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Z-Dependent Barriers in Multifragmentation from Poissonian Reducibility
and Thermal Scaling
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We explore the natural limit of binomial reducibility in nuclear multifragmentation by constructing
excitation functions for intermediate mass fragments of a given elefienthe resulting multiplicity
distributions for each window of transverse energy are Poissonian. Thermal scaling is observed
in the linear Arrhenius plots made from the average multiplicity of each element. “Emission
barriers” are extracted from the slopes of the Arrhenius plots and their possible origin is discussed.
[S0031-9007(98)06677-0]

PACS numbers: 25.70.Pq, 24.10.Pa, 24.60.Ky

Emission of multiple intermediate mass fragmentsprobabilitiesp is an average over a range #@fvalues.
(IMF), 3 =Z =20, is an important decay mode in Fortunately, it has been shown that the Arrhenius plots
heavy-ion collisions betweeP0A and 100A MeV [1,2].  should survive such & averaging, and yield an effective
Despite extensive studies, the nature of the fragmentatiotbarrier” (slope) dominated by the lowegt value [4—6].
process, whether statistical or dynamical, remains an opadowever, this procedure clearly implies a substantial loss
problem. A historic overview of low energy reactions of information, and renders the binomial paramejeend
shows that the emission probabilities and excitationn difficult to interpret.
functions are by far the best observables in distinguishing In light of the above considerations, an analysis of the
between statistical processes (dominated by phase spaoauyltiplicities for each fragmerf value may solve many of
as in the case of light particle evaporation and fission) anthese difficulties. Furthermore, it has been pointed out that
prompt, dynamical processes (such as direct reactions) [3& binomial distribution could be distorted by the averaging
Indeed, several aspects of nuclear multifragmentation magssociated with the transformatidii* — E; leading to
be understood in terms afearly independenfragment  possibly incorrect values @t andp [10]. However, it has
emission from multifragmenting sources withermallike  been shown that, whilg andm separately can conceivably
probabilities [4-9]. be distorted by the transformation, the average multiplicity

It was found [4—6] that the experimentZtintegrated (n) = mp is far more resistant to the averaging process
fragment multiplicity distributionsP)’ are binomially [10,11]. It would be useful if a way could be found
distributed in each transverse enerdy)(window, where of avoiding the individual extraction op and m while
n is the number of emitted fragments amds the number retaining the possibility of constructing an Arrhenius plot.

of throws. The transverse enerdy is calculated from In this Letter, we analyze the experimental fragment
the kinetic energie&; of all of the charged particles in multiplicity distributions for each individual fragmemt
an event and their polar anglés, ask, = >, E;si 6;.  value. We show that they are Poissonian. The associated

The extracted one-fragment emission probabilipegive = mean multiplicities foreachZ give linear Arrhenius plots
linear Arrhenius plots (i.e., excitation functions) when from which the corresponding dependent barriers can be
log1/p is plotted vs1/\/E,. If the excitation energfe*  extracted. The physical dependence of these barriers on
is proportional taE; and, consequently, the temperatéire Z may shed light on the fundamental physics associated
to \/E;, these linear Arrhenius plots suggest thdtas the  with multifragmentation, as fission barriers have done for
Boltzmann formp « exp(—B/T) [4—6]. the fission process.

Similarly, the charge distributions for each fragment The effect of restricting the fragment definition to a
multiplicity » are observed to be reducible to a singlesingleZ value is rather dramatic. In Fig. 1, ratios of the
charge distribution and to be thermally scalable [7,8].variance to the mean as a function Bf are given for
Also, the experimental particle-particle angular correla-a number ofZ values, and for the casé = 3 [6]. For
tion is reducible to the individual fragment statistical an-individual Z values the ratios are very close to one, while
gular distributions and thermally scalable [9]. for theZ-integrated case there is a sagging at ldfgeThe

The appeal of this comprehensive picture is marred by axplanation for these features can be found by recalling
number of open problems. One problem, which will bethat, for a binomial distribution,

dealt with here, is that the binomial decomposition has o2
been performed on th&-integrated fragment multiplici-  (n) = mp; o® =mp(l — p); w o 1=p.
ties, typically associated with = Z = 20. Thus, the "
Arrhenius plot generated with the resulting one-fragment (1)
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FIG. 1. The ratio of the variance to the mean number of Li, C, ! ! XAnal)
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O, and Ne fragments (solid and open symbols) emitted from the
E,(MeV)

reaction®Ar + 7Au at E/A = 110 MeV. The star symbols

show the same ratio for all IMFS (= Z = 20). FIG. 2. The excitation function®, for carbon (left column)

and neon (right column) emission from the reactiéhar +
YTAu at E/A =110 MeV (top panels) and'?Xe + 3!V,
natcy, 3y, 7Au (bottom panels). The lines are Poisson fits
to the gold target data.

For p — 0, the ratioo?/(n) — 1. This is the Poisson
limit. When an extensive summation overis carried
out, the elementary probability increases sufficiently at
the highest values df; so that the Poisson distribution is
replaced by the more general binomial distribution. On theve assume thak, « E* and thatE™ « T2, according to
other hand, the restriction to any givénvalue decreases the simplest strongly degenerate Fermi gas dependence at
the elementary probability so dramatically that the above constant volume. We are, of course, aware that high ex-

ratio effectively remains unity at all values &f and the citation energies and/or lower densities can lead to de-
distributions become Poissonian: viations, which may well be looked for in the future. We

expect(n), like p, to be of the formn) = F(T,...)e B/T,

(nyre=m where the specific form of the preexponential factor de-

nl (2) pends ultimately on whether a reaction theory or a chemi-
cal equilibrium description will prevail. We use the
where(n) is (n) (E;). We show the quality of the Poisson Arrhenius plot in the traditional spirit of highlighting
fits to the multiplicity distribution in Fig. 2. These Pois- the leadingT dependence contained in the exponential.
son fits are excellent for alf values starting fronZ = 3  The top four panels of Fig. 3 give a family of these plots
up toZ = 14 over the entire range df, and for all of the  for four different reactions. Each family contaifisralues
reactions which we have studied. Thus we conclude thaxtending fromZ = 3 to Z = 14. The observed Arrhe-
reducibility (we should call it now Poissonian reducibility) nius plots are strikingly linear, and their slopes increase
is verified at the level of individudt values for many dif- smoothly with increasing value. One slight exception is
ferent systems. Incidentally, for the Xe induced reactionsthe largeZ (=10) data for Xe+ Cu. AthighE,, the data
there is an excellent overlap of the data sets for differdeviate from the linear dependence observed elsewhere.
ent targets as a function &;. They all follow the Pois- For this smaller system, it is conceivable that charge con-
son fit to the Au target data. The probabilities and the  servation constraints lead to this behavior. The overall lin-
range ofE, increase with the increasing target mass fromear trend demonstrates that thermal scaling is also present
V to Au, as they must i, is a reasonable measure of the when individual fragments of a specifit are considered.
dissipated energy. Even apart from the linearity of the Arrhenius plots, impor-

The experimental observation of Poissonian reducibilitytant information is already contained in the range covered
directly implies that IMF production is dominated by a by the yield of individual fragments over the rangeif
stochastic process. Of course, stochasticity falls directlghown in Fig. 3. For processes not dominated by phase
in the realm of statistical decay, either sequential orspace (e.g., low energy direct reactions), one expects the
simultaneous (see Sect. 5.5 of Ref. [6] or Ref. [12]). Itexcitation function to depend weakly upon excitation en-
is less clear how it would fare within the framework of a ergy. Typically the cross sections vary by factors of a few.
dynamical model. In the present data, the mean multipliciy) varies withE,

In order to verify thermal scaling, i.e., if the emission by 1 to 2 orders of magnitude. This is strong evidence for
probabilities are thermal, we generate Arrhenius plots byhe involvement of the internal degrees of freedom typical
plotting logn) vs 1/{/E;. Here, as in previous papers, of high barrier statistical decays.

P,(Z) =
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have repeated the analysis, for XeAu at 50A MeV, by

(i) removing fromkE, the contribution of the individuak
(E?) that we have selected (Fig. 3, bottom left panel) and
(i) using only theE, of the light charge particless-¢?
(Fig. 3, bottom right panel) . In both cases, the Arrhenius
plots remain linear over almost the entire range&Epaind
cover 1 to 2 orders of magnitude. Quantitatively, the rate
of change of the slopes with remains the same regardless
of the definition ofE,, as shown in the top panel of Fig. 4.
This behavior is expected if the slopes are related to some
physical barriers.

L Xe+Au X
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In our attempt to avoid autocorrelation by excluding
from E, all IMFs (ELCP) or theZ value under investigation
(EZ), we have introduced another kind of distortion. Ex-
cluding fromE, all fragments of charg& to produceE?
necessarily requires that, for those events wii#re= E,,
the yieldnz — 0. This produces the visible turnover of
the Arrhenius plots in the bottom panels of Fig. 3 (the same
argument also applies t8-). It has been verified ex-
perimentally that the maximum values of the nEwscale
do indeed correspond to events in which the contribution
from a givenZ (or all IMFs) is absent.

(2) The extracted elementary probability is ndwy =
(mp) which, contrary top andm, is very resilient to any
averaging associated with the transformation frafnto

E, [10,11].

FIG. 3. Middle and upper panels: The average yield per event

of different elements (symbols) as a functionigf/E,. Bottom

panels: The Xet Au data at50A MeV are replotted using the g
transverse energy of all charged particles excludingzhbat 80F .
we have selectedz? (left), and (right) that only of the light F
charged particlesE“C?. The lines are fits to the data using a g i e % %
Boltzmann form for(n). . 6oF o E
g | g ;
S 40- = Xe+Au at 50A MeV]
The advantage of considering individudl selected 5 i oE, ]
fragments is readily apparent. For any given reaction, both 5§ >4t o EZ ]
Poissonian reducibility and thermal scaling are verifiable . O Ee
not just once, as in the binomial analysis, but for as many .8 o; ‘ ‘ L
atomic numbers as are experimentally accessible. Take,g g ‘ ‘ o ]
for example, the A+ Au reaction £/A = 110 MeV) o 8ofF 50 oo A E
shown in the top right panel of Fig. 3. For this specific B Y @ Geoeoo o
reaction, we can verify both reducibility and thermal © 60" o g 8o E
scaling for 12 individual atomic numbers. Since there o : PR
are 29E, bins, Poissonian reducibility is tested 29 times ¢ 40k @ O 110AMeV Ar+Au |
for each Z value; i.e., 12 X 29 = 348 times for this g L] 80A MeV Ar+Au
reaction alone. Including all of the cases shown in Fig. 3, i 4 S0A MeV Xe+Cu
we have tested Poissonian reducibility 936 times. This ~ 20- f Sg/xf'fcv th{f‘;o E
is an extraordinary level of verification of the empirical E From ref. 21 1
reducibility and thermal sgaling with _the variakie. O 5" ETR 5" 20
Two added bonuses arise from this procedure. 7
IMF

(1) The criticism has been raised that the linearity of
the Arrhenius plots arises from an autocorrelation, sincé&IG. 4. Top panel: Slopes of the Arrhenius plots, normalized
the complex fragments also contribute£p[13]. Inthe 0 Z =6, for Xe + Au at 504 MeV as a function oz using
present analysis this criticism can be dismissed, since ea(g?le indicated definitions af;. Bottom panel: The dependent
A . o arriers (the slopes of the Arrhenius plots in Fig. 3). The
individual Z contributes a vanishingly small amount t0 . riers have been scaled relative Zo— 6 of the Xe + Au
E, (=5%), even in the region of maximum yields. Still, data. Black dots are low energy conditional barriers from
to be sure that there is no autocorrelation in Fig. 3, weRef. [21] (black dots) normalized t6 = 6 of Xe + Au.
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It may be worth reminding the reader that this procedureeompare the dependence of the barrier€dn that of the
does not contradict binomial reducibility. To the contrary, conditional barriers measured at low energy [21] (black
it represents its natural limit for small values pf and it  dots). Their similarity with the multifragmentation barri-
expands its applicability by considering eaZhvalue in-  ers is dramatically illustrated. While the Coulomb-like
dividually. In going from binomial to Poissonian distri- dependence of these barriers is suggestive, we should re-
butions, the price one pays is the loss of the parameter mark that these are emission barriers rather than Coulomb
While in many ways this is a convenient result, it actuallybarriers. Thus the dominance of the Coulomb term is by
implies aloss of scale. In the time sequential interpretatiomo means obvious.
of multifragmentation [6] this implies a loss of information  In conclusion, Poissonian reducibility and thermal
about the time window during which multifragmentation scaling of individual fragments of a gives have been
occurs in units of the natural channel period, or the unibbserved experimentally for several different systems
time to which the elementary probability is referred. Inat bombarding energies ranging from 50 to 110 MeV
the spatial interpretation, one loses information about th@ucleon. The high level of verification strongly supports
total mass of the source [6]. the stochastic-statistical nature of fragment production

Poissonian reducibility and thermal scaling do not con-and provides a clear signal for source(s) thermalization
tradict recent observations regarding the role of reactioin the late stage of the reaction. Slope parameters were
dynamics in thédormationof the hot primary sources [14— extracted from the Arrhenius plots. The interpretation of
19]. In particular, the experimental scaling is not affectedthese slopes as emission barriers, originating either from
by the presence of multiple sources [6] and the analysi€oulomb or surface terms, or both, still needs to be ex-
presented here is a powerful test to establish the degree pfored. If the physical significance of thegedependent
thermalization in the late stage of the reaction. Kinematidarriers must remain lamentably open, there is at least
variables seem to retain spatial-temporal information abouhe distinct possibility that important physical information
the reaction dynamics [15—20] while the associated emiss contained therein. Data with isotopically resolved
sion probabilities seem to demonstrate, as verified nearly light charged particles and IMFs are needed to further
thousand times in the present work, the role of phase spadevestigate these phenomena.
in describing the decay of the sources. This work was supported by the Director, Office of

Returning to the Arrhenius plots for individual atomic Energy Research, Office of High Energy and Nuclear
numbers, it is straightforward to obtain the values of thePhysics, Nuclear Physics Division of the U.S. Department
slopes from Fig. 3 as a function &f. The interpreta- of Energy, under Contract No. DE-AC03-76SF00098.
tion of these slopes as “emission barriers” is very temptOne of us (L.B.) acknowledges a fellowship from the
ing. If we had the correct excitation energy, rather tharNational Sciences and Engineering Research Council
E,, we could obtain the actual barriers as a functioof (NSERC), Canada.
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