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Density Oscillator: Analysis of Flow Dynamics and Stability
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Two open containers filled with fluids of different density and connected by a vertical capillary tube
can approach their thermodynamical equilibrium via an oscillatory flow. The temporal evolution of flow
velocities was measured quantitatively. Data on the critical values determining the flow reversal are
extracted yielding a simple dependence of the critical level of heavy fluid as a function of the density
ratio and the length of the capillary. A novel theoretical description of the system is presented which is
based on a one-fluid model and a steady-state approximation for a two-dimensional flow. Theoretical
results are in good agreement with the experimental data. [S0031-9007(98)06728-3]

PACS numbers: 47.15.Fe, 47.20.Bp

The investigation of fluid dynamics and hydrodynamich(z) = h, that is given by
instabilities has experienced a renaissance in modern —

. . . w8H = psgh . 1
physics [1]. The research often fruitfully combines clas- ) P8 ps8l ) _ @ )
sical concepts with novel approaches from nonlinear dyFor the opposite case, the tube contains only light fluid
namics and enhances our understanding of phenome@&d is targeting a different pressure equilibrium which is
that are typically studied in fields such as oceanography€alized for a salt water leveb:
mete%r?logy, or ge_zolphysit%s [5]. W.hile. thi?_ alltppliedt re- pwg(H — L) = pyg(hy — L). (2)
search focuses mainly on the dynamics in infinite system . I
certain hydrodynamic instabilities are strongly related tjlﬁ V\sszon:r'%im déof.:: tﬁzntsézrlltatmhel'?nj(taalzlee?sqgls“b”um
the presence of spatial constraints. A fascinating examplgv ! 2 detl ! piitu v
is the density oscillator that was discovered by Martin [3]. Ah = hy — hy = L(1 — py,/ps). )

It combines the unstable stratification of two fluids knowngher investigations of the density oscillator include

from Rayleigh-Taylor experiments [4] with the spatiotem- o gifications where the capillary tube is replaced by

poral constraints of the ordinary Poiseuille flow. Because; hole or the originally miscible fluids are replaced
of its experimental simplicity and high degree of repro-

ducibility, it also appears to be an excellent model system
for the study of self-induced relaxation oscillations [2,5]. -—a —» A
The density oscillator consists of two containers sepa-
rating the fluids (Fig. 1). The inner and outer containers H
hold the dense and light fluids, respectively. The small h
inner container has a vertical capillary tube attached to its
bottom that allows the dense fluid to flow into the large
container and vice versa. Typical fluids are aqueous NaCl
solutions (densityp,) and water(p,,) [3,6,7]. Surpris-
ingly, one finds an oscillatory flow through the capillary Py» gy ‘
giving rise to beautiful jets of ascending water and de-
scending salt water. The jets and their oscillatory change l ry
of flow direction can be easily followed with the naked
eye due to differences in refraction. g
An important finding of Martin [3] was the distinction

L X

between two limiting cases: While fast oscillations areF!G: 1. Schematic drawing of the experimental setup. The
outer container { = 25 |, filled with water) is much larger

SUbJ?Ct _to the influence of |nert|§1, SlO_W oscillations 8Sthan the inner container that hosts the salt water. Therefore,
studied in this Letter can be described in terms of steadythe height of the water leve can be assumed to be constant.
state approximations. In both cases, two unstable situFhe inner container is cylindrical with an inner diameter of

ations can be distinguished for which the static pressures = 34.2 mm. A capillary tube oriented vertically (i.e., parallel

. ; ; :~~t0 the gravity acceleratiorg) connects both reservoirs. The
are balanced: During the phase of heavy fluid ﬂongparametersb (b = 0.74 mm) and L denote the inner diameter

downwards, the capillary is filled entirely with this fluid 7.4 the length of the capillary, respectively and u denote

and its levelr(7) in the small container is decreasing. The densities and dynamic viscosities, respectively. The indiees
system is approaching an unstable pressure equilibrium ahds correspond to water and salt water.
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by immiscible liquids [7—9]. The latter modification the extraction of the corresponding relaxation time

introduces additional forces due to surface tension that 1 (b/2)%*pg

were avoided in our investigations. P W 4)
This Letter presents quantitative measurements of the

height evolutioni (). Critical heights and flow velocities Wherep = ps andu = w; for the example of salt water

characterizing the state of flow reversal are presented®Wing downwards. _

The experimental results are compared with calculations 1N€ €xperimental data also reveal a slow, but continu-

that address the key problem of how to derive the®US shift ofh toward higher values. This shift is strongly

conditions for flow reversal from the unstable pressurd€ated to the pressure equilibria discussed above: While
equilibria. The calculations follow an approach that hadn€ unstable pressure equilibria remain essentially con-
been successfully used for a particular example of heattant, the volume reduction during the downflow of salt
transfer [10]. water hgs_ to be compensated by a Igrger \(qlume of water.
Dimensions and parameters specifying the experiment&ihe validity of Eq. (3) was verified in additional experi-

setup are indicated in Fig. 1. The results presented if'€NtS, where. and p,; were varied systematically. EXx-
the following have been obtained by varying the |engthper|mental data ok were obtained from the asymptotic

L of the capillary tube in a range of 1 to 10 cm. The values of the exponential fits for successive upflow and
density ratio of salt wate[NaCl] = 1-5 M) to pure downflow phases. For the example shown in Fig. 2 this

water was varied from 1.03 to 1.18. All experiments wereV@/Ue is found t0 b& /ey = 5.3 = 0.2 mm, which is in
carried out at room temperature. The salt water level wag©0d agreement with the expected value of 5.2 mm.
monitored by a CCD camera. Figure 3 shows some data on the dependence of the

Figure 2 shows a typical example for the temporal evolelaxation time_q-_ on the I.engf[hL of the ca_pillary tube for
lution of the heighth(z). According to the direction of constant densities. Solid circles and diamonds represent

the oscillatory flow, one observes increasing or decrea£Xperimental data obtained for.the relaxation 'time of salt
ing values ofs. The period of oscillationsI690 = 10 s water and pure water, respectively. Linear fits of these

in Fig. 2) is constant for many cycles, since salt water acdata are indicated by dashed lines. The density ratio and

cumulates primarily at the bottom of the large containerﬁk\;'scosrfy of salt watef[NaCl] = 4 M) were measured to
while the light fluid accumulates at the top of the innerP€ps/pw = 1.153 andu, = 1.5 mPas. Based on these

container. The dashed lines represent simple exponentidft@ the straight lines in Fig. 3 represent the expected
relaxation times according to Eq. (4). Experimental and

fits to the successive branches of upflow and downflow, ) .
The good agreement between experimental data and cdheoretical data are in good agreement. However, a small

culated fits stems from the characteristics of the Poiseuill@¢gative offset is found in our experiments that could
flow within the capillary. The Hagen-Poiseuille equation'”d'cate small deviations from an ideal Poiseuille flow or
relating the volume flux to the driving pressure differencePiNNing of the salt water meniscus.

yields a first-order differential equation im and allows
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FIG. 2. A typical example of temporal evolution of the level in Fig. 2. Solid circles and diamonds represent experimental
of salt waterh(r) as observed in the inner container (solid data for the change from upflow to downflow and vice versa,
curve). The dashed curves represent exponential fits for theespectively. Dashed lines indicate the result of the linear
successive phases of the oscillatory flawr) « [exp(—t/7) + regression of experimental data. Straight lines represent the
consi. The length of the capillary tube&: = 3.94 cm. expected dependences based on Eq. (4).

799



VOLUME 81, NUMBER 4 PHYSICAL REVIEW LETTERS 27 JLy 1998

In order to obtain a better understanding of the spaThe diffusion equation is needed to deal with the two
tiotemporal dynamics during the flow reversal, additionalfluids in a one-fluid model. The vertical (horizontal)
experiments have been performed in which the heavy fluigelocity component in thec (y) direction isu (v), p
was stained with red ink. This procedure allows one tas the pressureg is the gravity accelerationy, is the
easily monitor the salt water jet at the periphery of thekinematic viscosity of salt water, anbl is its diffusion
bottom orifice of the capillary [3]. A few seconds prior to coefficient. The second term on the right-hand side in
the flow reversal one observes that a small water bubblEq. (5) describes the disturbance of the downflow. The
is penetrating the capillary at a small section close to itoussinesq approximation was used in the equations of
boundary. The bubble grows rapidly to a water columnmotion by treatingp = p, as a constant in all terms
occupying approximately one-half of the cross section oexcept for the one in the disturbing force. For= v =
the capillary tube. At this stage the salt water jet is stillo,u = 0 the Poiseuille flow profile in a duct witlp =
present, but reduced in size. When the unstained water[5h3/(12u,)],P is recovered. The pressure difference
has climbed up to the upper end of the capillary it termi-9, P in the flow rateQ is determined by gravity only since
nates the salt water inflow immediately. Notice that thisboth vessels are open to atmospheric pressure.
flow reversal lasts only a few seconds, while under our ex- The governing equations can be written in a nondi-
perimental conditions the oscillation period is in the rangemensional form by introducing = x/L,y = y/b, u =
of 10 to 40 min. ub/Q,v = vL/Q, andp = pb3/p;Lv,Q. In the new

An obvious idea to apply to the problem of flow re- variables, the equation of continuity becomeésu +
versal is the Rayleigh-Taylor instability of two differ- oyv = 0 and Egs. (5)—(7) read
ently denseviscousfluids. A rigorous treatment would e N _
require calculations in three-dimensional cylindrical co- Res (st + voyi) = a® — f = dxp

ordinates. The resulting equations with the appropriate + 828)27ﬁ + aéﬁ, (8)
boundary conditions present a severe problem to solve

analytically. Therefore a theoretical description is derived Ree’(@ozv + Viyv) = —dyp + stov + szaf—,v,
on the basis of a one-fluid model in a two-dimensional (9)

rectangular geometry. Since the critical level is de-

termined by thelocal velocity field at the tube orifice _ _ D ,., )

(see experimental observation and below), this approxi- ~ £@9x® + v05;0) = 0° %0 + 050 (10)
mation seems reasonable. The analysis focuses on the

downflow of salt water since the analogous treatment ofhe  Reynolds  number Re Q/v;, & =b/L,
the upflow of water is obvious. The stationary laminar8 = gb”/(v;Q), and the control parameter

flow is considered in a duct of lengithand widthb. The gb? P
flow can be considered as two dimensional if one assumes a = E (1 -
that the depth of the duct is large compared to its width. y Ps
The downflow is disturbed at the lower end of the leftwere introduced. The control parametercontains the
duct wall by water which tries to rise against the down-two counteracting quantities flow ra@ and density dif-
flowing salt water. To describe such a disturbance irference(l — p,,/ps). Since the flow is two dimensional,
the frame of a one-fluid model, a dimensionless functiorwe define a stream functio (x,y), u = o7V (x,y) and
O(x,y),0 = O(x,y) = lisintroduced where andy de- v = —9zV(x,y), by which the equation of continuity is
note the vertical and horizontal coordinate, respectivelyautomatically fulfilled. The boundary conditions in terms

(11)

® mediates the continuous transition between water andf ¥ are 97V = — a5V = 0 (no slip) and—oz¥ =0
salt water, i.e.p = p; + (p,, — ps)® andc =1 — O,  (no penetration of the vertical walls) &= 0,1. The
wherec is the concentration of salt water in the fluid. constant flow rate is ensured by =1 aty = 1 and

The equations governing this system are the equatiod = 0 aty = 0. According to the observed evolution
of continuity, diww = 0 = d,u + d,v, thex andy com-  of the water bubble®(x,y) has to be equal to 1 at
ponent of the Navier-Stokes equation, and the diffusiorx = y = 0 and equal to zero at = 1.
equation Since the lengtii of the duct is very large compared to
(ps — pu)® 1 its width 4, the remaining unknown function¥, ®, and
T — —0xp p are expanded in terms of the small parametd0]. In

Ps Ps lowest order, the solutiof®((x,y) = J(x) (1 — y) and
+ vy(03u + 9ju), () W, y) =35 - 257 + (a/24)9(x) (1 — )’y satis-
fies all boundary conditions. The unspecified function
1 ) 5 (X)) with 99(0) = 1 is free for modeling the decreas-
udv + voyv = R dyp + (v + 9yv),  (6)  ing concentration of water in the down-flowing fluid in
’ thex direction. The instability occurs if the derivative of
udic + vaye = D(dc + d5c). (7)  the velocity in thex direction changes its sign at the lower

udyu + voyu = —g + g
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FIG. 4. Characterization of the change from downflow to
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0.16 = 0.02 from the experimental data. The shift of the
observed data towards higher valuesipf— h; could be
caused by uncontrolled perturbations of the system (e.g.,
small mechanical vibrations) which induce premature flow
reversals.

A similar two-dimensional calculation in cylindrical
coordinates would correspond to an axial-symmetrical dis-
turbance at the orifice of the tube. Because such a type of
disturbance has never been observed in the experiments,
one has to extend to three-dimensional calculations.
Therefore our proposed analytical analysis is limited to a
two-dimensional rectangular geometry.

For the presented hydrodynamic oscillator the distance
between unstable pressure equilibria, the exponential flow
dynamics, and the critical heights have been measured
quantitatively.  Furthermore, a thorough theoretical
understanding has been achieved. On this basis other

height of the salt water level above the unstable equilibriym determined. Because of its simple experimental setup
at which the flow direction changes. Solid circles: experimentaland theoretical accessibility, we consider this system
data obtained for different values @f and p;. Dashed line: a5 an jmpressive example of oscillatory behavior in
linear regression of experimental data. Straight line: expecte drod .
dependence as given in Eq. (12). ydrodynamics. .
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