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Three-Dimensional Turing Structures and Spatial Solitons in Optical Parametric Oscillators

K. Staliunas
Physikalisch Technische Bundesanstalt, 38116 Braunschweig, Germany

(Received 1 December 1997)

An order parameter equation is derived for degenerate optical parametric oscillators in the form
of a three-dimensional Swift-Hohenberg equation. Three-dimensional Turing structures (lamellae and
tetrahedral patterns) and three-dimensional spatial solitons (dark spherical bubbles) are predicted as
stable structures. [S0031-9007(98)06416-3]

PACS numbers: 42.65.Sf, 42.60.Mi, 42.65.Tg, 47.54.+r
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Substantial progress has been achieved in the last dec
in understanding transverse pattern formation in lasers a
other nonlinear optical systems. Order parameter equ
tions have been derived for lasers [1,2], externally drive
nonlinear resonators [3], optical parametric oscillato
(OPOs) [4,5], and photorefractive oscillators [6], joining
nonlinear optical systems to general macroscopic patte
formation physics. Turing patterns [7] (tilted waves [8]
stripe patterns, hexagons [3], and cross roll structures [
have been predicted, some of them already experime
tally observed [10]. Besides spatially extended Turin
patterns, spatially confined Ising structures (in nonlin
ear optics usually called “spatial localized structures
exist in nonlinear optical systems. These are optic
vortices (dark topological solitons) [11] and spatial brigh
solitons [12].

These structures were found and investigated predom
nantly in two-dimensional (2D) systems, where the field
depend on two transverse spatial coordinates and evo
slowly in time. A single longitudinal mode family is con-
sidered in the theoretical models, where the fields are
sumed to change negligibly along the resonators. Litt
is known about three-dimensional spatial light structures
fields associated with the simultaneous emission of lar
numbers of longitudinal and transverse modes. Som
analysis of 3D Turing structures has been given in [1
for nonoptical systems, and in [14] for lasers.

Multilongitudinal mode emission can occur in laser
and other nonlinear optical systems when the gain lin
is broader than the free spectral range of the resona
The gain line for OPOs (the line of phase synchronism
is usually very broad, therefore this system is suited f
generating 3D structures. In particular, we analyze he
concretely degenerate OPOs (DOPOs), restricting oth
nonlinear optical systems to a short discussion in th
conclusions.

For simplicity, we discuss a synchronously pumpe
DOPO as sketched in Fig. 1. The 3D subharmonic puls
travel around the resonator filled with a medium with se
ond order nonlinearity, feeding from the energy of a s
quence of pump pulses. The pump pulses are not reson
The 3D structures are expected to reside within the prop
gating subharmonic pulses. We show in this Letter th
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the spatiotemporal dynamics of the field within the resona
ing pulses is described by a 3D Swift-Hohenberg equatio
(SHE). We analyze 3D Turing and Ising structures whic
are solutions of the derived order parameter equation.

The model of a synchronously pumped DOPO is use
for simplicity only. It includes pump pulses of infinitely
long duration, which corresponds to continuous pumping
The analysis applies for both synchronously and continu
ously pumped DOPOs.

Interaction of the three-dimensional slowly varying
envelopes of the 3D subharmonic and pump pulse
A1s r!', t, zd and A0s r!', t, zd, respectively, is described
by the following equations:

≠A1

≠z
­ sn1 2 n0d

≠A1

≠t
1 idII,1

≠2A1

≠t2 1 id',1=2
'A1

1 xA0Ap
1 , (1a)

≠A0

≠z
­ idII,0

≠2A0

≠t2 1 id',0=2
'A0 2 xA2

1 . (1b)

Here, nj ­ ≠kjy≠vj are the group velocities for the
pump s j ­ 0d and subharmonics j ­ 1d waves,dll,j ­
≠2kjy≠v

2
j are longitudinal dispersion coefficients,d',j ­

1y2kj are transverse diffraction coefficients, andx is the
nonlinear coupling coefficient. Evolution occurs along the
longitudinal coordinatez. Fields are defined in the trans-
verse 2D spacer!' ­ sx, yd, s=2

' ­ ≠2y≠x2 1 ≠2y≠y2d,

FIG. 1. Scheme of synchronously pumped degenerate optic
parametric oscillator.
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and in the longitudinal spacet (t is a retarded time in
a frame propagating with the group velocity of the pum
pulses).

The changes of the fields during one resonator roun
trip are assumed to be small. This allows one, firs
to obtain a mapping describing the discrete changes
the subharmonics pulse in successive resonator rou
trips. Second, it allows one to replace the discrete ma
ping by a continuous evolution, thus to obtain the ord
parameter equation in the form of a partial differentia
equation.

Diffractive and dispersive changes on the pump a
neglected for the propagation over the crystal lengthDl,
which is assumed small compared to the total leng
of the resonatorL. Assuming that the subharmonic
changes negligibly along the crystalA1s r!', t, zd ø
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A1s r!', td, Eq. (1b) can be integrated:A0s r!', t, zd ­
A0s r!', t, 0d 2 xA2

1s r!', tdz. The mean value of the
pump envelope is

A0s r', t, zd ­ A0s r!', t, 0d 2 xA2
1s r!', tdDly2 . (2)

.
This approximation of mean pump value (2) a

lows one to obtain a mapping of the subharmon
pulse in successive resonator round-trips. Taki
into account the nonlinear interaction in the cryst
(1a), diffractive propagation in a resonator, loss
on the mirrors 2a1, and the phase shiftDw due
to resonator length detuning, the following mappin
results:
A1,sn11d ­ A1,snd 1 sn1 2 n0dDl
≠A1

≠t
1 iDwA1,snd 2 a1A1,snd 1 idII,1Dl

≠2A1

≠t2
1 id',1L=2

'A1

1 xDlfA0 2 xsDly2dA2
1g ? Ap

1 . (3)
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Dispersion is assumed to occur in the nonlinear crys
only. Diffraction is assumed to occur throughout th
propagation over the whole resonator lengthL.

Transforming the mapping (3) into a continuous evo
lution in time t (t ­ nLa1yc is normalized to the photon
lifetime in the resonator), and, renormalizing the fields, on
obtains

≠A
≠t

­ P ? Ap 2 A 1 is=2 1 DdA 2 jAj2A , (4)

which is a parametrically driven Ginzburg-Landau equa
tion similar to that obtained for the corresponding proble
in 2D [4,5]. Here, the following variable transformations
were used:Ps r!', hd ­ A0s r!', h, 0dxDlya1, As r!', t,
hd ­ A1s r!', h, td ? x ? Dly

p
2, X, Y ­ x, y

p
a1ysd'Ld,

h ­ t
p

sa1ysdIIDld, D ­ Dwya1. The 3D Laplace op-
erator =2 ­ ≠2y≠X2 1 ≠2y≠Y2 1 ≠2y≠h2 is calculated
in a coordinate frame propagating with the subharmon
pulse:r! ­ sX, Y , hd.

A further simplification of (4) is possible for a pump
value close to generation thresholdsjP 2 1j ø 1d. This
can be done by adiabatically eliminating the small imag
nary part of the field, such as, e.g., in [4]. Applying
directly the derivation procedure of the 2D case from [4] t
the 3D parametrically driven Ginzburg-Landau equatio
one obtains

≠A
≠t

­ sP 2 1dA 2
1
2

s=2 1 Dd2A 2 A3, (5)

which is a real SHE in 3D.
The spatiotemporal structure of the pump pulses are

corporated inPs r!d; therefore Eq. (5) is valid both for syn-
chronously or continuously pumped OPOs. For the late
coordinates, the boundary conditions have to correspond
experiments: For example, the aperture in a resonator i
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plies zero boundaries; infinitely broad aperture (and pum
profile) systems require no lateral boundaries at all. In th
longitudinal direction, periodic boundaries are to be use
corresponding to periodic repetition of pattern.

Further, in the analytical treatment of patterns, a ho
mogeneous pump in 3D is assumed. This assumpti
is legitimate when the typical size of spatial struc
tures is much smaller than the spatial size of pum
pulses. This occurs for sufficiently broad pump beam
sj≠Py≠Xj, j≠Py≠Y j ø jPjd, and also for sufficiently long
pump pulsessj≠Py≠hj ø jPjd. Under this condition,
one can scale out the pump parameter, and write (5) in t
form

≠A
≠t

­ A 2 s=2 1 Dd2A 2 A3, (6)

having only one free parameter—the detuningD.
The correctness of the linear part of (5) can be tested

comparison of the Liapunov growth exponent spectra ca
culated for (5), with the round-trip increments of the field
calculated for (1) and (2). It follows from this compari-
son that (5) describes the linear pattern forming prope
ties (transverse wave number selection) of the DOPO w
not only near the threshold:sP 2 1d ø 1, where (5) is
strictly mathematically valid, but also moderately abov
the thresholdsP 2 1d ø 1.

In the limit of small detuning, a stable solution of the
3D SHE (6) is a homogeneous distribution with amplitud
jAj ­ 6

p
1 2 D2, and one of the two phase values:w ­

0, p . However, in a transient stage of evolution, whe
starting from random field distributions, the subharmon
field can consist of separated domains, with one of tw
phase values. The phase domains in 2D patterns
separated by domain boundaries—dark switching wave
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as analyzed in [15]. Analogously, similar 3D domain
should exist, separated by 2D domain walls.

A numerical integration of SHE (6) was performed t
test the idea of domains in 3D. (A split-step techniqu
was used on a spatial grid of32 3 32 3 32.) The result
is given in Fig. 2 for a particular time in the transien
evolution. Two domains of uniform phase embedded
the background of the opposite uniform phase are appar

The dynamics of the 3D domains depends on the detu
ing parameter in a similar way to that of 2D domains [15
Negative, or small positive, detuning leads to contractio
and eventual disappearance of domains. Large posit
detuning leads to the growth of domains and formation
a “labyrinth” structure, as discussed below. However,
a particular detuning range, the contracting domains c
stabilize to a particular size. One obtains then sphe
cally symmetric stable “bubbles,” which are the localize
structures (spatial solitons) of the 3D SHE. Such an e
semble of stable bubbles is shown in Fig. 3, as obtain
numerically.

The stability limits of the spatial localized structures wa
analyzed by solving the 3D SHE (6) numerically. The 3
solitons are stable in the interval0.430 6 0.001 , D ,

0.460 6 0.001. This stability range is narrower than tha
of the corresponding dark rings in 2D, which is0.287 6

0.001 , D , 0.460 6 0.001 [15].
Large detuning values lead to Turing structures—

structures with a dominating nonzero spatial wave numb

FIG. 2. Phase domains as obtained by numerical integrat
of the 3D SHE (6) depicted by surfaces of zero field. Below
a 2D cut is given showing the field intensity (left) and the fiel
phase (right). DetuningD ­ 0.4. Periodic boundaries are used
on the box with a size ofDx ­ Dy ­ Dh ­ 20.
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D. In 2D, a parallel stripe pattern is such a Tur
ing pattern:As r!d ø

p
4y3 coss k

!
r!d. A direct continu-

ation to the 3D case gives the analog of stripe patterns—
standing wave pattern (also called “lamellae”). How
ever, besides lamellae another stable Turing structu
is possible in 3D [a structure made up of four resona
standing waves, directed as illustrated in Fig. 4(a)
As r!d ø

P
j­1,4 sAjei $kj $r 1 c.c.d. The four k

!
-resonant

standing wavesjk
!

j j ­
p

D do not lie in the same plane;
thus such a tetragonal structure can exist only in 3D spa
The phases of the four nonplanar standing waves w
complex amplitudesAj ­ jAjjewj obey

P
j­1,4 wj ­ p.

Stability analysis shows that both the lamellae an
the tetragonal structures are stable. For stability ana
sis a variational potential for (6) was calculated:F ­R

s2A2y2 1 A4y4d ? d r!. (Laplace operators do not ap-
pear in the potential, if we deal with thek

!
-resonant struc-

tures.) Calculation of the variational potential yields th
potential minima associated with these structures in t
parameter space ofAj. The minimum values of poten-
tial areFl ­ 2

1
16 ­ 20.1666 . . . for lamellae, andF4 ­

2
2
15 ­ 20.1333 . . . for the tetragonal structure. Lamellae

are thus more stable than the tetragonal structure. For co
parison, the 3D continuation of the resonant square and
the hexagonal patterns have potentialsF2 ­ 2

1
10 ­ 20.1,

andF3 ­ 2
1
9 ­ 20.111 . . . , respectively; however, these

unstable patterns correspond not to local potential minim
in the parameter space ofAj but to saddle points.

FIG. 3. Localized structures (stable bubbles). Conditions
in Fig. 2, except detuningD ­ 0.45.
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FIG. 4. k
!

-resonant wave vectors forming the tetragonal stru
ture (a). The isolines at 85% of maximum field intensity (b),
93% (c), and at293% (d) of maximum amplitudes as obtained
by numerical integration of 3D SHE (6) forD ­ 1.2, and for
the box sizeDx ­ Dy ­ Dh ­ 10.

Numerical integration of SHE (6) confirms the stabilit
of the tetragons. The numerical results are given
Fig. 4(b), by the isolines at 85% of the maximum fiel
intensity. This intensity structure consists actually of tw
nested structures given in Figs. 4(c) and 4(d), where
isosurfaces at193% and 293% of the amplitudes are
plotted.

In conclusion, we summarize as follows.
(1) Tunability of a broad gain band system.—A DOPO

has a broad gain line width (the line of phase synchronism
typically by many orders of magnitude larger than th
free spectral range of the resonator. Nevertheless,
variation of the resonator length (on a scale of the optic
wavelength) allows the changing of the detuning parame
in (5), thus allowing the manipulation of the 3D structure

This seeming paradox can be understood in the follo
ing way. The maximum gain for a plane wave of sub
harmonics occurs when its phase has a particular va
w ­ 0, p with respect to the pump phase at the entran
of the nonlinear crystal. Tuning of the resonator leng
breaks the optimum phase relation for the plane wa
Therefore a modulation in the subharmonic field should a
pear, causing a Guoy phase shift, which brings the phas
its optimum value. (The Guoy phase shift is proportion
to the spatial wave number of the appearing modulatio
This modulation can appear in the transverse, in the lon
tudinal, or in both directions simultaneously, resulting
oblique lamellae or tetragonal structures.
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(2) Analogy between 2D and 3D cases.—The order pa-
rameter equation derived here for a 3D DOPO is analo-
gous to that derived for DOPOs in the 2D case [4]. This
suggests that this analogy between 2D and 3D systems i
valid not only for DOPOs, but also for other nonlinear op-
tical systems. A requirement is that nonlinear processes
should be fast, compared with the time of light propaga-
tion over typical length scales of longitudinal modulation.
Then the order parameter equations derived for other non
linear optical systems in 2D (e.g., externally driven non-
linear resonators containing focusing-defocusing media, or
saturable absorbers [3]), can be straightforwardly extended
to the 3D case. Instead of Turing or Ising structures in
2D, one should obtain then the corresponding 3D struc-
tures cyclically propagating in the resonator.

The 3D extension of equations results in corresponding
3D extension of the structures. The 3D structures having
direct counterparts in 2D are as follows: phase domains,
localized structures in the form of “bubbles,” and lamella
structures. However, the family of 3D structures is richer
than that of 2D. An example of such a specific 3D structure
not having a counterpart in 2D is the resonant tetragonal
pattern, which is supported by a cubic nonlinearity.
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