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Three-Dimensional Turing Structures and Spatial Solitons in Optical Parametric Oscillators
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An order parameter equation is derived for degenerate optical parametric oscillators in the form
of a three-dimensional Swift-Hohenberg equation. Three-dimensional Turing structures (lamellae and
tetrahedral patterns) and three-dimensional spatial solitons (dark spherical bubbles) are predicted as
stable structures. [S0031-9007(98)06416-3]

PACS numbers: 42.65.Sf, 42.60.Mi, 42.65.Tg, 47.54.+r

Substantial progress has been achieved in the last decatthe spatiotemporal dynamics of the field within the resonat-
in understanding transverse pattern formation in lasers andg pulses is described by a 3D Swift-Hohenberg equation
other nonlinear optical systems. Order parameter equgdSHE). We analyze 3D Turing and Ising structures which
tions have been derived for lasers [1,2], externally driverare solutions of the derived order parameter equation.
nonlinear resonators [3], optical parametric oscillators The model of a synchronously pumped DOPO is used
(OPOs) [4,5], and photorefractive oscillators [6], joining for simplicity only. It includes pump pulses of infinitely
nonlinear optical systems to general macroscopic pattedong duration, which corresponds to continuous pumping.
formation physics. Turing patterns [7] (tilted waves [8], The analysis applies for both synchronously and continu-
stripe patterns, hexagons [3], and cross roll structures [9Ppusly pumped DOPOs.
have been predicted, some of them already experimen- Interaction of the three-dimensional slowly varying
tally observed [10]. Besides spatially extended Turingenvelopes of the 3D subharmonic and pump pulses,
patterns, spatially confined Ising structures (in nonlin-A,(7 ., 7,z) and Ao(7., 7, z), respectively, is described
ear optics usually called “spatial localized structures”)by the following equations:
exist in nonlinear optical systems. These are optical

vortices (dark topological solitons) [11] and spatial bright 941 _ _ 0A1 | . 9*A, . 2

solitons [12]. 9z (1 = »o) T *idi a72 TidiaVidA
These structures were found and investigated predomi- + xAoAT, (1a)

nantly in two-dimensional (2D) systems, where the fields

depend on two transverse spatial coordinates and evolve Ao 240 5 ,

slowly in time. A single longitudinal mode family is con- e idi1p o2 idi oViAo — XAT. (1b)

sidered in the theoretical models, where the fields are as-
sumed to change negligibly along the resonators. Little Here, vj = dk;/dw; are the group velocities for the
is known about three-dimensional spatial light structures—ymp (j = 0) and subharmoni¢;j = 1) waves,d; =
fields associated with the simultaneous emission of Iarggzkj/awjz are longitudinal dispersion coefficients, ; =

numbers of longitudinal and transverse modes. SOM/5;. are transverse diffraction coefficients, apds the
analysis of 3D Turing structures has been given in [13]yonlinear coupling coefficient. Evolution occurs along the

for nonoptical systems, and in [14] for lasers. longitudinal coordinate. Fields are defined in the trans-
Multilongitudinal mode emission can occur in Iasersverse 2D spac®, = (x,y), (Vzl — 92/ax% + 9%/9y?),

and other nonlinear optical systems when the gain line
is broader than the free spectral range of the resonator.
The gain line for OPOs (the line of phase synchronism) mode-locked
is usually very broad, therefore this system is suited for laser
generating 3D structures. In particular, we analyze here
concretely degenerate OPOs (DOPOSs), restricting other
nonlinear optical systems to a short discussion in the
conclusions. gl

For simplicity, we discuss a synchronously pumped . (i@ | 566
DOPO as sketched in Fig. 1. The 3D subharmonic pulses —

L

travel around the resonator filled with a medium with sec- denleted
ond order nonlinearity, feeding from the energy of a se- hg@wﬂ
quence of pump pulses. The pump pulses are not resonant. '

The 3D structures are expected to reside within the propas|G. 1. Scheme of synchronously pumped degenerate optical
gating subharmonic pulses. We show in this Letter thaparametric oscillator.
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and in the longitudinal space (7 is a retarded time in A;(7.,7), Eq. (1b) can be integrateddo(7,,7,z) =
a frame propagating with the group velocity of the pumpAy(7 ., 7,0) — YA} (7.,7)z. The mean value of the
pulses). pump envelope is
The changes of the fields during one resonator round-
trip are assumed to be small. This allows one, first,
to obtain a mapping describing the discrete changes of Ao(71,7,2) = Ao(F1,7,0) — YAL(F 1, 7)AL/2. (2)
the subharmonics pulse in successive resonator round-
trips. Second, it allows one to replace the discrete map-
ping by a continuous evolution, thus to obtain the order This approximation of mean pump value (2) al-
parameter equation in the form of a partial differentialijows one to obtain a mapping of the subharmonic
equation. pulse in successive resonator round-trips. Taking
Diffractive and dispersive changes on the pump arénto account the nonlinear interaction in the crystal
neglected for the propagation over the crystal len§jth  (1a), diffractive propagation in a resonator, losses
which is assumed small compared to the total lengtton the mirrors —«;, and the phase shifdg due

of the resonatorL. Assuming that the subharmonic to resonator length detuning, the following mapping
changes negligibly along the crystal(7.,7,z) = | results:

82
or
+ xAl[Ag — x(AI/2)AT] - A]. 3

04 . . Aq .
Al,(n+1) = Al,(n) + (I/l - VO)AZ? + lAQDAl’(n) - OllAl’(n) + ldILlAl —2 + ldJ_,ILVZLAl

Dispersion is assumed to occur in the nonlinear crysltablies zero boundaries; infinitely broad aperture (and pump
only. Diffraction is assumed to occur throughout theprofile) systems require no lateral boundaries at all. In the
propagation over the whole resonator lengith longitudinal direction, periodic boundaries are to be used,

Transforming the mapping (3) into a continuous evo-corresponding to periodic repetition of pattern.
lution in time (+ = nLa;/c is normalized to the photon Further, in the analytical treatment of patterns, a ho-
lifetime in the resonator), and, renormalizing the fields, onenogeneous pump in 3D is assumed. This assumption
obtains is legitimate when the typical size of spatial struc-

0A . s ) tures is much smaller than the spatial size of pump
5 PAT-AA i(V- + A)A — |AI°A,  (4) pulses. This occurs for sufficiently broad pump beams

o ] ) ) (loP/oX|,10P/aY| < |P[), and also for sufficiently long

which is a parametrically driven Ginzburg-Landau equapump pulses(|P/an| < |P]). Under this condition,

tion similar to that obtained for the corresponding problemyne can scale out the pump parameter, and write (5) in the
in 2D [4,5]. Here, the following variable transformations fgrm

were used:P(7,,7n) = Ao(?r/;, 1,00 xAl/a;y, A(F ., T,
n) =A(F 1m0 x - Al/V2, X, Y =x,yJe1/(d . L), A _ w2 24 _ 43

n = 7/(a1/(d1Al), A = Ap/a;,. The 3D Laplace op- ot A= (V24 AyA =A% (©)
erator V2 = 92/9X? + 92/9Y* + 9%/an? is calculated
in a coordinate frame propagating with the subharmoni
pulse7? = (X,Y, 7).

A further simplification of (4) is possible for a pump
value close to generation threshg|@® — 1| < 1). This
can be done by adiabatically eliminating the small imagi
nary part of the field, such as, e.g., in [4]. Applying
directly the derivation procedure of the 2D case from [4] to
the 3D parametrically driven Ginzburg-Landau equation

(t:uaving only one free parameter—the detuning

The correctness of the linear part of (5) can be tested by
comparison of the Liapunov growth exponent spectra cal-
culated for (5), with the round-trip increments of the fields
_calculated for (1) and (2). It follows from this compari-
son that (5) describes the linear pattern forming proper-
ties (transverse wave number selection) of the DOPO well
not only near the thresholdP — 1) <« 1, where (5) is
strictly mathematically valid, but also moderately above

one Obz;ns ! the thresholdP — 1) = 1.
— =P - 1DA - — (V> + A)?A — A, (5) In the limit of small detuning, a stable solution of the
at 2 3D SHE (6) is a homogeneous distribution with amplitude
which is a real SHE in 3D. |A| = +4/1 — AZ%, and one of the two phase valugs:=

The spatiotemporal structure of the pump pulses are i, 7. However, in a transient stage of evolution, when
corporated inP(7); therefore Eq. (5) is valid both for syn- starting from random field distributions, the subharmonic
chronously or continuously pumped OPOs. For the laterdiield can consist of separated domains, with one of two
coordinates, the boundary conditions have to correspond fghase values. The phase domains in 2D patterns are
experiments: For example, the aperture in a resonator inseparated by domain boundaries—dark switching waves,
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as analyzed in [15]. Analogously, similar 3D domains|k| = \/A. In 2D, a parallel stripe pattern is such a Tur-
should exist, separated by 2D domain walls. ing pattern: A(7) =~ +/4/3 cod k7). A direct continu-

A numerical integration of SHE (6) was performed to ation to the 3D case gives the analog of stripe patterns—a
test the idea of domains in 3D. (A split-step techniquestanding wave pattern (also called “lamellae”). How-
was used on a spatial grid 82 X 32 X 32.) The result ever, besides lamellae another stable Turing structure
is given in Fig. 2 for a particular time in the transient is possible in 3D [a structure made up of four resonant
evolution. Two domains of uniform phase embedded irstanding waves, directed as illustrated in Fig. 4(a)];
the background of the opposite uniform phase are apparent(7) ~ Yici4 (Ajeikﬁ +c.c). The four k-resonant

_ The dynamics of the 3D domains depends on the d(:"tur&'tanding wavesk ;| = /A do not lie in the same plane;
ing parameter in a similar way to that of 2D domains [15]'thus such a tetragonal structure can exist only in 3D space.

Negative, or S”?a” positive, detuning I(_eads to contract_i(_)n]-he phases of the four nonplanar standing waves with
and eventual disappearance of domains. Large positiv omplex amplitudest; = [A;]¢® obeyS ,_, s ¢; =
J J J =1 J .

detuning leads to the growth of domains and formation o Stability analysis shows that both the lamellae and

a "labyrinth” structure, as discussed below. However, Nthe tetragonal structures are stable. For stability analy-

a particular detuning range, the contracting domains Calis 5 variational potential for (6) was calculatefl:=

stabilize to a particular size. One obtains then spherl—f(_Az/2 + A*/4) - dF. (Laplace operators do not ap-

cally symmetric stable “bubbles,” which are the localized . o o i
structures (spatial solitons) of the 3D SHE. Such an enpear in the potential, if we deal with thieresonant struc

’ o .~"tures.) Calculation of the variational potential yields the
rs]irr:glﬁcg;];table bubbles is shown in Fig. 3, as ObtalneErotential minima associated with these structures in the

The stability limits of the spatial localized structures Wasgalrame;er_spﬁslcie _Of’_ 0 1’26e6m|nf|mL:m vilues 01:;0'[_(3”_
analyzed by solving the 3D SHE (6) numerically. The 3D |a2are = 16 — -~ orlamefiae, andry =
solitons are stable in the interval430 = 0.001 < A < —+5 = —0.1333... for the tetragonal structure. Lamellae
0.460 + 0.001. This stability range is narrower than that '€ thus more stable than the tetragonal structure. For com-

of the corresponding dark rings in 2D, which(287 =+ parison, the 3D continuation of the resonant square and of
0.001 < A < 0.460 = 0.001 [15]. the hexagonal patterns have potentids= — 15 = —0.1,
Large detuning values lead to Turing structures—andF; = —g = —0.111..., respectively; however, these

structures with a dominating nonzero spatial wave numbeynstable patterns correspond not to local potential minima
in the parameter space af but to saddle points.

FIG. 2. Phase domains as obtained by numerical integration
of the 3D SHE (6) depicted by surfaces of zero field. Below,
a 2D cut is given showing the field intensity (left) and the field
phase (right). Detunind = 0.4. Periodic boundaries are used FIG. 3. Localized structures (stable bubbles). Conditions as
on the box with a size oAx = Ay = Ay = 20. in Fig. 2, except detuning = 0.45.

83



VOLUME 81, NUMBER 1 PHYSICAL REVIEW LETTERS 6 JLy 1998

(2) Analogy between 2D and 3D caseslhe order pa-
rameter equation derived here for a 3D DOPO is analo-
gous to that derived for DOPOs in the 2D case [4]. This
suggests that this analogy between 2D and 3D systems is
valid not only for DOPOs, but also for other nonlinear op-
tical systems. A requirement is that nonlinear processes
should be fast, compared with the time of light propaga-
tion over typical length scales of longitudinal modulation.
Then the order parameter equations derived for other non-
linear optical systems in 2D (e.g., externally driven non-
linear resonators containing focusing-defocusing media, or
saturable absorbers [3]), can be straightforwardly extended
to the 3D case. Instead of Turing or Ising structures in
2D, one should obtain then the corresponding 3D struc-
tures cyclically propagating in the resonator.

The 3D extension of equations results in corresponding
3D extension of the structures. The 3D structures having
direct counterparts in 2D are as follows: phase domains,
localized structures in the form of “bubbles,” and lamella
structures. However, the family of 3D structures is richer
than that of 2D. An example of such a specific 3D structure
not having a counterpart in 2D is the resonant tetragonal
pattern, which is supported by a cubic nonlinearity.

FG. 4. . Discussions with C.0. Weiss, G. Slekys,

. 4. k-resonant wave vectors forming the tetragonal struc- : " . .

ture (a). The isolines at 85% of maximum field intensity (b), atV- Sirutkaitis, R. Grlgonls, and R.McDuff are ac-
93% (c), and at-93% (d) of maximum amplitudes as obtained knowledged. This work has been supported by
by numerical integration of 3D SHE (6) fak = 1.2, and for ~ Deutsche Forschungsgemeinschaft, and NATO Grant

the box sizeAx = Ay = An = 10. No. HTECH.LG 970522.
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