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Spinor Bose Condensates in Optical Traps
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We show that in an optical trap the ground states of spin-1 bosons su€iNas*’K, and 3Rb
can be either ferromagnetic or “polar" states, depending on the scattering lengths in different angular
momentum channels. The collective modes of these states have very different spin character and spatial
distributions. While ordinary vortices are stable in the polar state, only those with unit circulation are
stable in the ferromagnetic state. The ferromagnetic state also has coreless (or Skyrmion) vortices like
those of*He-A. [S0031-9007(98)06714-3]

PACS numbers: 03.75.Fi, 05.30.Jp

Recently, the MIT group succeeded in trapping’la  further increased by increasing the trap frequency. Since
Bose condensate by purely optical means [1]. This exthe current capability of magnetic shielding can reach
periment has opened up a new direction in the study of0~> G, a good approximation of the zero field limit is
confined dilute atomic gases. In conventional magneti@ttainable.
traps, the spins of the alkali atoms are frozen. As a result, Optical trap potentials and their spin dependenee.
even though the alkali atoms carry spins, they behave lik&Ve begin by examining the confining potential produced
scalar particles. In contrast, the spin of the alkali atomsy a laser with a linearly polarized electric fieki(z)% and
are essentially free in an optical trap. The spinor naturérequencyw. The potential seen by an atom in hyperfine

of alkali Bose condensate can therefore be manifested [2§tate|1, m) is U,, = —%amf 2,

Because of the wide range of hyperfine spins of the alkali X, 2 .
bosons and fermions, the optical trap has provided greaty,, = ZeZ ;m—“’f’" Z | XemlPwim = — Z.
opportunities to study dilute quantum gases of atoms with T O — w? ¢ M
large spins. 1)

The purpose of this paper is to point out the generaﬁherem denotes the time average,, is the polar-
N

properties of the spinor Bose condensates. As we sh ability of the state|l, m), fiw, > 0 is the excitation

see, they possess a whole host of quantum phenome :
absent in scalar condensates. These include changesglﬂergy from the ground stafé, i) to excited states(),

o i is the dipole matrix element betw n
ground state structures with interaction parameters, vectcg{némz slst tﬁ : gtc())(reni cantumE:r eV\;[eb?wtavieglgqg argtlgzl’ the

and quadrupolar spin wave modes, topological and ®N®Hipole sum rule in Eq. (1). To one part i? to 103, the
getic |r_13tab|I|ty of doubly quantized s_lngular vortices, anddipole sum rule is saturated by the to nP transitions
the existence of coreless (or Skyrmion) vortices. All of 3], wherensS is the ground state electronic configuration.

these results are simple consequences of the effective | e sum rule in Eq. (1) can therefore be approximated as

energy Hamiltonian of the system. The derivation of thisZ X, 2 — 2 inaddition. th itati
Hamiltonian (which applies to bosons and fermions with&¢ep 14 tm!"@tm = 537 £- h addition, the excitation ener-

arbitrary spins) and the realization of its limitations are¥!eS@im fordifferenFnS to n'P'transitipns 'differ _from eich
therefore crucial for our discussions. other only by the fine splitting, which is typicallj0

For simplicit hall . ith h fi smaller than the energy differgncﬁa(;:s) betweermS to
spino} szlmlp 'C.'r%/i’ SV\ilﬁ csluge ch?ks‘,;ﬁgrva?ﬁ ch]rlf:I\(leVgr Sgﬂge:r €,.P levels before they fine split. Thus, for a far detuned

3/2 such as®Na, K, and 8Rb. Alkali bosons with 'aSer. Ed. (1) can be approximated as

f > 1 such as®Rb (with 7 = 5/2) and!33Cs (with] = 1 5 Afine
70)2 Zle-x€rn| W | + O\ —— |,

7/2) have even richer structures and will be discussed *» = = 7 )

PS — leP

elsewhere. To illustrate the fully degenerate spinor nature,
, : 2

and as a first step, we shall consider only the case of

zero magnetic field. To reach a good approximation ofwhere Ay, is the fine splitting and) = wps — @ is

this limit, the Zeeman energy must be much smaller thathe detuning frequency. To the extent that the transitions

the interaction energy at the center of the trap (which is:S — n’'P (n' > n) and the ratid\ i, /{2 can be ignored,

essentially the chemical potential). The condition is the sum in the first term in Eqg. (2) is then a constant and

thereforeyB < u, wherey is the gyromagnetic ratio and «,, (hencelU,,) is independent of.

B is the magnetic field. For clouds wittd® atoms, with Effective low energy Hamiltoniar-Alkali atoms

scattering lengtla,. = 100 A and trap frequency 200 Hz, (bosons or fermions) have two hyperfine multiplets.

this condition givesB < 1073 G. This bound can be The energy difference between the higher and the lower
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multiplet (denoted asfni,n and fiow, respectively) is £,(r), wheren(r) is the density and, is a normalized
many orders of magnitude larger than the frequencies adpinor/™ - ¢ = 1. The ground state structure #f, (r) is
typical traps. Since the interaction between two alkalidetermined by minimizing the energy with a fixed particle
atoms depends on their electron spins (singlet or tripletyhumber, i.e.6K = 0, K = §(H — uN), wherepu is the
the hyperfine states of the atoms can be changed after tlshemical potential,
scattering. However, when the system is very cold, two e 52
atoms infioy Will remain in the same multiplet after the g = / dr<7 (VJn)* + — (V) ’n
scattering since there is not enough energy to promote M M
either atom tgfLi.n. In contrast, energy conservation does n?
not limit the pro%luction Off 10w statesgf);om the scattering — [ - U@ + ) [co + C2<F>2]>’ (4)
of two fhi,n States. As a result, in an optical trap, all _ ' _
atoms in the ground state will be in the lower multiplet. and({F) = {; ¥, ;. Itis obvious that all spinors related
The low energy dynamics of the system is thereford® €ach other by gauge transformatietf and spin ro-
described by a pairwise interaction that is rotationallytationsU (a, B, 7) = e~ F:*e~"FB¢~/F7 are degenerate,
invariant in the hyperfine spin space and preserves the hyvhere(a, 8, 7) are the Euler angles. There are two dis-
perfine spin of the individual atoms. The general form oftinct cases: _ _
this interaction isV(r, — r)) = 8(r; — rz)Z?p'};o ¢rPr, (I) Polar state [4]: Thls_ state emerges wher> 0 (i.e.,
wheregy = 4mhar/M, M is the mass of the aton®, ~ §2 > 80)- The energy 1s minimized byF) = 0. The
is the projection operator which projects the pair 1 and FPinor¢ and the density” in the ground state are given by
into a t_otal hyperfine spiF state, anduy is the s-wave 0 — 1 -ia sing
scattering length in the total spif channel. For bosons T T V2
. e [=e"U|l 1| =¢ cosp ,

(or fermions), symmetry implies that only even (or odd) 0 1 i
F terms appear ifv. e sing

For a system off = 1 bosons, we hav® = g, + o, 1
goP. Likewise, the relationF; - F, = Zifzo AP, nir) = co [ = U) = W],
Ap = 3[F(F + 1) = 2f(f + 1)] becomesF; - F, =
P, — 2R). The relationy ; Prly = 1 becomesl =  where W(r) = % V?y{—?. Note that/ is independent of
P, + R. We then have (dropping thé function) the Euler angler. The symmetry group of polar state
V =co+ cF - F2, where c¢p = (go + 2g2)/3 and s thereforeU(1) X S2, where U(1) denotes the phase
c2 = (g2 — go0)/3. The Hamiltonian in the second angles andS? is a surface of a unit sphere denoting all

®)

quantized form is then orientations(«, B) of the spin quantization axis.
K2 (II) Ferromagnetic state: This state emerges wier
H = f dl’(ﬁ Vi, - Vi + U, 0,0rgy > g». The energy is minimized by makid§)? =
1. The ground state spinor and density are
+ % Wy Yarbatba 1 e ' cod %
¢ 4o {=eU[0| =€ f2cosEsint |,
+ ? lpa lpa’ Fuh : Fa’b’lpb"pb) 5 (3) 0 eia SInZ g

(6)

where, (r) is the field annihilation operator for an atom  ,0() = 1 [ — Ur) — W(r)].
in hyperfine stat¢l, a) at pointr, (a = 1,0, —1), andU is 82
the trapping potential. It is straightforward to generalize N - .
Eq. (3)th)o ghiz]her spins. By ngting thas, -gz)” — The dJrecthn 9f the spin 'E?F> = cospz + sinf x
2 i n 7 (cosax + sinay). The combinatio(® — v) in Eq. (6)
2r=0 )‘F?Fn’ we have for the general case= 2= X clearly displays a “spin-gauge” symmetry [2], i.e., the
C"(,F‘ - F)", vyhere n IS @ linear combination qf th_e equivalence between phase change and spin rotation.
8r'S. Alterna_nvely, it is useful to express the projection Because of this symmetry, the distinct configurations of
opFerato[ z)FA in the second quantized form aBy = { (including the gauge) are given by the full range of the
> u=—F OFaOFa, WhereOp, = _Zu],a2<Fa|f,a1;f, a) X Eyler angles. The symmetry group is therefore(30
Ya,bay, and (Fmlf.a\;f,a) is the Clebsch-Gordon agwe shall see, this difference in symmetry between the
coefficient for forming a total spin¥” state fro?? WO polar and the ferromagnetic state leads to a fundamental
spin- particles. The pair potential is thén = >r—o X  difference in their vortices.
gr ZS:_F O;aOFa. Only even and odd terms appear According to the latest estimate of Burke, Bohn, and
in V in the case of bosons and fermions. Greene [5], the scattering 6fNa isa, = (52 + 5)ag and
Ground state structure—It is convenient to write the o = (46 + 5)ap; and those for’Rb area, = (107 +
Bose condensat@,(r) = (J,(r)) as ¥,(r) = /n(r) X 4)apg andag = (110 = 4)ap, whereap is the Bohr radius.
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Because of the overlapping error barszgfandag in each  are identical to those of the density mode, and
case, one cannot be sure about the nature of their ground
states. However, if the inequalities suggested by current wl =2yl =% 2 (11)
estimate §, > ao for »*Na andag > a, for 8Rb) are T <o 2a; + ag
2 87
gﬁg'fgfgnggzrfgt?gg;;iterse gg:cﬁcglbe are polar state (I) Ferromagnetic state: We shall také = (1,0,0).
. ’ : Using Eg. (6) and the fact thaF) = z, Eq. (7) becomes
Collective modes of trapped spinor Bose conden- g Ea. (6) aF) = 2,Bq. (7)

sates—The equation of motion in zero field is

2 hi & i V2 4 w(r) &
7 5 ~ (10, = - +
iho, = _ZE_M V2¢m + [U(I‘) - M]‘pm l 5—1 M é)j)_ol ' (g)_ol
+ CO(‘?/;‘/A/a)'Z’m + Cz(l?/jFa},l,Z},) ’ (FlZf)m . gz(&l + <2’1+)
@) + n 0 ) (12)
2lealdp-

To study the elementary excitations, we wiltg = 0 +
¢, and linearize Eq. (7) about the ground stdté

(I) Polar state: Without loss of generality, we take To linear order ing,, the density, spin, and “quadrupo-

” H . - A 0 ~ ~ 4
as the spin quantization axis agd = (0, 1,0), with the lar” spin fluctuations are given by = vn® (1 + ¢"),

7 — /a0t 2 — 0 0 gt .
subscript T,” denotes the transpose. Using the eXpressiorﬁS,M* VnO ¢y, andsM? = 2/n% ¢7,. The frequen

0 _ cies of these modes will be denoted as, wo, and
of n” in Eq. (5) and the fact thd¥F) = 0, Eq. (7) becomes 1, respectively. In the homogeneous case £ 0),

& 12 fb @ the density mode has a Bogoliubov spectriimg =
ihat< B A°+> = ——V2< Q) + W(r)< 3) Vel + 2g:net, ex = (ik)?/(2M). The spin waves M -
bo 2M 0 o k 21" €
. - has a free particle spectruay, = ex. The frequency of
n n0c0< ¢o + <1>0+> ) SM? is free-particle-like with a gapyy = €x + 2|ca|n°.
b0+ bo )’ In a harmonic trap, the density modd: assumes the

. A . Stringari form becauseb; obeys the same equation as
iﬁa( ¢ )_ —E—ZV2< ¢ > N W(r)( k2 ) scalar Bosons. The spectra of boh and ¢_, are
-0 o o given by Schrédinger equations with potentiéif$r) and

b+ Bt W(r) + 2|ca|n(r), respectively. Outside the cloud, the

+ n062< A1 4 5! ) (9) potentials for bothg, and ¢_; reduce to the harmonic
- potential U(r) — u. For a large cloudn® is well ap-

To linear order ind,,, the density and spin fluctuations Proximated by the Thomas-Fermi expressich= [ —
(874 and 8M-) are related tod, and ¢ as Si(r) = U]/ g2, except near the surface of the cloud. Calculating
[0(0) (do + bd), SM4 = WL, + iM,) = /nO(r) x W with n?, one finds that it becomes more attractive near
(1 + &F), and b1 = 17 Denotingythe frequencies the surface. The low energy modes &t are there- _
of &, and ;?L as wy and+a)+ it is easy to see that fore confined near the surface. For the quadrupolar spin

~n )
they are all of the Bogoliubov form in the homogeneouswaves’aM*’ the low energy modes are even more con

fined to the surface because of the additional potential
= = ./ + 0 4+ = . : . e
ca;se(GW+ 2(2),n(\)/\)/h2;]edIZw0: hzk?;gl;\/[) 2con?), = 2|¢»|n°(r), which is much more repulsive thai inside
k 1%k 20 k : the cloud. The spectrum of the surface modes &f

Ina harmomc trap, Eq. (8) is identical to t_he equation OfgndaM% therefore mimic their homogeneous counterpart,
the collective mode of a scalar boson. Using the method .

So A
of Stringari [6], it is straightforward to show that for a with the energy ob M= shifted up from that oM by an

- h , amount ~|c,|n° ~ (leal/g2)p = (lc2l/g2) (R /ar)*hwr,
large cloud (where:” in Eq. (5) is well approximated by . . 7 .
the Thomas-Fermi expressiafi(r) = [u — U(r)]/co by whereR is the size of the cloud and; = \//i/M w7 is

. . . the trap length.
ignoring W(r) [7]), Egs. (8) and (9) can be written as Intrinsic stability of singular vortices with circulation

2an _ 0 I Ov ST, (¢ > 1) in the ferromagnetic state-The fundamental
9:8f = Vl(con'Von), 0rOM = Viean VaMi)l' difference between the vortices of the polar and the fer-
(10) romagnetic states can be illustrated by their superfluid ve-

. _ h oy
Stringari has shown that the density mode in Eq. (10) halsOC't'eS’Vs = w{ VL. FromEgs. (5) and (6), they are

a universal spectrum (i.e., interaction independent) with 7

power law (hence extended) wave functions [6]. Since the (¥s)potar = M Vo,

spin wave modes$ M- obey exactly the same equation (13)
as én, except thatcy is replaced byc,, the quantum _ V(0 — 1) — cosBY

numbers and the wave functions of the spin wave modes (¥ )remo M [V ™ pVal,
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where we have assumed that the Euler angiess, )
and 6 are spatially varying functions.
state, the superfluid velocity, of the ferromagnetic state

known that external rotations can distort the texture so as

Unlike the polar to generate a velocity field to mimic the external rotation

as closely as possible [9]. Such textural distortions will

depends on spin rotations. This leads to the followingoccur here for the same energetic reasons.

remarkable property of the Bose ferromagnets:

If too

In current experiments, the condensates are first pro-

much vortex energy is stored in one spin component, thduced in a magnetic trap and then loaded into an optical

system can get rid of it by spin rotation.

To illustrate trap. Because of the way they are produced, the conden-

this phenomenon, consider the following family of spinorsates will in general carry a net magnetization. If the spin

states{W, (1) = v/n% £,(¢)} parametrized by a parameter
between 0 and 1,

0= (et () e s Z)

)]

where m > 0 is an integer,¢ is the azimuthal angle,

(14)

and n° is the equilibrium density for the vortex state

Tt = 0) = (e¥%7,0,0) with € = 2m circulation. As
t evolves from0 to 1, this2m# vortex evolves continu-
ously to the vortex free statg’ (r = 1) = (0,0, 1) with
a spin texture(F) = coqwt)z + sin(wt)[cogmaed)X +
sin(m¢)§]. This shows tham¢ vortices are topologi-

relaxation time is sufficiently long, the condensate will be-
have like a ferromagnetic state even its ground state is a
polar state. In this case, the vortex phenomena discussed
above will apply.
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Notes added—At the time of submission of this paper,
a preprint by T. Ohmi and K. Machida appeared (cond-

cally unstable. If they are ever stable, it must be due tGnat/9803160). These authors have studied the same
the existence of energy barriers preventing its collapsgyggel in finite field and in the absence of a trap. Our

Such barriers, however, are nonexistent.

it is easily shown that fo0 < <1, %—’f = —7 351 X

[dr n°(r)|V2me|*(c + 2¢3)s < 0, wherec = cos(%t),

s> =1 — ¢2. The fact thatk decreases monotonically

with increasingt shows the absence of energy barriers.
By multiplying Eq. (14) bye’?, one also obtains a fam-

ily connecting a vortex witl2m + 1 circulation {7 (r =

0) = ¢/@+1%(1,0,0) to a vortex with unit circulation

[T(r=1) = ¢'%(1,0,0). It can be easily shown as in the

2m¢ case thalK/dt < 0 for m > 0. This means that

all 22m + 1)7r vortices will collapse into 27 vortex.

The 27 vortex, however, can not be deformed continu-

ously into a uniform state [8].
Coreless (or Skyrmion) vortices:Equation (13) shows

that spin variations in the ferromagnetic states in general[4]
lead to superflows. To illustrate further, consider the con-

densate ()" — (co3 &, V2" sin cos, ¢4 sir? &),
where 8 = B(r) is an increasing function of starting

from 8 = O atr = 0. The spin texture and superfluid ve-

Fronﬁ12 Eq. (4)%zero field results of homogeneous systems agree.

[1] D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur,
S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle,
Phys. Rev. Lett80, 2027 (1998).

[2] The symmetry of a fully magnetized Bose condensate was
emphasized in T.L. Ho and V. B. Shenoy, Phys. Rev. Lett.
77, 2595 (1996) and7, 3276 (1996).

[3] I.1. Sobelman,Atomic Spectra and Radiative Transitions

(Springer-Verlag, Berlin, 1979), p. 299; W.L. Wiese,

M.W. Smith, and B.M. GlennonAtomic Transition

Probabilities, Natl. Bur. Stand. (U.S.) (U.S. GPO, Wash-

ington, DC, 1966), Vol. Il.

The name “polar” is chosen because it is the analog of the

polar state in superfluiéHe.

[5] J. Burke, J. Bohn, and C. Greene (private communication).

[6] S. Stringari, Phys. Rev. Let?.7, 2360 (1996).

[7] G. Baym and C.J. Pethick, Phys. Rev. L&, 6 (1996).

locity of this condensate are both cylindrically symmet- [8] Mathematically, the difference between the vortices of

ric, (F) = 2cosB + sinB(cos¢x + singy), and v, =
%(1 — cosB)¢. Whenpg(r) reachesr/2, v, becomes

the velocity field of a singular vortex. However, the sin-

gularity of the usuals vortex is absent because van-
ishes instead of diverges at= 0. This phenomena is
identical to that of superfluitHe-A, which has exactly the

same angular momentum texture, superfluid velocity, and

topological instability [9,10]. In the case He-A, it is

the polar and the ferromagnetic state can be traced to
their different first homotopy groupz(U(1) X S?) =
Z and 7,(SQ(3)) = Z,, meaning that the polar phase
has infinitely many distinct defects of different winding,
whereas the ferromagnetic phase has only one defect with
nontrivial winding.

[9] D. Vollhardt and P. Wdlfle,The Superfluid Phases of He
3 (Taylor & Francis, London, 1990).

[10] T.L. Ho, Phys. Rev. BL8, 1144 (1978).

745



