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Spinor Bose Condensates in Optical Traps

Tin-Lun Ho
Department of Physics, The Ohio State University, Columbus, Ohio 43210
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We show that in an optical trap the ground states of spin-1 bosons such as23Na, 39K, and 87Rb
can be either ferromagnetic or “polar" states, depending on the scattering lengths in different ang
momentum channels. The collective modes of these states have very different spin character and s
distributions. While ordinary vortices are stable in the polar state, only those with unit circulation a
stable in the ferromagnetic state. The ferromagnetic state also has coreless (or Skyrmion) vortices
those of3He-A. [S0031-9007(98)06714-3]

PACS numbers: 03.75.Fi, 05.30.Jp
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Recently, the MIT group succeeded in trapping a23Na
Bose condensate by purely optical means [1]. This e
periment has opened up a new direction in the study
confined dilute atomic gases. In conventional magne
traps, the spins of the alkali atoms are frozen. As a resu
even though the alkali atoms carry spins, they behave li
scalar particles. In contrast, the spin of the alkali atom
are essentially free in an optical trap. The spinor natu
of alkali Bose condensate can therefore be manifested [
Because of the wide range of hyperfine spins of the alk
bosons and fermions, the optical trap has provided gre
opportunities to study dilute quantum gases of atoms w
large spins.

The purpose of this paper is to point out the gener
properties of the spinor Bose condensates. As we sh
see, they possess a whole host of quantum phenom
absent in scalar condensates. These include change
ground state structures with interaction parameters, vec
and quadrupolar spin wave modes, topological and en
getic instability of doubly quantized singular vortices, an
the existence of coreless (or Skyrmion) vortices. All o
these results are simple consequences of the effective
energy Hamiltonian of the system. The derivation of th
Hamiltonian (which applies to bosons and fermions wit
arbitrary spins) and the realization of its limitations ar
therefore crucial for our discussions.

For simplicity, we shall consider bosons with hyperfin
spin f  1. This includes alkalis with nuclear spinI 
3y2 such as23Na, 39K, and 87Rb. Alkali bosons with
f . 1 such as85Rb (with I  5y2) and133Cs (with I 
7y2) have even richer structures and will be discusse
elsewhere. To illustrate the fully degenerate spinor natu
and as a first step, we shall consider only the case
zero magnetic field. To reach a good approximation
this limit, the Zeeman energy must be much smaller th
the interaction energy at the center of the trap (which
essentially the chemical potentialm). The condition is
thereforegB ø m, whereg is the gyromagnetic ratio and
B is the magnetic field. For clouds with106 atoms, with
scattering lengthasc  100 Å and trap frequency 200 Hz,
this condition givesB ø 1023 G. This bound can be
0031-9007y98y81(4)y742(4)$15.00
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further increased by increasing the trap frequency. Sin
the current capability of magnetic shielding can rea
1025 G, a good approximation of the zero field limit is
attainable.

Optical trap potentials and their spin dependence.—
We begin by examining the confining potential produce
by a laser with a linearly polarized electric fieldE stdx̂ and
frequencyv. The potential seen by an atom in hyperfin
statej1, ml is Um  2

1
2 amE 2,

am 
X

,

e2 jX,mj2v,m

v
2
,m 2 v2

,
X

,

jX,mj2v,m 
h̄

2M
Z .

(1)

where s· · ·d denotes the time average,am is the polar-
izability of the statej1, ml, h̄v,m . 0 is the excitation
energy from the ground statej1, ml to excited statesj,l,
eX,m is the dipole matrix element betweenj1, ml andj,l,
and Z is the atomic number. We have also written th
dipole sum rule in Eq. (1). To one part in102 to 103, the
dipole sum rule is saturated by thenS to nP transitions
[3], wherenS is the ground state electronic configuration
The sum rule in Eq. (1) can therefore be approximatedP

,eP jX,mj2v,m 
h̄

2M Z. In addition, the excitation ener-
giesv,m for differentnS to nP transitions differ from each
other only by the fine splitting, which is typically1023

smaller than the energy difference (h̄vPS) betweennS to
nP levels before they fine split. Thus, for a far detune
laser, Eq. (1) can be approximated as

am  2
1

v
2
PS 2 v2

√X
,eP

jex,mj2v,m

!
1 O

√
Dfine

V

!
,

(2)

where Dfine is the fine splitting andV ; vPS 2 v is
the detuning frequency. To the extent that the transitio
nS ! n0P (n0 . n) and the ratioDfineyV can be ignored,
the sum in the first term in Eq. (2) is then a constant a
am (henceUm) is independent ofm.

Effective low energy Hamiltonian.—Alkali atoms
(bosons or fermions) have two hyperfine multiplet
The energy difference between the higher and the low
© 1998 The American Physical Society
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multiplet (denoted asfhigh and flow , respectively) is
many orders of magnitude larger than the frequencies
typical traps. Since the interaction between two alka
atoms depends on their electron spins (singlet or triple
the hyperfine states of the atoms can be changed after
scattering. However, when the system is very cold, tw
atoms inflow will remain in the same multiplet after the
scattering since there is not enough energy to promo
either atom tofhigh. In contrast, energy conservation doe
not limit the production offlow states from the scattering
of two fhigh states. As a result, in an optical trap, a
atoms in the ground state will be in the lower multiple
The low energy dynamics of the system is therefo
described by a pairwise interaction that is rotational
invariant in the hyperfine spin space and preserves the
perfine spin of the individual atoms. The general form o
this interaction isV̂ sr1 2 r2d  dsr1 2 r2d

P2f
F0 gFPF ,

wheregF  4p h̄2aFyM, M is the mass of the atom,PF

is the projection operator which projects the pair 1 and
into a total hyperfine spinF state, andaF is the s-wave
scattering length in the total spinF channel. For bosons
(or fermions), symmetry implies that only even (or odd
F terms appear in̂V .

For a system off  1 bosons, we haveV  g2P2 1

g0P0. Likewise, the relationF1 ? F2 
P2f

F0 lFPF ,
lF ; 1

2 fFsF 1 1d 2 2fs f 1 1dg becomes F1 ? F2 

P2 2 2P0. The relation
P

F P
2f

F0  1 becomes1 
P2 1 P0. We then have (dropping thed function)
V  c0 1 c2F1 ? F2, where c0  sg0 1 2g2dy3 and
c2  sg2 2 g0dy3. The Hamiltonian in the second
quantized form is then

H 
Z

dr
µ

h̄2

2M
=c1

a ? =ca 1 Uc1
a ca

1
c0

2
c1

a c1
a0 ca0ca

1
c2

2
c1

a c1
a0 Fab ? Fa0b0cb0cb

∂
, (3)

wherecasrd is the field annihilation operator for an atom
in hyperfine statej1, al at pointr, (a  1, 0, 21), andU is
the trapping potential. It is straightforward to generaliz
Eq. (3) to higher spins. By noting thatsS1 ? S2dn P2f

F0 l
n
FPF , we have for the general caseV 

Pf
n0 3

cnsF1 ? F2dn, where cn is a linear combination of the
gF ’s. Alternatively, it is useful to express the projection
operator PF in the second quantized form asPF PF

a2F Ô1
FaÔFa, whereÔFa 

P
a1,a2

kFajf, a1; f, a2l 3

ĉa1 ĉa2 , and kFmjf, a1; f, a2l is the Clebsch-Gordon
coefficient for forming a total spinF state from two
spin-f particles. The pair potential is then̂V 

P2f
F0 3

gF
PF

a2F Ô1
FaÔFa. Only even and oddF terms appear

in V̂ in the case of bosons and fermions.
Ground state structure.—It is convenient to write the

Bose condensateCasrd ; kĉasrdl as Casrd 
p

nsrd 3
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zasrd, wherensrd is the density andza is a normalized
spinorz 1 ? z  1. The ground state structure ofCasrd is
determined by minimizing the energy with a fixed particl
number, i.e.,dK  0, K ; dkH 2 mNl, wherem is the
chemical potential,

K 
Z

dr
µ

h̄2

2M
s=

p
n d2 1

h̄2

2M
s=z d2n

2 fm 2 Usrdgn 1
n2

2
fc0 1 c2kFl2g

∂
, (4)

andkFl ; z p
a Fabzb . It is obvious that all spinors related

to each other by gauge transformationeiu and spin ro-
tationsUsa, b, td  e2iFzae2iFybe2iFzt are degenerate,
wheresa, b, td are the Euler angles. There are two dis
tinct cases:

(I) Polar state [4]: This state emerges whenc2 . 0 (i.e.,
g2 . g0). The energy is minimized bykFl  0. The
spinorz and the densityn0 in the ground state are given by

z  eiuU

0B@ 0
1
0

1CA  eiu

0BB@ 2
1

p
2

e2ia sinb

cosb
1

p
2

eia sinb

1CCA ,

n0srd 
1
c0

fm 2 Usrd 2 Wsrdg ,
(5)

whereWsrd  h̄2

2M
=2

p
n0

p
n0 . Note thatz is independent of

the Euler anglet. The symmetry group of polar state
is thereforeUs1d 3 S2, where Us1d denotes the phase
angleu and S2 is a surface of a unit sphere denoting a
orientationssa, bd of the spin quantization axis.

(II) Ferromagnetic state: This state emerges whenc2 ,

0, org0 . g2. The energy is minimized by makingkFl2 
1. The ground state spinor and density are

z  eiuU

0B@ 1
0
0

1CA  eisu2td

0BB@ e2ia cos2 b

2p
2 cos b

2 sin b

2

eia sin2 b

2

1CCA ,

n0srd 
1
g2

fm 2 Usrd 2 Wsrdg .
(6)

The direction of the spin iskFl  cosbẑ 1 sinb 3

scosax̂ 1 sinaŷd. The combinationsu 2 gd in Eq. (6)
clearly displays a “spin-gauge” symmetry [2], i.e., th
equivalence between phase change and spin rotat
Because of this symmetry, the distinct configurations
z (including the gauge) are given by the full range of th
Euler angles. The symmetry group is therefore SOs3d.
As we shall see, this difference in symmetry between t
polar and the ferromagnetic state leads to a fundamen
difference in their vortices.

According to the latest estimate of Burke, Bohn, an
Greene [5], the scattering of23Na isa2  s52 6 5daB and
a0  s46 6 5daB; and those for87Rb area2  s107 6

4daB anda0  s110 6 4daB, whereaB is the Bohr radius.
743
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Because of the overlapping error bars ofa2 anda0 in each
case, one cannot be sure about the nature of their grou
states. However, if the inequalities suggested by curre
estimate (a2 . a0 for 23Na and a0 . a2 for 87Rb) are
true, then the condensates of23Na and87Rb are polar state
and ferromagnetic state, respectively.

Collective modes of trapped spinor Bose conde
sates.—The equation of motion in zero field is

ih̄≠tĉm  2
h̄2

2M
=2ĉm 1 fUsrd 2 mgĉm

1 c0sĉ1
a ĉadĉm 1 c2sĉ1

a Fabĉbd ? sFĉdm .
(7)

To study the elementary excitations, we writeĉm  C0
m 1

f̂m and linearize Eq. (7) about the ground stateC0.
(I) Polar state: Without loss of generality, we takeẑ

as the spin quantization axis andz T  s0, 1, 0d, with the
subscript “T ,” denotes the transpose. Using the expressi
of n0 in Eq. (5) and the fact thatkFl  0, Eq. (7) becomes

ih̄≠t

µ
f̂0

2f̂
1
0

∂
 2

h̄2

2M
=2

µ
f̂0
f̂

1
0

∂
1 Wsrd

µ
f̂0
f̂

1
0

∂
1 n0c0

µ
f̂0 1 f̂

1
0

f̂0 1 f̂
1
0

∂
, (8)

ih̄≠t

µ
f̂1

2f̂
1
21

∂
 2

h̄2

2M
=2

µ
f̂1

f̂
1
21

∂
1 Wsrd

µ
f̂1

f̂
1
21

∂
1 n0c2

µ
f̂1 1 f̂

1
21

f̂1 1 f̂
1
21

∂
. (9)

To linear order inf̂m, the density and spin fluctuations
(dn̂ and dM̂6) are related tof̂0 and f̂6 as dn̂srd p

n0srd sf̂0 1 f̂
1
0 d, dM̂1 ; dsM̂x 1 iM̂yd 

p
n0srd 3

sf̂1 1 f̂
1
21d, andM̂2  M̂1

1 . Denoting the frequencies
of f̂0 and f̂6 as v0 and v6, it is easy to see that
they are all of the Bogoliubov form in the homogeneou
case (W  0), where h̄v0 

p
eksek 1 2c0n0d, v6 p

eksek 1 2c2n0d, andek  h̄2k2ys2Md.
In a harmonic trap, Eq. (8) is identical to the equation o

the collective mode of a scalar boson. Using the meth
of Stringari [6], it is straightforward to show that for a
large cloud (wheren0 in Eq. (5) is well approximated by
the Thomas-Fermi expressionn0srd  fm 2 Usrdgyc0 by
ignoringWsrd [7]), Eqs. (8) and (9) can be written as

≠2
t dn̂  =sc0n0=dnd, ≠2

t dM̂6  =sc2n0=dM̂6d .
(10)

Stringari has shown that the density mode in Eq. (10) h
a universal spectrum (i.e., interaction independent) wi
power law (hence extended) wave functions [6]. Since t
spin wave modesdM6 obey exactly the same equation
as dn, except thatc0 is replaced byc2, the quantum
numbers and the wave functions of the spin wave mod
744
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are identical to those of the density mode, and

v2
6 

c2

c0
v2

0 
a2 2 a0

2a2 1 a0
v2

0 . (11)

(II) Ferromagnetic state: We shall takez T  s1, 0, 0d.
Using Eq. (6) and the fact thatkFl  ẑ, Eq. (7) becomes

ih̄≠t

0B@ f̂1
f̂0

f̂21

1CA  2
h̄2

2M
=2

0B@ f̂1
f̂0

f̂21

1CA 1 Wsrd

0B@ f̂1
f̂0

f̂21

1CA
1 n0

0B@ g2sf̂1 1 f̂
1
1 d

0
2jc2jf̂21

1CA . (12)

To linear order inf̂a, the density, spin, and “quadrupo-
lar” spin fluctuations are given bydn̂ 

p
n0 sf̂1 1 f̂

1
1 d,

dM̂2 
p

n0 f̂
1
0 , anddM̂2

2  2
p

n0 f̂
1
21. The frequen-

cies of these modes will be denoted asv1, v0, and
v21, respectively. In the homogeneous case (W  0),
the density mode has a Bogoliubov spectrum̄hv0 p

e
2
k 1 2g2n0e

2
k, ek  sh̄kd2ys2Md. The spin wavedM̂2

has a free particle spectrumv0  ek. The frequency of
dM̂2

2 is free-particle-like with a gap,v0  ek 1 2jc2jn0.
In a harmonic trap, the density modedn̂ assumes the

Stringari form becausêf1 obeys the same equation as
scalar Bosons. The spectra of botĥf0 and f̂21 are
given by Schrödinger equations with potentialsWsrd and
Wsrd 1 2jc2jn0srd, respectively. Outside the cloud, the
potentials for bothf̂0 and f̂21 reduce to the harmonic
potential Usrd 2 m. For a large cloud,n0 is well ap-
proximated by the Thomas-Fermi expressionn0  fm 2

Ugyg2, except near the surface of the cloud. Calculatin
W with n0, one finds that it becomes more attractive nea
the surface. The low energy modes ofdM̂2 are there-
fore confined near the surface. For the quadrupolar sp
waves,dM̂2

2, the low energy modes are even more con
fined to the surface because of the additional potent
2jc2jn0srd, which is much more repulsive thanW inside
the cloud. The spectrum of the surface modes ofdM̂2

anddM̂2
2 therefore mimic their homogeneous counterpar

with the energy ofdM̂2
2 shifted up from that ofdM̂2 by an

amount ,jc2jn0 , sjc2jyg2dm  sjc2jyg2d sRyaT d2h̄vT ,
whereR is the size of the cloud andaT 

p
h̄yMvT is

the trap length.
Intrinsic stability of singular vortices with circulation

(, . 1) in the ferromagnetic state.—The fundamental
difference between the vortices of the polar and the fe
romagnetic states can be illustrated by their superfluid v
locities,vs ; h̄

M z 1=z . From Eqs. (5) and (6), they are

svsdpolar 
h̄
M

=u ,

svsdferro 
h̄
M

f=su 2 td 2 cosb=ag ,

(13)
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where we have assumed that the Euler anglessa, b, td
and u are spatially varying functions. Unlike the pola
state, the superfluid velocityvs of the ferromagnetic state
depends on spin rotations. This leads to the followin
remarkable property of the Bose ferromagnets: If to
much vortex energy is stored in one spin component, t
system can get rid of it by spin rotation. To illustrate
this phenomenon, consider the following family of spino
stateshCastd 

p
n0 zastdj parametrized by a parametert

between 0 and 1,

z T std 

µµµ
ei2mf cos2

µ
pt
2

∂
, eimf

p
2 sin

µ
pt
2

∂
3 cos

µ
pt
2

∂
, sin2

µ
pt
2

∂∂∂∂
, (14)

where m . 0 is an integer,f is the azimuthal angle,
and n0 is the equilibrium density for the vortex state
z T st  0d  se2mfi, 0, 0d with ,  2m circulation. As
t evolves from0 to 1, this2mp vortex evolves continu-
ously to the vortex free statez T st  1d  s0, 0, 1d with
a spin texturekFl  cossptdẑ 1 sinsptd fcossmfdx̂ 1

sinsmfdŷg. This shows that2mf vortices are topologi-
cally unstable. If they are ever stable, it must be due
the existence of energy barriers preventing its collaps
Such barriers, however, are nonexistent. From Eq. (
it is easily shown that for0 , t , 1, dK

dt  2
p
2

h̄2

2M 3R
dr n0srd j=2mfj2sc 1 2c3ds , 0, wherec ; coss pt

2 d,
s2  1 2 c2. The fact thatK decreases monotonically
with increasingt shows the absence of energy barriers.

By multiplying Eq. (14) byeif, one also obtains a fam-
ily connecting a vortex with2m 1 1 circulation z T st 
0d  eis2m11dfs1, 0, 0d to a vortex with unit circulation
z T st  1d  eifs1, 0, 0d. It can be easily shown as in the
2mf case thatdKydt , 0 for m . 0. This means that
all 2s2m 1 1dp vortices will collapse into a2p vortex.
The 2p vortex, however, can not be deformed continu
ously into a uniform state [8].

Coreless (or Skyrmion) vortices.—Equation (13) shows
that spin variations in the ferromagnetic states in gene
lead to superflows. To illustrate further, consider the co
densatez srdT  scos2 b

2 ,
p

2 eif sin b

2 cosb

2 , e2if sin2 b

2 d,
where b  bsrd is an increasing function ofr starting
from b  0 at r  0. The spin texture and superfluid ve
locity of this condensate are both cylindrically symme
ric, kFl  ẑ cosb 1 sinbscosfx̂ 1 sinfŷd, and vs 

h̄
Mr s1 2 cosbdf̂. Whenbsrd reachespy2, vs becomes
the velocity field of a singular vortex. However, the sin
gularity of the usual2p vortex is absent becausevs van-
ishes instead of diverges atr  0. This phenomena is
identical to that of superfluid3He-A, which has exactly the
same angular momentum texture, superfluid velocity, a
topological instability [9,10]. In the case of3He-A, it is
r

g
o
he

r

to
e.

4),

-

ral
n-

-
t-

-

nd

known that external rotations can distort the texture so
to generate a velocity fieldvs to mimic the external rotation
as closely as possible [9]. Such textural distortions w
occur here for the same energetic reasons.

In current experiments, the condensates are first p
duced in a magnetic trap and then loaded into an opti
trap. Because of the way they are produced, the cond
sates will in general carry a net magnetization. If the sp
relaxation time is sufficiently long, the condensate will b
have like a ferromagnetic state even its ground state i
polar state. In this case, the vortex phenomena discus
above will apply.
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Notes added.—At the time of submission of this paper
a preprint by T. Ohmi and K. Machida appeared (con
mat/9803160). These authors have studied the sa
model in finite field and in the absence of a trap. O
zero field results of homogeneous systems agree.
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