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Observation of Multimode Quantum Correlations in Fiber Optical Solitons
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Quantum correlations of photon numbers in different spectral components of ultrashort op
solitons have been observed experimentally. These correlations are crucial for the understandin
characterization of the internal quantum structure of soliton pulses and contribute significantly to so
squeezing by spectral filtering. The accessible information on the nonclassical state of the corre
spectral components is discussed with the example of two modes. The method may be generaliz
obtain a complete quantum description of a multimode field. [S0031-9007(98)06700-3]

PACS numbers: 42.50.Dv, 03.65.Bz, 42.65.Tg
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The observation of amplitude squeezing by self-pha
modulation and spectral filtering of picosecond [1] an
femtosecond pulses [2,3] in optical fibers stimulated th
study of the quantum properties of solitons. The sta
of a Fourier-limited light pulse may be constructed from
Fock states [4] in analogy to a single field mode,

jcl 
X

anjnl , (1)
where the expectation value of the photon number ope
tor kn̂l represents the number of the photons in the puls
The information on the field statejcl can be obtained us-
ing one of the quantum state reconstruction methods [
Among them, the optical homodyne tomography (OHT
has proved to be a powerful tool to accomplish the fu
characterization of a variety of nonclassical states a
the vacuum [6–8]. The application of OHT to pulse
squeezed light allowed for experimental reconstruction
the photon number distribution [7], the density matrix, an
the Wigner function [6].

However, these tomographic experiments with optic
pulses only yield the information on the statistics of th
pulse as a whole. The same holds for the experime
on the generation of pulsed squeezed light using the K
effect [9,10]. There the noise variances were averag
over the spectral and temporal modes. Consequen
the quantum characteristics of the distinct frequenc
components and thus the internal quantum structure of
pulse were not accessible.

In order to account for the full multimode characte
of a pulsed field, the OHT technique might be applie
to the individual spectral or temporal components b
using a narrow local oscillator. However, in this case th
information on phase relations within the pulse is lost.

The more general problem involves the consideration
the complex multimode structure of the pulse. In contra
to the single-mode case of Eq. (1), it requires the analy
of the quantum state of the multimode field which may b
expanded in multimode Fock statesjhnkjl 

Q
k jnkl:

jCl 
X
hnkj

ahnkjjhnkjl . (2)
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It includes thus not only the quantum description o
the distinct spectral modes, but also takes into acco
the entanglement between the frequency compone
The methods using balanced homodyne detection w
suggested to sample the joint density matrix of the tw
correlated spatial-temporal modes [11] and to measu
the quantum correlations at different times in optic
pulses [12,13]. This technique was adopted for th
experimental observation of classical two-time photo
number correlations [14].

Spectral nonclassical correlations in an optical fib
were first discussed for the four different modes of c
radiation produced by pumping at two well-separated fr
quencies [15,16]. For nonclassical light of this type
referred to as two- and four-mode squeezed states, qua
ture phase noise reduction is achieved for the combin
modes as a consequence of quantum correlations, w
each of the separate modes exhibits excess noise.

In squeezed fiber solitons the presence of intensity cor
lations provides a new aspect to the characterization of
internal quantum noise structure. So far, numerical stu
ies of the quantum nonlinear Schrödinger equation [1
have provided a qualitative explanation of soliton amp
tude squeezing experiments [1–3] by calculating the i
tensity variances of the individual components in the pul
spectrum. In this Letter we report on the first experimen
observation of the quantum correlations between the va
ous spectral components. The internal spectral correlat
distribution within the pulse is recorded, demonstrating
new experimental method to characterize the quantum s
of a multimode field.

The experimental setup (Fig. 1) consists of a sour
of optical soliton pulses, a silica optical fiber, a var
able spectral filter, and a detector [2,3]. A mode locke
chromium-YAG laser [18] produces bandwidth-limited
130-fs (FWHM) soliton pulses centered at 1.5mm. The
pulses are launched into a 2.7-m polarization preserv
single-mode optical fiber (3M, FS-PM-7811) at a funda
mental soliton energy of 54 pJ (the choice of param
ters corresponds to the maximum achieved short fib
© 1998 The American Physical Society
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FIG. 1. Setup for the measurement of spectral intrapu
correlations.

squeezing by spectral filtering [3]). For all measuremen
described here both pulse energy and pulse width are k
constant to within 0.5%.

The fiber is followed by a variable spectral filte
allowing for notch, high-, low-, or bandpass filtering
[3]. The spectral resolution of the filter setup is 0.9 n
(90%y10% transmission points of the edge filter) whic
is considerably smaller than the spectral pulse width
18 nm (FWHM). The transmitted light is measured usin
a balanced two-port detector [3]. The sum and differen
rf noise currents from the two ports are recorded
two spectrum analyzers at a frequency of 20 MHz. T
overall quantum efficiency of the setup is about 80
(including 93% grating efficiency, 6% overall losses
mirrors, lenses, and the beam splitter, and 92% detec
quantum efficiency).

Measuring the classical mean field power spectra of
pulses (Fig. 2a), we find the output to be slightly Ram
redshifted with respect to the input [19]. The output puls
are probed for internal two-mode correlations betwe
two complementary frequency intervals within the puls
spectrum (Fig. 2b). By recording the noise current fro
both frequency intervals simultaneously (Fig. 2b, op
circles) a coherent sum of all spectral noise compone
is detected. This measurement is accomplished with
filter applied, and the rms photocurrent noise is at the s
noise level as expected for light experiencing Kerr a
Raman nonlinearities [20]. An incoherent sum is obtain
by adding the two noise powers from the two individu
intervals measured separately with the low-pass and
corresponding complementary high-pass filter for differe
cutoff wavelengths (Fig. 2b, full circles). We find tha
the incoherent sum generally is not at the shot noise le
unlike the noise of unfiltered pulses. The difference
explained by the presence of correlations between
two complementary frequency intervals: the coherent s
detection corresponds to a superposition of the individu
photon number variancesDn2

i (i  1, 2) from each of the
two spectra and the covariance cov

°
ni , nj

¢
between them

Dsn1 1 n2d2  Dn2
1 1 Dn2

2 1 2 covsn1, n2d , (3)

with Dn2
i  kn̂2

i l 2 kn̂il2 and covsni , njd  kn̂i n̂jl 2

kn̂il kn̂jl (i, j  1, 2; i fi j). In contrast, the incoheren
detection corresponds to summing just the varianc
Hence the covariance is a measure of the interference
lse
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FIG. 2. In (a) the input and output spectra are displayed.
(b) the noise power detected simultaneously for all spect
components (open circles, left inset) is compared to the s
of the noise powers from complementary parts of the spectr
(full circles, right inset); all data are plotted relative to sho
noise.

noise from the two spectra. The correlation coefficie
Csi, jd is defined as

Csi, jd 
covsni , njdq

Dn2
i Dn2

j

, (4)

where the normalization ensuresjCsi, jdj # 1.
So far, the correlations were discussed for the long- a

the complimentary short-wavelength side of the spectru
For a more detailed description of the internal quantu
noise structure the pulse output spectrum (Fig. 2a) w
split into 15 wavelength intervals of equal width aim
ing at a measurement of correlations between arbitr
pairs. Hence, 15 variances of the individual intervals a
105 pair correlations had to be determined. This w
achieved experimentally by adjusting the spectral filt
such that wavelength windowshi1, . . . , imj (m # 15) were
transmitted. Then, generalizing Eq. (3) the detected no
power reads as

D

√ X
ii1,...,im

ni

!2


X

i,ji1,...,im

covsni , njd , (5)

where covsni , nid  Dn2
i . For different filter configu-

rations Eq. (5) forms a set of linear equations for th
120 unknown variances and covariances. 120 data po
were recorded by varying systematically the width an
the center position of a bandpass filter. Furthermo
a single interval notch filter was applied, contributin
13 additional data points. A standard method for sol
ing this overdetermined set of linear equations yield
787
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the variances, the covariances, and the correspond
error bars.

Using Eq. (4), the correlation coefficients were calcu
lated fori fi j and were plotted as off-diagonal element
in the matrix representation shown in Fig. 3. Thex axis
of the plot corresponds to wavelength componenti, the
y axis to wavelength componentj, both relative to the
center wavelengthlout

0  1506 nm. Each off-diagonal
square in the plot represents the correlation of waveleng
componenti with wavelength componentj. The correla-
tion strength is encoded in the gray level: darker squar
correspond to correlated, lighter squares to anticorrela
wavelength intervals. A second kind of information i
provided in Fig. 3 fori  j: Instead of uninteresting cor-
relation coefficientsCsi, id  1 [Eq. (4)], the diagonal ma-
trix elements represent the normalized difference betwe
the measured varianceDn2

i and the measured shot noise
Dn2

i,sh  ni for the corresponding wavelength interval

C̃si, id  1 2
ni

Dn2
i

, (6)

and thus give a measure of the internal correlation with
one wavelength interval.

The correlation matrix (Fig. 3) has a characteristic bu
terfly pattern reflecting the internal quantum noise stru

FIG. 3. Map of intrapulse quantum correlations. Each squa
represents the coefficient of correlation between the wavelen
components as indicated on the axes of the diagram. T
measured data points are displayed on one side of the diago
and copied to the other side [Csi, jd  Cs j, id] for clarity.
Correlation data in the outer low-intensity parts of the spectru
with a large error bar are represented by hatched squares.
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ture of the pulse. The asymmetry of the correlatio
pattern with respect to the center wavelength is due to
intrapulse Raman effect. Strong positive correlations a
observed in the long-wavelength part of the spectrum.
its central part the frequency components are mainly ne
tively correlated. These intensity correlations between t
individual pulse modes contribute significantly to nois
reduction or enhancement. So far, squeezing by sp
tral filtering was attributed to sub-shot-noise variances
the individual frequency components [17]. The calculat
variances [17] correspond to the diagonal matrix eleme
C̃si, id of Eq. (6) which are all above shot noise for th
experimental situation displayed in Fig. 3.

Nevertheless, squeezing is observed due to the prese
of internal correlations. Therefore the intrapulse quantu
correlation structure mapped in Fig. 3 provides a clear
sight into the mechanism of squeezing by spectral filterin
The noise reduction is obtained when the filter function
adjusted so that the negatively correlated parts of the sp
trum are preserved while the positively correlated ones
cut off as much as possible. If no filter is applied, all co
relation coefficients weighted by the corresponding va
ances [Eqs. (4) and (6)] must be summed, resulting in
signal at the shot noise level. For the diagonal eleme
one has to useCsi, id  1 in this case.

The Raman induced spectral asymmetry of the corre
tion matrix is in full agreement with the results of our ea
lier experiments [3]: significant squeezing was observ
when a frequency high-pass filter was applied. It shou
be emphasized that the map of the intrapulse noise str
ture could generally serve as an efficient tool in optimi
ing squeezing, indicating which wavelength intervals ha
to be cut off in the process of spectral filtering.

The experiment may provide more information on th
quantum state of the multimode field than can be d
played in the matrix of Fig. 3. To demonstrate this, th
discussion is restricted to two wavelength componenti
and j of arbitrary widths (i, j  1, 2). It is possible to
characterize their correlation in a diagram, displaying t
two-dimensional distribution of the probability to findni

photons in channeli in coincidence withnj photons in
channelj. This probability distributionPij is given by
the absolute squaresjaninj j

2 of the expansion coefficients
in Eq. (2). This distribution may be determined exper
mentally by separately monitoring the two different cha
nels and measuring the number of photons in coinciden

The three independent variances measured in the
periment described above,Dn2

1, Dn2
2, and Dsn1 1 n2d2,

are obtained when projecting the two-dimensional prob
bility distribution P12  jan1n2 j

2 onto the n1 axis, the
n2 axis, and the diagonal, respectively (see Fig. 4
Of course, these three numbers do not provide enou
information to determineP12 in general. But if one
assumes that theP12 distribution is a Gaussian shape
function, then its contour line is an ellipse. Its majo
and minor axes and the angleam between the major axis



VOLUME 81, NUMBER 4 P H Y S I C A L R E V I E W L E T T E R S 27 JULY 1998

A
te
r-
e
ed

r-
d
.
e

d

,

.

.

.

,

.

t.
FIG. 4. (a) Measured correlation matrix and (b) quantu
uncertainty (hatched ellipse) of two correlated modes. T
open ellipse displays the two-mode shot noise contour. F
the gray level in (a), see Fig. 3.

and the directionn1 are uniquely determined by the thre
independent variances in the following way.

The photon number operator corresponding to t
projection of P12 onto an arbitrary anglea and its
variance are given by

N̂sad  n̂1 cosa 1 n̂2 sina , (7)

and

DN2sad  Dn2
1 cos2 a 1 Dn2

2 sin2 a

1 2 covsn1, n2d cosa sina . (8)

The angle am is determined bys≠y≠adDNsad2  0.
If covsn1, n2d  0, then am  0. If Dn2

1  Dn2
2, then

am  645± where plus (minus) holds for covsn1, n2d
positive (negative). Otherwise

tans2amd 
2 covsn1, n2d
Dn2

1 2 Dn2
2

. (9)

To give an example, two particular wavelength inte
vals are chosen as indicated in Fig. 4a which uses
representation of Fig. 3. The corresponding correlati
diagram is displayed in Fig. 4b. The hatched ellipse
reconstructed using the data of Fig. 4a. The open ellip
represents the contour line one would obtain if the corre
tion coefficient were zero and if the two wavelength com
ponents exhibited shot noise statistics. Figure 4b clea
shows that there is a projection (a ø 45±) for which the
standard deviationDNsad 

p
DN2sad is below the shot

noise level although the individual wavelength compo
nents are both above shot noise. It indicates the nonc
sical character of this particular two-mode field.

As an alternative to measuring the correlation diagra
directly as discussed above, it would also be possible
measure the projected probability distributions ofN̂sad
for arbitrary values ofa and to process the data by
standard tomographic methods [5].

In conclusion, we have demonstrated a method f
reconstructing the spectral intensity uncertainties for a
bitrary combinations of correlated modes and charact
m
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izing the corresponding photon number distributions.
complete characterization of a multimode quantum sta
must include the entanglement of different modes for a
bitrary quadrature phase projections. Experimentally, th
required wavelength selective phase shift may be achiev
using an optical cavity [21,22].
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