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Kinetic Ising Model in an Oscillating Field: Finite-Size Scaling at the Dynamic Phase Transition
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We study hysteresis for a two-dimensional spjf2- nearest-neighbor kinetic Ising ferromagnet in
an oscillating field using Monte Carlo simulations. The period-averaged magnetization is the order
parameter for a proposed dynamic phase transition (DPT). To quantify the nature of this transition, we
present the first finite-size scaling study of the DPT for this model. Evidence of a diverging correlation
length is given, and we provide estimates of the transition frequency and the critical igdigegandy.
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Although nonequilibrium phase transitions have bee{Q = 0) to an ordered statg) # 0), has been observed
studied for over two decades, the understanding of thein mean-field [L0—12] and MC studies [5—7]. The loca-
universality and scaling properties remains much weaketion of this transition depends on temperature, field ampli-
than for equilibrium critical phenomena. An important tude, and frequency. It can be intuitively understood as
tool to study equilibrium phase transitions is finite-sizea competition between two time scales: the period of the
scaling, which has also been applied to nonequilibriunexternal field,27/w, and the average lifetim&y(Hy)),
transitions in which both the driving force and the of the metastable phase following instantaneous field re-
different states are stationary, and the nonequilibriunversal fromH, to —Hy. If 27/w < (7(Hy)) the magne-
behavior results from the dynamical rules. Examplegization cannot fully switch signs within a single period,
include diffusive lattice gas models [1,2], Ising modelsand Q # 0. If 27 /w > (7(Hy)) the magnetization fol-
with competing kinetic processes at different temperaturebws the field, and? = 0.

[3], and systems with multiplicative noise [4]. Our previous work on Ising models in sudden field-

In this Letter we present what to our knowledge isreversal simulations has identified distinct decay regimes
the first finite-size scaling analysis of dynamic criticalin which the decay of the metastable phase proceeds
phenomena for a system in which the nonequilibriumthrough nucleation and growth of one or more compact
behavior is due to an explicit time dependence of thelroplets of the stable phase. These different regimes
Hamiltonian, and for which the nonequilibrium states areare characterized in great detail in Refs. [8,9]. For this
nonstationary in time. This is the kinetic Ising model in anLetter, the most important result from past work is that
oscillating field. We focus on the nature of the dynamicthe metastable decay mode may chadggstically as the
phase transition (DPT) in this model, which was pro-temperature, field strength, and/or system size are varied.
posed by several workers based on numerical observatiodg weak fields and/or small system size, the decay pro-
[5—7]. Our results clarify the nature of the DPT for this ceeds by the nucleation and growth ofiagle droplet of
specific model and also provide evidence for the relevancthe stable phase [single-droplet (SD) regime]. For stronger
of universality and finite-size scaling concepts to dynamidields and/or larger systems many droplets contribute to the
phase transitions in nonstationary systems. metastable decay [multidroplet (MD) regime]. The MD

The relaxation of kinetic Ising models prepared with alldecay mode can be accurately described by the classical
spins aligned in a strong field, which is suddenly reversed;,Avrami’s law” for nucleation and growth [19]. For each
models the dynamics of metastable phase decaytatec  of these regimes, the statistical properties of the lifetime of
field [8,9]. Such simulations have been used to studyhe metastable phase are different, leading to very different
magnetization switching in anisotropic ferromagnets. Thaesponses in both static and time-varying [13,14] fields.
hysteretic response to ascillatingfield has been studied Here we emphasize two main points. First, care must
by, among others, mean-field [10-12] and Monte Carlde exercised in determining the temperature and field de-
(MC) [5-7,13-16] methods, and some of the results havpendence of the DPT boundary for a fixed frequency, be-
been used to analyze hysteresis loops from experimentause the response of the model can change qualitatively
on Fe and Co ultrathin films [17,18]. The relevance ofwhen the temperature and field strength are changed. In
our results thus extends beyond nonequilibrium statisticdiact, our simulations show evidence of a DPT for the
mechanics to the numerous fields in which kinetic IsingMD regime only. Second, if the DPT in the kinetic
systems are used to model specific systems. Ising model is a true critical phenomenon, then the theo-

A dynamic phase transition, in which the period- retical machinery of finite-size scaling for equilibrium
averaged magnetizatioD passes from a disordered state phase transitions should be applicable.
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The model used is a kinetic, nearest-neighbor Ising Figure 1 shows the probability densities 6f P(Q),
ferromagnet on a square lattice with periodic boundor all three system sizes at a frequency near the transition.
ary conditions and Hamiltoniaf{ = —J 2 sisi —  (The details of locating the transition frequency are given
H(t)Y,;s;. Heres; = *1, Z<,-j> runs over all nearest- below.) Correlation times that are significant portions
neighbor pairs, and®; runs over allL? lattice sites. of the total run length are manifest in the remaining
The ferromagnetic coupling i¥ = 1. Each spin is asymmetry of the distributions. Estimating the correlation
subject to an oscillating fiel#f(r) = —H,sin(w?). We  time from the asymmetry i (Q) we find it to be between
measure the time-dependent magnetization per sitd% and 10% of the total simulation length near the
m(t) = (l/Lz)Z,.Li1 si(t), using the Glauber single-spin- transition. Away from the transition it decreases rapidly.
flip Monte Carlo dynamic [20] with updates at randomly The behavior is reminiscent of the critical slowing down
chosen sites. Each attempted spin flip fronto —s; is ~ S€en in_ equilibrium simulations, and even our extensive
accepted with probability/ (s; — —s,;) = exp(—BAE;)/ simulations are not long enough to be fully ergodic. The
[1 + exp(—BAE;)]. Here AE; is the energy change asymmetry in the distributions et sensitive to the initial
of the system resulting from an accepted spin flip, andondition of the time series.

B = 1/kgT, where kg is Boltzmann’s constant. The At a second-order phase transition there is a diver-
time unit is one Monte Carlo step per spin (MCSS). gence in the susceptibility. For equilibrium systems, the

All simulations are performed for three system sizesfluctuation-dissipation theorem relates the susceptibility
L = 64, 90, and 128 at T = 0.8T,. This temperature to fluctuations in the order parameter. For the present
is sufficiently far belowT,, the critical temperature of System, it is not obvious what the field conjugate@o
the Ising model in zero field, that the thermal correlationMight be. Therefore we cannot measure the susceptibility
length is small compared t& and the critical droplet directly. However, we can calculate the variancedh,
radius. We choosél, = 0.3J. This field amplitude is Var(IQl), as a function of frequency and study its system
such that, for simulations a.87. in a static field of Size dependence. We defiieas
H = H, all thre(_e system sizes are in the MD regim_e: _To X = L2Var(|0]) = L[(0% — (0]Y]. 3)
obtain the raw time-series data, the system was initially
prepared with either a random arrangement of up andf the system were to obey a fluctuation-dissipation
down spins with(z = 0) = 0 or a uniform arrangement relation,X would be proportional to the susceptibility and
with all spins up,m(t = 0) = 1. We recordedn(s) for ~ both would scale with. in the same manner. Figure 2
several values oty for approximate|y1‘7 X 1()7 MCSS shows X vs 1/R for three syStem sizes. For all three
(for the lowest frequencies,.9 X 105> MCSS). Each of values ofL, X displays a prominent peak which increases
these raw data files store H(¢), andm(¢) in increments  in height with increasing system size. This clearly shows
of 1 MCSS and contain thousands of field periods. Thdinite-size effects inX and implies the existence of
largest files are abo®00 megabytes and requiréddays @ divergent length associated with the order-parameter
(one month) to run forL = 64 (L = 128) on a single correlation function near the dynamic transition. The
node of an IBM sp2. This is one of the most extensive
MC simulations of hysteresis in Ising systems with finite

temperature to date. 3 5 x *

It is useful to think of hysteresis as a competition 25 = f{f‘* >
between two time scale€w/w and{(r(H,)). Therefore ~ <’ Y ;
we report all of our results in terms of the dimensionless | AL 3
period, s in 4

R = m/w)/(r(Ho). (1 < Y

The average lifetime has been measured in field revers: 1 \
simulations to b&r(Hy)) = 74.5 MCSS and is indepen- , ,f
dent of L in the MD regime. 0.5 r-

The order parameter of the dynamic phase transition i |
the period-averaged magnetization, -1 -0.5 0 0.5 1

Qo
w
Q= o m(t)dt . (2)  FIG. 1. Probability densities of the period-averaged magneti-

zation, Q = (w/2m) $ m(t) dt for three system sized, = 64

This definition removes the field oscillations, so that (squares)90 (triangles), and 28 (stars). The frequency of the

; ; ; jeld, 1/R = 0.2910 is near the transition. The asymmetric dis-
is a stationary stochastic process. For each frequen h?butions indicate correlation times on the order of the simula-

we obtain the probability density a® by constructing on time even for our extremely long runs bff X 107 MCSS.
a histogram of theD values calculated from each period |nset: Scaling functior. “#/*P(|Q|) vs LF/*|Q|. The value

in the corresponding time series. of the scaling exponent used(ig/v),—, = 0.111.
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FIG. 2. L*Var vs dimensionless frequency,/R. The , . ,
“disordered phi|ige|"<KQ|> — 0) lies on the ﬁow—frglq{Jency sige FIG.3. Fourth-order cumulant ratial/,, vs dimensionless
of the peaks. The “ordered phaséd|) # 0) lies on the high- ~ frequency,1/R, for L = 64, 90, and 128. We use the same
frequency side. Lines connecting data points are guides to th stem size symbols as in Fig. 1. The horizontal line marks
eye. The statistical error bars are estimated by partitioning th&’z = 2/3. Lines connecting the data points are guides to the
data into ten blocks. Error bars smaller than the symbol size§Y€: Insét: Area close to the cumulant crossing.
are not shown.
the moments of the order parametdQ|") « L="(5/»)),

observation that?(|Q]) displays no peak nediQ| =0 the maximum value of the order-parameter fluctuations
in the ordered phase is additional evidence for the secondX .« = L/*), and the positionR; ' of the maximum
order (as opposed to first-order) nature of this transitiorvalue of the order parameter fluctuations for a particular
[21]. system size|R.' — R'| = L~!/). Using the scaling

One would like to find the critical exponents associatedelations for either the second or fourth momentd @f
with this transition, as well as the frequency at which thewe estimate(3/v),—, = 0.111 and (8/v),—4 = 0.113.
transition occurs. For the Ising model in zero field, Our estimates for the other exponents argy =~ 1.84
is exactly known. Then, one can use scaling relationand» = 1.1. Simulations with larger system sizes would
which depend onT, to directly calculate the critical be computationally prohibitive, and smaller system sizes
exponents. In the present case, no exact solution existgould no longer be in the MD regime.
for the transition frequency, and the scaling relationsffor ~ The scaled probability distributions 92| are given
involve the peak heights and positions. Both of these arth the inset of Fig. 1 after symmetrizing and scaling
difficult to measure accurately, even from our extensiveco demonstrate data collapse. The symmetrizing is
data. The cumulant intersection method [20,22] is usefuéquivalent to calculating the distribution f¢Q|. The
for determining the location of a second-order transitionscaling form is derived in a fashion analogous to equi-
when the critical exponents are not known. We define thdibrium finite-size scaling analysis of order-parameter

“dynamic” fourth-order cumulant ratio as distributions [20,22]. At the transition, we assume that
dol*. the mean of the order parameter scales witand define
Uo=1-"="5. (4)  the scaling variable) = LA/?|Q|. Hence, the scaled
el probability density folQ| is given by

where(|Q|") = [ 1QI"P(1Q]) d|Q|. Figure 3 shows/,, 5 a2\ g
vs1/R. Above tr(:e transition frequency, in tkg2|) # 0 PL(Q) = LPI"P(Q)). ©)
phase, U, approaches2/3. Below the transition fre- The peak positions scale fairly well, the peak heights less
quency, in the(Q) = 0 phase,U, approached). At so. This could be due to the following reasons. The
the transition, the cumulant should have a nontrivialfrequency might be sufficiently far from the transition
fixed value,U*. Therefore, the location of the cumu- so that single-parameter scaling is not adequate. There
lant intersection gives an estimate of the transition freimight be corrections to the finite-size scaling that are
quency without foreknowledge of the critical exponents.large for these relatively small system sizes. Also, the
Because of the large spacing of our data and possiblack of scaling for the peak heights could be due to the
correction-to-scaling effects, we cannot identify a uniqueasymmetry inP(Q) near the transition. Much longer
intersection point. We estimate the location of the intersimulations on larger lattices would be needed to resolve
section by the crossing of the two largest system sizethis issue.
nearl/R. = 0.2910 with U, = U* = 0.61. We have also carried out an extensive study of hystere-
Having estimated the transition frequen&y,', we can  sis in a kinetic Ising model in the SD regime, where we
approximate the critical exponents [20,22]. We obtainhave found evidence of stochastic resonancenouign
estimates forB/v, v/v, and1/v using the two largest of a dynamic phase transition [13]. In the introduction we
system sizes. At the transition we use scaling relations foemphasized that the crossover between the SD and MD
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