respect to the bulk phase diagram, and the
ated with the transition between a state without nucleuslopes of the first-order transition line between the re-
(£ = 0) and a state with a nucleug # 0). One can spective parent phase (= 0 and¢ = 0) and “daughter”
note thatF(¢) has the same form as the Landau potentiaphase £ # 0 and¢ # 0) are different.
¢(n) describing the transition in the bulk, and that this Let us now consider the more complex situation of a
form is independent from the specific type of defects. Thesystem whose phase diagram contains a singular point at
phase diagram constructed from the minimizatio#¢f)  which different low-symmetry bulk phases may merge.
is shown in Fig. 1(a) in thda, B8) plane. Figure 1(a) This type of phase diagram is necessarily associated with
also represents the phase diagram corresponding to tlaemulticomponent order parameter [12]. To be concrete
transition in the bulk. One can verify that the two phasewe will discuss the example of a two-component order-
diagrams display the same topology. The only differenceparameter casdn;, n,) involving two different low-
is that the phase diagram of the nucleus is shifted al?ngymmetry bulk phases. The free energy has the form [12],

Fom o) = [ {50007 + Tna) + 5 (o} + md) + £ (nf + my?

+ % nin; + A(ni + n)ui + fel(”ik)} av. (6)
|
In addition to the parent phasén; = 5, = 0), F(¢1,6) = Fo + ri {3 (@ — a)@d) (&1 + &)
minimization of F with respect to n; and m; 1o a2 2o
yields two low-symmetry bulk phases: phase 1 cor- + 3 B (&1 + &)
responding to the equilibrium relationship); # 0; 1 2.9
7, = 0 and to the stability conditiongx < 0, 8 > 0, + 5 Y(WHéEd (7)

v > 0. Phase 2 is stabilized fof);; = =7, # 0 and which has again the same form as the bulk free en-
a <0, B>0, y<0. The branching off solution ergy and therefore corresponds to the same phase dia-
is n = E1(r) + 0(E3);my = E(r) + 0(£%), gram topology. However, amdditional state can be
and u;(r) is given by the second Eq.(4) with stabilized in the phase diagram of the nucleus which
£2 = &1 + &. The nucleus free energy can be writtenis unstable in the bulk.It corresponds to the equilib-
analogously: rium nucleus withn(r) # 7,(r) # 0, whose symmetry
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coincides with the intersection of the symmetries ofwhenv — v... The trace follows the moving defect with
phases 1 and 2. More precisely, one can show that ththe same velocity.

stability of phase 2 in the nucleug, = =& # 0) is Let us illustrate the preceding general results by con-
lost for a = a. — yBWH? (B + v)">S~!, whereS =  sidering the concrete examples of a crack tip and of an
Snzolln) (ax — ay)”!. Here ¢y and ay, N =  edge dislocation. At the tip of a loaded brittle crack the

0, 1, 2,... are the eigenfunctions and the correspondingnagnitude of the induced stresses is very large and may
eigenvalues of Eqg. (3)¢( = ¢y and a. = «p). Fig- be responsible for the brittle fracture [14]. In this case,
ure 1(b) shows the region of stability of this additional the nucleation process takes place far from the transi-
nucleus which is close to the three-phase point at whichion in the bulk. In the vicinity of a crack tip the strain
the bulk parent phase merges with the bulk phases 1 andnsor trace has the form(?)(r, 0) =2K{(1 —2v)(1 +
2. In other words, one may find in this region nuclei hav—p)cog(a/z)/{(zﬂ-r)lﬂE}_ wherer and ¢ are the cylin-
ing structures with a symmetry which cannot be realizedirical coordinates in théx-y) plane, E is the Young's
in the bulk. modulus, v is the Poisson’s ratio, an&; is the stress

It is well known that plastic deformation and fracture intensity factor describing the crack loading [14]. If
[14] imply the existence of moving defects. The equationd < 0, the exact solution with the boundary condition
of motion describing the time dependence of the ordey(x) = 0 is
parameter and the displacement veaioare in the one-

. 3 1/2
component case: n = §exp{—f% + \/Z<L> cos(e/z)},
d rn n
K6_7 = gAn — (a + 24u;)n — B0’ — yn’;
Pui oy C[2KiAL( = 20) (1 + ») Y3 (11)
P ax ®) o (2m)12g!E

wherek is a kinetic_coefficient ang is the dens_ity of_ with r, = {Egm2/JAIK;(1 — 20) (1 + »)*3/2. The

the crystal. Assuming that the defect is moving with orqer_parameter distributions in the vicinity of the mo-
a constant velocityv (much smaller than the sound jjonjess and propagating crack tip are shown in Figs. 2(a)
velocity), the SO}““C’” of Eq. (8) for the parent phase isang 2(b). The edge dislocation gives rise to a strain field:
n =0, uyx = uy (R) with R =r — vz. The auxiliary O _") 1 _ 5 )y sing /071 — v)r) [14], where b is
equation which determines its stability [13] is obtained byine Byrgers vector. In this case, the solution describing
linearizing (8) as the nucleus can be found for positive as well as for nega-

gAW.(R) + x(v - V) W, (R)— tive values ofA. One obtains the approximate solution
12
{as(v) + 24u) (R} W.(R) = 0. (9) n = f{l - 062(%) sme}eXp[—O.%(rL)},
It yields the solution corresponding to the nucleus at a 21201 2 (12)
moving defectn = éW.(R) + O(£3); u;; = uﬁ?)(R) + o = O'“‘i b1 22V)
0(£?). The eigenfunction of Eq. (9) and the correspon- (1~ v)’g
dent eigenvalues have the form with r, = wg(1 — v)/|Alb(1 — 2v). Figures 2(c) and
B K*v? 2(d) show the order-parameter distribution in the vicinity
a:(V) = ax = of an edge dislocation. Taking ~ 10° JmC 2K ™!,

48 (10) A - :

B AJE ~107'-1072 m*C %, E ~ 10" Pa, g ~ 1078 J
V(R) = ¢ (R) exp—«(v - R)/2¢}, m3C~2, and « ~ 10741075 JmsC 2, which are

wherey.(R) is the eigenfunction and. is the eigenvalue typical values for ferroelectrics, and takiig of the order

found for the static defect. Equation (10) showmt of a fracture toughnes&; ~ Kijc ~ 0.1 MPam!/2 [15],

the nucleation process for a moving defect occurs onlpne finds for the nucleation at the crack #ip — 7. ~

for values ofv smaller than the critical valuev., = 10°-100°% r, ~ 1078 m and v, ~ 102°-10° m/s. For
2(ga.)?/k. On the other hand, Eq. (10)ives the the nucleation at an edge dislocation, one finds in the same
nucleation temperature of the moving defeGi(v) = way T, — T. ~ 1°-10°% r, ~ 107-10"8 m and v, ~

T, — k*v?/4ag. The asymptotic form of the order 10°-10* m/s. These results are consistent with the
parametern can be expressed ags ~ £exp—«(v -  experimental values reported in Refs. [1,3,5,8].

R)/2g — (a+/g)'/?IR|} which reveals that the nucleus In summary, we have described theoretically a number
is compressed in front of the defect and stretched irof general properties of phase nucleation on elastic defects
the direction opposite to the defect. At last one cann crystals undergoing a phase transition. In this respect
estimate the “trace’,(v) of the nucleus for a moving martensitic transformations constitute typical examples of
defect by approximating ~ & exp{—x/1,(v)} (withx <  transitions, where the onset of the low-symmetry phase
0). One findsl,(v) = r,(1 — v/v) 7!, 1,(v) diverging is preceded above the transformation by the formation of
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nx-vt,y) crack velocity which is higher than the critical velocity of
nucleation(v > v.;) under thermal shock fracture, while

it is subcritical and smaller than the critical velocity of
nucleation(v < v.,) under indentation. In Gd&eO,

the nuclei appearing close to dislocation lines exhibit a
sequence of magnetic phases. Some of the nuclei display
a symmetry which does not appear in the bulk of the
crystal [3].
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