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Kinetic Ising Model in an Oscillating Field: Finite-Size Scaling at the Dynamic Phase Transition
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We study hysteresis for a two-dimensional spin-1y2 nearest-neighbor kinetic Ising ferromagnet in
an oscillating field using Monte Carlo simulations. The period-averaged magnetization is the order
parameter for a proposed dynamic phase transition (DPT). To quantify the nature of this transition, we
present the first finite-size scaling study of the DPT for this model. Evidence of a diverging correlation
length is given, and we provide estimates of the transition frequency and the critical indicesb, g, andn.
[S0031-9007(98)06701-5]
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Although nonequilibrium phase transitions have be
studied for over two decades, the understanding of th
universality and scaling properties remains much wea
than for equilibrium critical phenomena. An importan
tool to study equilibrium phase transitions is finite-siz
scaling, which has also been applied to nonequilibriu
transitions in which both the driving force and th
different states are stationary, and the nonequilibriu
behavior results from the dynamical rules. Exampl
include diffusive lattice gas models [1,2], Ising mode
with competing kinetic processes at different temperatu
[3], and systems with multiplicative noise [4].

In this Letter we present what to our knowledge
the first finite-size scaling analysis of dynamic critica
phenomena for a system in which the nonequilibriu
behavior is due to an explicit time dependence of t
Hamiltonian, and for which the nonequilibrium states a
nonstationary in time. This is the kinetic Ising model in a
oscillating field. We focus on the nature of the dynam
phase transition (DPT) in this model, which was pro
posed by several workers based on numerical observat
[5–7]. Our results clarify the nature of the DPT for thi
specific model and also provide evidence for the relevan
of universality and finite-size scaling concepts to dynam
phase transitions in nonstationary systems.

The relaxation of kinetic Ising models prepared with a
spins aligned in a strong field, which is suddenly reverse
models the dynamics of metastable phase decay in astatic
field [8,9]. Such simulations have been used to stu
magnetization switching in anisotropic ferromagnets. T
hysteretic response to anoscillatingfield has been studied
by, among others, mean-field [10–12] and Monte Ca
(MC) [5–7,13–16] methods, and some of the results ha
been used to analyze hysteresis loops from experime
on Fe and Co ultrathin films [17,18]. The relevance
our results thus extends beyond nonequilibrium statisti
mechanics to the numerous fields in which kinetic Isin
systems are used to model specific systems.

A dynamic phase transition, in which the period
averaged magnetizationQ passes from a disordered sta
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(Q  0) to an ordered state (Q fi 0), has been observed
in mean-field [10–12] and MC studies [5–7]. The loca
tion of this transition depends on temperature, field ampl
tude, and frequency. It can be intuitively understood a
a competition between two time scales: the period of th
external field,2pyv, and the average lifetime,ktsH0dl,
of the metastable phase following instantaneous field r
versal fromH0 to 2H0. If 2pyv , ktsH0dl the magne-
tization cannot fully switch signs within a single period,
and Q fi 0. If 2pyv . ktsH0dl the magnetization fol-
lows the field, andQ  0.

Our previous work on Ising models in sudden field
reversal simulations has identified distinct decay regime
in which the decay of the metastable phase procee
through nucleation and growth of one or more compa
droplets of the stable phase. These different regim
are characterized in great detail in Refs. [8,9]. For thi
Letter, the most important result from past work is tha
the metastable decay mode may changedrastically as the
temperature, field strength, and/or system size are varie
At weak fields and/or small system size, the decay pro
ceeds by the nucleation and growth of asingledroplet of
the stable phase [single-droplet (SD) regime]. For strong
fields and/or larger systems many droplets contribute to t
metastable decay [multidroplet (MD) regime]. The MD
decay mode can be accurately described by the classi
“Avrami’s law” for nucleation and growth [19]. For each
of these regimes, the statistical properties of the lifetime o
the metastable phase are different, leading to very differe
responses in both static and time-varying [13,14] fields.

Here we emphasize two main points. First, care mu
be exercised in determining the temperature and field d
pendence of the DPT boundary for a fixed frequency, b
cause the response of the model can change qualitativ
when the temperature and field strength are changed.
fact, our simulations show evidence of a DPT for the
MD regime only. Second, if the DPT in the kinetic
Ising model is a true critical phenomenon, then the theo
retical machinery of finite-size scaling for equilibrium
phase transitions should be applicable.
© 1998 The American Physical Society
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The model used is a kinetic, nearest-neighbor Isi
ferromagnet on a square lattice with periodic boun
ary conditions and HamiltonianH  2J

P
kijl sisj 2

Hstd
P

i si. Here si  61,
P

kijl runs over all nearest-
neighbor pairs, and

P
i runs over all L2 lattice sites.

The ferromagnetic coupling isJ  1. Each spin is
subject to an oscillating fieldHstd  2H0 sinsvtd. We
measure the time-dependent magnetization per s
mstd  s1yL2d

PL2

i1 sistd, using the Glauber single-spin-
flip Monte Carlo dynamic [20] with updates at randoml
chosen sites. Each attempted spin flip fromsi to 2si is
accepted with probabilityWssi ! 2sid  exps2bDEidy
f1 1 exps2bDEidg. Here DEi is the energy change
of the system resulting from an accepted spin flip, a
b  1ykBT , where kB is Boltzmann’s constant. The
time unit is one Monte Carlo step per spin (MCSS).

All simulations are performed for three system size
L  64, 90, and 128 at T  0.8Tc. This temperature
is sufficiently far belowTc, the critical temperature of
the Ising model in zero field, that the thermal correlatio
length is small compared toL and the critical droplet
radius. We chooseH0  0.3J. This field amplitude is
such that, for simulations at0.8Tc in a static field of
H  H0, all three system sizes are in the MD regime. T
obtain the raw time-series data, the system was initia
prepared with either a random arrangement of up a
down spins withmst  0d ø 0 or a uniform arrangement
with all spins up,mst  0d  1. We recordedmstd for
several values ofv for approximately1.7 3 107 MCSS
(for the lowest frequencies,5.9 3 105 MCSS). Each of
these raw data files storet, Hstd, andmstd in increments
of 1 MCSS and contain thousands of field periods. Th
largest files are about800 megabytes and required9 days
(one month) to run forL  64 (L  128) on a single
node of an IBM sp2. This is one of the most extensiv
MC simulations of hysteresis in Ising systems with finit
temperature to date.

It is useful to think of hysteresis as a competitio
between two time scales:2pyv and ktsH0dl. Therefore
we report all of our results in terms of the dimensionle
period,

R  s2pyvdyktsH0dl . (1)

The average lifetime has been measured in field rever
simulations to bektsH0dl ø 74.5 MCSS and is indepen-
dent ofL in the MD regime.

The order parameter of the dynamic phase transition
the period-averaged magnetization,

Q 
v

2p

I
mstd dt . (2)

This definition removes the field oscillations, so thatQ
is a stationary stochastic process. For each freque
we obtain the probability density ofQ by constructing
a histogram of theQ values calculated from each period
in the corresponding time series.
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Figure 1 shows the probability densities ofQ, PsQd,
for all three system sizes at a frequency near the transitio
(The details of locating the transition frequency are give
below.) Correlation times that are significant portion
of the total run length are manifest in the remainin
asymmetry of the distributions. Estimating the correlatio
time from the asymmetry inPsQd we find it to be between
1% and 10% of the total simulation length near the
transition. Away from the transition it decreases rapidly
The behavior is reminiscent of the critical slowing down
seen in equilibrium simulations, and even our extensiv
simulations are not long enough to be fully ergodic. Th
asymmetry in the distributions isnot sensitive to the initial
condition of the time series.

At a second-order phase transition there is a dive
gence in the susceptibility. For equilibrium systems, th
fluctuation-dissipation theorem relates the susceptibili
to fluctuations in the order parameter. For the prese
system, it is not obvious what the field conjugate toQ
might be. Therefore we cannot measure the susceptibil
directly. However, we can calculate the variance injQj,
VarsjQjd, as a function of frequency and study its system
size dependence. We defineX as

X  L2 VarsjQjd  L2fkQ2l 2 kjQjl2g . (3)

If the system were to obey a fluctuation-dissipatio
relation,X would be proportional to the susceptibility and
both would scale withL in the same manner. Figure 2
shows X vs 1yR for three system sizes. For all three
values ofL, X displays a prominent peak which increase
in height with increasing system size. This clearly show
finite-size effects inX and implies the existence of
a divergent length associated with the order-parame
correlation function near the dynamic transition. Th

FIG. 1. Probability densities of the period-averaged magne
zation, Q  svy2pd

H
mstd dt for three system sizes,L  64

(squares),90 (triangles), and128 (stars). The frequency of the
field, 1yR  0.2910 is near the transition. The asymmetric dis
tributions indicate correlation times on the order of the simula
tion time even for our extremely long runs of1.7 3 107 MCSS.
Inset: Scaling functionL2bynPsjQjd vs LbynjQj. The value
of the scaling exponent used issbyndn2 ø 0.111.
835
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FIG. 2. L2 VarjQj vs dimensionless frequency,1yR. The
“disordered phase” (kjQjl  0) lies on the low-frequency side
of the peaks. The “ordered phase” (kjQjl fi 0) lies on the high-
frequency side. Lines connecting data points are guides to t
eye. The statistical error bars are estimated by partitioning t
data into ten blocks. Error bars smaller than the symbol siz
are not shown.

observation thatPsjQjd displays no peak nearjQj  0
in the ordered phase is additional evidence for the secon
order (as opposed to first-order) nature of this transitio
[21].

One would like to find the critical exponents associate
with this transition, as well as the frequency at which th
transition occurs. For the Ising model in zero field,Tc

is exactly known. Then, one can use scaling relation
which depend onTc to directly calculate the critical
exponents. In the present case, no exact solution exi
for the transition frequency, and the scaling relations forX
involve the peak heights and positions. Both of these a
difficult to measure accurately, even from our extensiv
data. The cumulant intersection method [20,22] is usef
for determining the location of a second-order transitio
when the critical exponents are not known. We define th
“dynamic” fourth-order cumulant ratio as

UL  1 2
kjQj4lL

3kjQj2l2
L

, (4)

wherekjQjnl 
R

`

0 jQjnPsjQjd djQj. Figure 3 showsUL

vs 1yR. Above the transition frequency, in thekjQjl fi 0
phase,UL approaches2y3. Below the transition fre-
quency, in thekQl  0 phase,UL approaches0. At
the transition, the cumulant should have a nontrivia
fixed value,Up. Therefore, the location of the cumu-
lant intersection gives an estimate of the transition fre
quency without foreknowledge of the critical exponents
Because of the large spacing of our data and possib
correction-to-scaling effects, we cannot identify a uniqu
intersection point. We estimate the location of the inte
section by the crossing of the two largest system siz
near1yRc ø 0.2910 with UL  Up ø 0.61.

Having estimated the transition frequency,R21
c , we can

approximate the critical exponents [20,22]. We obtai
estimates forbyn, gyn, and 1yn using the two largest
system sizes. At the transition we use scaling relations f
836
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FIG. 3. Fourth-order cumulant ratio,UL, vs dimensionless
frequency,1yR, for L  64, 90, and 128. We use the same
system size symbols as in Fig. 1. The horizontal line ma
UL  2y3. Lines connecting the data points are guides to t
eye. Inset: Area close to the cumulant crossing.

the moments of the order parameterskjQjnl ~ L2nsbyndd,
the maximum value of the order-parameter fluctuatio
sXmax ~ Lgynd, and the positionR21

L of the maximum
value of the order parameter fluctuations for a particu
system size (jR21

L 2 R21
c j ~ L21yn). Using the scaling

relations for either the second or fourth moments ofjQj
we estimatesbyndn2 ø 0.111 and sbyndn4 ø 0.113.
Our estimates for the other exponents aregyn ø 1.84
andn ø 1.1. Simulations with larger system sizes wou
be computationally prohibitive, and smaller system siz
would no longer be in the MD regime.

The scaled probability distributions ofjQj are given
in the inset of Fig. 1 after symmetrizing and scalin
to demonstrate data collapse. The symmetrizing
equivalent to calculating the distribution forjQj. The
scaling form is derived in a fashion analogous to eq
librium finite-size scaling analysis of order-paramet
distributions [20,22]. At the transition, we assume th
the mean of the order parameter scales withL and define
the scaling variableQ̃  LbynjQj. Hence, the scaled
probability density forjQj is given by

P̃LsQ̃d  L2bynPsjQjd . (5)

The peak positions scale fairly well, the peak heights le
so. This could be due to the following reasons. T
frequency might be sufficiently far from the transitio
so that single-parameter scaling is not adequate. Th
might be corrections to the finite-size scaling that a
large for these relatively small system sizes. Also, t
lack of scaling for the peak heights could be due to t
asymmetry inPsQd near the transition. Much longe
simulations on larger lattices would be needed to reso
this issue.

We have also carried out an extensive study of hyste
sis in a kinetic Ising model in the SD regime, where w
have found evidence of stochastic resonance butno sign
of a dynamic phase transition [13]. In the introduction w
emphasized that the crossover between the SD and



VOLUME 81, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 27 JULY 1998

r
E
ts

.

i,

,

.

decay regimes depends on temperature, field strength,
system size. Therefore, the very existence of the dynam
transition, as well as the details of its critical behavio
may depend sensitively on all of these parameters.

In conclusion, we have performed a finite-size scalin
study of a kinetic Ising model in a sinusoidal field in
order to clarify the nature of the dynamic phase transitio
conjectured by several authors [5,7,14]. For this Lette
we emphasize that all simulations were performed in th
MD regime. The behavior of the order-parameter fluctua
tion, X, suggests a divergent correlation length near th
transition frequency. This behavior motivates the appl
cation of finite-size scaling techniques for second-ord
phase transitions, analogous to those used to descr
the ferromagnetic/paramagnetic transition in the Isin
model in zero field. We use the cumulant of the orde
parameter distributions to estimate the value of the tran
tion frequency,1yRc ø 0.2910. Using scaling relations
for the moments and fluctuations of the order param
ter we estimate the critical exponents to bebyn ø 0.11,
gyn ø 1.84, and n ø 1.1. Our results are close to the
two-dimensional Ising values for the analogous expo
nents. Given our level of precision, the values appropria
to two-dimensional random percolation are also not e
cluded. The result,2sbynd 1 sgynd ø 2.06 ø d, gives
a tantalizing indication that hyperscaling may be obeye
Also, our value for the cumulant intersection,Up ø 0.61,
agrees with an extremely precise transfer matrix calcul
tion of Up  0.610 690 1s5d for the two-dimensional Ising
model [23]. To precisely calculate the critical frequency
critical exponents, and determine the universality class
the transition would require simulations for more frequen
cies, larger systems, and for immensely longer run tim
to improve the statistics. More detailed analysis of th
problem could resolve specific questions about the DP
for the Ising model, such as the purported existence of
tricritical point in the dynamic phase diagram [6], in addi
tion to elucidating general questions concerning the natu
of nonequilibrium phase transitions in models with explic
itly time-dependent Hamiltonians.
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