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Z-Dependent Barriers in Multifragmentation from Poissonian Reducibility
and Thermal Scaling
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We explore the natural limit of binomial reducibility in nuclear multifragmentation by construct
excitation functions for intermediate mass fragments of a given elementZ. The resulting multiplicity
distributions for each window of transverse energy are Poissonian. Thermal scaling is obs
in the linear Arrhenius plots made from the average multiplicity of each element. “Emis
barriers” are extracted from the slopes of the Arrhenius plots and their possible origin is discu
[S0031-9007(98)06677-0]
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Emission of multiple intermediate mass fragmen
(IMF), 3 # Z # 20, is an important decay mode in
heavy-ion collisions between20A and 100A MeV [1,2].
Despite extensive studies, the nature of the fragmentat
process, whether statistical or dynamical, remains an op
problem. A historic overview of low energy reactions
shows that the emission probabilities and excitatio
functions are by far the best observables in distinguishi
between statistical processes (dominated by phase sp
as in the case of light particle evaporation and fission) a
prompt, dynamical processes (such as direct reactions)
Indeed, several aspects of nuclear multifragmentation m
be understood in terms ofnearly independentfragment
emission from multifragmenting sources withthermallike
probabilities [4–9].

It was found [4–6] that the experimentalZ-integrated
fragment multiplicity distributionsPm

n are binomially
distributed in each transverse energy (Et) window, where
n is the number of emitted fragments andm is the number
of throws. The transverse energyEt is calculated from
the kinetic energiesEi of all of the charged particles in
an event and their polar anglesui , asEt ­

P
i Ei sin2 ui.

The extracted one-fragment emission probabilitiesp give
linear Arrhenius plots (i.e., excitation functions) whe
log1yp is plotted vs1y

p
Et. If the excitation energyEp

is proportional toEt and, consequently, the temperatureT
to

p
Et , these linear Arrhenius plots suggest thatp has the

Boltzmann formp ~ exps2ByT d [4–6].
Similarly, the charge distributions for each fragmen

multiplicity n are observed to be reducible to a singl
charge distribution and to be thermally scalable [7,8
Also, the experimental particle-particle angular correla
tion is reducible to the individual fragment statistical an
gular distributions and thermally scalable [9].

The appeal of this comprehensive picture is marred by
number of open problems. One problem, which will b
dealt with here, is that the binomial decomposition ha
been performed on theZ-integrated fragment multiplici-
ties, typically associated with3 # Z # 20. Thus, the
Arrhenius plot generated with the resulting one-fragme
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probabilitiesp is an average over a range ofZ values.
Fortunately, it has been shown that the Arrhenius pl
should survive such aZ averaging, and yield an effective
“barrier” (slope) dominated by the lowestZ value [4–6].
However, this procedure clearly implies a substantial lo
of information, and renders the binomial parametersp and
m difficult to interpret.

In light of the above considerations, an analysis of t
multiplicities for each fragmentZ value may solve many of
these difficulties. Furthermore, it has been pointed out t
a binomial distribution could be distorted by the averagi
associated with the transformationEp ! Et leading to
possibly incorrect values ofm andp [10]. However, it has
been shown that, whilep andm separately can conceivably
be distorted by the transformation, the average multiplic
knl ­ mp is far more resistant to the averaging proce
[10,11]. It would be useful if a way could be foun
of avoiding the individual extraction ofp and m while
retaining the possibility of constructing an Arrhenius plo

In this Letter, we analyze the experimental fragme
multiplicity distributions for each individual fragmentZ
value. We show that they are Poissonian. The associa
mean multiplicities foreachZ give linear Arrhenius plots
from which the correspondingZ dependent barriers can b
extracted. The physical dependence of these barriers
Z may shed light on the fundamental physics associa
with multifragmentation, as fission barriers have done
the fission process.

The effect of restricting the fragment definition to
singleZ value is rather dramatic. In Fig. 1, ratios of th
variance to the mean as a function ofEt are given for
a number ofZ values, and for the caseZ $ 3 [6]. For
individual Z values the ratios are very close to one, wh
for theZ-integrated case there is a sagging at largeEt . The
explanation for these features can be found by recall
that, for a binomial distribution,

knl ­ mp; s2 ­ mps1 2 pd;
s2

knl
­ 1 2 p .

(1)
© 1998 The American Physical Society
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FIG. 1. The ratio of the variance to the mean number of Li, C
O, and Ne fragments (solid and open symbols) emitted from t
reaction36Ar 1 197Au at EyA ­ 110 MeV. The star symbols
show the same ratio for all IMFs (3 # Z # 20).

For p ! 0, the ratios2yknl ! 1. This is the Poisson
limit. When an extensive summation overZ is carried
out, the elementary probabilityp increases sufficiently at
the highest values ofEt so that the Poisson distribution is
replaced by the more general binomial distribution. On t
other hand, the restriction to any givenZ value decreases
the elementary probabilityp so dramatically that the above
ratio effectively remains unity at all values ofEt and the
distributions become Poissonian:

PnsZd ­
knlne2knl

n!
, (2)

whereknl is knl sEtd. We show the quality of the Poisson
fits to the multiplicity distribution in Fig. 2. These Pois
son fits are excellent for allZ values starting fromZ ­ 3
up toZ ­ 14 over the entire range ofEt and for all of the
reactions which we have studied. Thus we conclude th
reducibility (we should call it now Poissonian reducibility
is verified at the level of individualZ values for many dif-
ferent systems. Incidentally, for the Xe induced reaction
there is an excellent overlap of the data sets for diffe
ent targets as a function ofEt . They all follow the Pois-
son fit to the Au target data. The probabilitiesPn and the
range ofEt increase with the increasing target mass fro
V to Au, as they must ifEt is a reasonable measure of th
dissipated energy.

The experimental observation of Poissonian reducibili
directly implies that IMF production is dominated by a
stochastic process. Of course, stochasticity falls direc
in the realm of statistical decay, either sequential
simultaneous (see Sect. 5.5 of Ref. [6] or Ref. [12]).
is less clear how it would fare within the framework of
dynamical model.

In order to verify thermal scaling, i.e., if the emissio
probabilities are thermal, we generate Arrhenius plots
plotting logknl vs 1y

p
Et. Here, as in previous papers
,
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FIG. 2. The excitation functionsPn for carbon (left column)
and neon (right column) emission from the reactions36Ar 1
197Au at EyA ­ 110 MeV (top panels) and129Xe 1 51V,
natCu, 89Y, 197Au (bottom panels). The lines are Poisson fi
to the gold target data.

we assume thatEt ~ Ep and thatEp ~ T2, according to
the simplest strongly degenerate Fermi gas dependenc
constant volume. We are, of course, aware that high
citation energies and/or lower densities can lead to d
viations, which may well be looked for in the future. W
expectknl, like p, to be of the formknl ­ FsT , . . .de2ByT ,
where the specific form of the preexponential factor d
pends ultimately on whether a reaction theory or a chem
cal equilibrium description will prevail. We use the
Arrhenius plot in the traditional spirit of highlighting
the leadingT dependence contained in the exponenti
The top four panels of Fig. 3 give a family of these plo
for four different reactions. Each family containsZ values
extending fromZ ­ 3 to Z ­ 14. The observed Arrhe-
nius plots are strikingly linear, and their slopes increa
smoothly with increasingZ value. One slight exception is
the largeZ ($10) data for Xe1 Cu. At highEt , the data
deviate from the linear dependence observed elsewh
For this smaller system, it is conceivable that charge co
servation constraints lead to this behavior. The overall l
ear trend demonstrates that thermal scaling is also pre
when individual fragments of a specificZ are considered.
Even apart from the linearity of the Arrhenius plots, impo
tant information is already contained in the range cover
by the yield of individual fragments over the range ofEt

shown in Fig. 3. For processes not dominated by pha
space (e.g., low energy direct reactions), one expects
excitation function to depend weakly upon excitation e
ergy. Typically the cross sections vary by factors of a fe
In the present data, the mean multiplicityknl varies withEt

by 1 to 2 orders of magnitude. This is strong evidence f
the involvement of the internal degrees of freedom typic
of high barrier statistical decays.
771
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FIG. 3. Middle and upper panels: The average yield per eve
of different elements (symbols) as a function of1y

p
Et . Bottom

panels: The Xe1 Au data at50A MeV are replotted using the
transverse energy of all charged particles excluding theZ that
we have selected,EZ

t (left), and (right) that only of the light
charged particles,ELCP

t . The lines are fits to the data using a
Boltzmann form forknZl.

The advantage of considering individualZ selected
fragments is readily apparent. For any given reaction, bo
Poissonian reducibility and thermal scaling are verifiab
not just once, as in the binomial analysis, but for as ma
atomic numbers as are experimentally accessible. Ta
for example, the Ar1 Au reaction (EyA ­ 110 MeV)
shown in the top right panel of Fig. 3. For this specifi
reaction, we can verify both reducibility and therma
scaling for 12 individual atomic numbers. Since the
are 29Et bins, Poissonian reducibility is tested 29 time
for each Z value; i.e., 12 3 29 ­ 348 times for this
reaction alone. Including all of the cases shown in Fig.
we have tested Poissonian reducibility 936 times. Th
is an extraordinary level of verification of the empirica
reducibility and thermal scaling with the variableEt .

Two added bonuses arise from this procedure.
(1) The criticism has been raised that the linearity

the Arrhenius plots arises from an autocorrelation, sin
the complex fragments also contribute toEt [13]. In the
present analysis this criticism can be dismissed, since e
individual Z contributes a vanishingly small amount to
Et (#5%), even in the region of maximum yields. Still,
to be sure that there is no autocorrelation in Fig. 3, w
772
nt

th
le
ny
ke,

c
l

re
s

3,
is
l

of
ce

ach

e

have repeated the analysis, for Xe1 Au at 50A MeV, by
(i) removing fromEt the contribution of the individualZ
(EZ

t ) that we have selected (Fig. 3, bottom left panel) an
(ii) using only theEt of the light charge particles,ELCP

t
(Fig. 3, bottom right panel) . In both cases, the Arrheniu
plots remain linear over almost the entire range ofEt and
cover 1 to 2 orders of magnitude. Quantitatively, the rat
of change of the slopes withZ remains the same regardless
of the definition ofEt , as shown in the top panel of Fig. 4.
This behavior is expected if the slopes are related to som
physical barriers.

In our attempt to avoid autocorrelation by excluding
from Et all IMFs (ELCP

t ) or theZ value under investigation
(EZ

t ), we have introduced another kind of distortion. Ex-
cluding fromEt all fragments of chargeZ to produceEZ

t
necessarily requires that, for those events whereEZ

t ø Et ,
the yield nZ ! 0. This produces the visible turnover of
the Arrhenius plots in the bottom panels of Fig. 3 (the sam
argument also applies toELCP

t ). It has been verified ex-
perimentally that the maximum values of the newEt scale
do indeed correspond to events in which the contributio
from a givenZ (or all IMFs) is absent.

(2) The extracted elementary probability is nowknl ­
kmpl which, contrary top andm, is very resilient to any
averaging associated with the transformation fromEp to
Et [10,11].

FIG. 4. Top panel: Slopes of the Arrhenius plots, normalize
to Z ­ 6, for Xe 1 Au at 50A MeV as a function ofZ using
the indicated definitions ofEt . Bottom panel: TheZ dependent
barriers (the slopes of the Arrhenius plots in Fig. 3). The
barriers have been scaled relative toZ ­ 6 of the Xe1 Au
data. Black dots are low energy conditional barriers from
Ref. [21] (black dots) normalized toZ ­ 6 of Xe 1 Au.
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It may be worth reminding the reader that this procedu
does not contradict binomial reducibility. To the contrar
it represents its natural limit for small values ofp, and it
expands its applicability by considering eachZ value in-
dividually. In going from binomial to Poissonian distri
butions, the price one pays is the loss of the parameterm.
While in many ways this is a convenient result, it actual
implies a loss of scale. In the time sequential interpretati
of multifragmentation [6] this implies a loss of information
about the time window during which multifragmentatio
occurs in units of the natural channel period, or the u
time to which the elementary probability is referred. I
the spatial interpretation, one loses information about t
total mass of the source [6].

Poissonian reducibility and thermal scaling do not co
tradict recent observations regarding the role of react
dynamics in theformationof the hot primary sources [14–
19]. In particular, the experimental scaling is not affecte
by the presence of multiple sources [6] and the analy
presented here is a powerful test to establish the degre
thermalization in the late stage of the reaction. Kinema
variables seem to retain spatial-temporal information ab
the reaction dynamics [15–20] while the associated em
sion probabilities seem to demonstrate, as verified near
thousand times in the present work, the role of phase sp
in describing the decay of the sources.

Returning to the Arrhenius plots for individual atomi
numbers, it is straightforward to obtain the values of th
slopes from Fig. 3 as a function ofZ. The interpreta-
tion of these slopes as “emission barriers” is very tem
ing. If we had the correct excitation energy, rather th
Et, we could obtain the actual barriers as a function ofZ.
Unfortunately we are limited to our running variableEt ,
and to the assumption of its proportionality toEp. How-
ever, the many linear Arrhenius plots shown here cann
be easily explained without invoking this proportionality
Therefore, with necessary caution, we explore the poss
meaning of these barriers. A plot of these barriers as
function of Z is potentially rich in information. The ex-
tracted barriers are shown in Fig. 4 (bottom panel). T
barriers appear to increase linearly withZ at low Z values
and tend to sag below linearity at higher ones.

One could wonder about the role of surface energy
the origin of these barriers. Fragments might be thoug
as forming by coalescence into a relatively cold and den
nuclear drop out of a hot diluted source. The appearan
of a substantial surface energy for the fragment would su
gest barriers proportional toZ2y3 (A2y3). If this were true,
then one would expect the barrier for eachZ to be nearly
independent of the system studied. Unfortunately, sin
the relationship betweenEt and excitation energy is un-
known, the absolute values of our barriers are also u
known. By normalizing all systems atZ ­ 6 and using
the Xe1 Au at EyA ­ 50 MeV as the reference, one ob
serves barriers that are indeed fairly independent of
system (Fig. 4, bottom panel). Another possibility is t
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compare the dependence of the barriers onZ to that of the
conditional barriers measured at low energy [21] (black
dots). Their similarity with the multifragmentation barri-
ers is dramatically illustrated. While the Coulomb-likeZ
dependence of these barriers is suggestive, we should
mark that these are emission barriers rather than Coulom
barriers. Thus the dominance of the Coulomb term is b
no means obvious.

In conclusion, Poissonian reducibility and therma
scaling of individual fragments of a givenZ have been
observed experimentally for several different system
at bombarding energies ranging from 50 to 110 MeVy
nucleon. The high level of verification strongly supports
the stochastic-statistical nature of fragment productio
and provides a clear signal for source(s) thermalizatio
in the late stage of the reaction. Slope parameters we
extracted from the Arrhenius plots. The interpretation o
these slopes as emission barriers, originating either fro
Coulomb or surface terms, or both, still needs to be ex
plored. If the physical significance of theseZ dependent
barriers must remain lamentably open, there is at lea
the distinct possibility that important physical information
is contained therein. Data with isotopically resolved
light charged particles and IMFs are needed to furthe
investigate these phenomena.
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