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Reptation and Contour-Length Fluctuations in Melts of Linear Polymers
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We present an analytical theory of stress relaxation in monodisperse linear polymer melts that
contains contributions from both reptation and contour-length fluctuations, modeled as in our previous
work on arm retraction in star polymers. Our approach resolves two long-standing problems with
reptation theory: it predicts a zero-shear viscosityscaling asny ~ N> over a broad range in
chain lengthN before reaching an asymptot\® dependence, and a power law * in the dynamic
loss modulusG”(w) with 0 < @ < 1/4 depending on chain length, in agreement with experiment.
[S0031-9007(98)06599-5]

PACS numbers: 83.10.Nn, 61.25.Hq

The reptation theory of stress relaxation in monodisperse Simulations by O’Connor and Ball [7] and Rubinstein
linear polymers, originated by de Gennes [1] and devel{8] of the combined reptation and contour-length dynam-
oped by Doi and Edwards [2] into a full description of the ics of a single chain within a tube, equating the time when
linear and nonlinear rheology of monodisperse entanglethe chain ends first visit a given portion of the tube to the
melts, is a remarkably successful theory. The many-bodyelaxation time for stress held there, give a resultf@v)
problem of motion of a chain entangled with a melt of oth-consistent with the experimental 3.4 scaling. Rubinstein,
ers is replaced by a single chain in a “tube” that representllelfand, and Pearson [9] proposed the Rouse-like path-
the constraints from entanglement with other chains. Théength fluctuations at the chain ends as the source for the
reptation theory explains the origin of shear thinning duenearw ~'/# form of G”(w) at high frequencies. However,
to alignment in flow of the tubes, the origin of a plateauthey were unable to treat the crossover quantitatively.

region in the dynamic elastic moduly$'(w) above the Recently, we have developed a powerful tube-based
terminal time, and the approximate scaling of the reptationheory of stress relaxation in an apparently unrelated
time 74 with chain lengthv. system, melts of entanglgdarmstar polymers (f “arms”

However, there are several notable shortcomings ofttached by their ends to a single branch point) [10].
the reptation theory, in both the linear and the nonlin-Reptation is impossible for stars, because the arms have
ear regimes. In the linear regime, the shortcomings arao single tube down which to slither. Stress relaxes in
(1) reptation predicts that, scales withv asN?, while  star melts by arm retraction [11], in which the free end of
numerous experiments givg ~ N34 [3], and (2) for fre-  a star arm fluctuates down its tube some distance toward
quencies above, ', Doi-Edwards (DE) theory predicts a the branch point and pops out again, thus “forgetting” the
dynamic loss modulu&”(w) going asw ~'/2, where ex-  section of tube near the free end.
periment finds a much weaker power law, between zero This arm retraction is entropically unfavorable and
and —1/4 depending on chain length [4]. hence “activated,” with retraction time scales depending

It has been understood for some time that the physicaxponentially on the length of the arm and on the fractional
origin of the 3.4 scaling is the relaxation of some portiondistance retracted. Our development of this idea gives
of the stress by a faster process than reptation, whichn analytical theory foiG(w) in star melts that agrees
would decrease the viscosity relative to the asymptoticemarkably well with a wide range of experimental data
result [5]. The fast process becomes less importaiN as on stars with various number and length of arms. The
becomes large, so the viscosity increases faster than tlomly parameters in the theory, the entanglement length
asymptoticN? result, meeting it from below. N, and a microscopic time scale, are accessible from

Doi identified this faster process with “contour-length experiment on linear chains.
fluctuations,” i.e., the fluctuation-driven stretchings and Based on this theory, we have returned to consider the
contractions of the chain along the tube [6]. When theshortcomings of reptation theory appliedliimear chains.
chain contracts within the tube and then stretches oufhe idea is simple: treat linear chains as two-armed stars.
again, the orientation of the ends of the tube is forgottenThat is, the motion of star arms retracting is nearly the
and stress associated with alignment of those portions cfame as the contour-length fluctuation motion of the end
the tube is relaxed. Doi argued that the fraction of tubeof a linear chain. However, stress relaxation by retraction
relaxed in this way should scale A5 /2. in linear chains is “cut off” by reptation: tube segments
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not visited by a retracting end on a time scalewill be  displacement along the tubg(z) is of order the chain
relaxed by reptation. Thus for a linear chain, the fast (an@&nd-to-end radiu®> = Nb? (b the Kuhn step size for the
thus relevant) retractions will tend to involve motion nearchain), and the chain free end “discovers” that it is not
the chain ends; because of this, modeling the retractioimfinite; before thisz?(¢) is independent of chain length.
as if the center of the chain were fixed is a reasonable We expose the length dependence of the Rouse time
approximation. If the full DE spectrum is used for the cen-for a chainrz(N) by writing it in terms ofr,, the Rouse
tral position of the chain, the crossover is smooth: thdime for an entanglement segment (of lentyty, as7z =
relaxation timer(s) of a tube segment a distancbomthe  7.(N/N.)>. Requiringz>(¢) to be independent ¥ then
free end varies from control by retraction from its nearesteads to a scaling resuit(r) ~ R(t/ =)/
free end f(s) ~ s*, see below] to control by reptative ~ We convert distance down the tubeto fractional
diffusion [r(s) ~ s?]. distances usingz = sL, whereL is the tube length. The
The stress relaxation functidi(z) then becomes a sum chain may be thought of as a random walKbf a) steps of
of two terms, one corresponding to loss of memory of thesize the tube diameter, soLa = R?. The tube diameter
ends of the tube due to contour-length fluctuations, ands the radius of an entanglement segmeny; sorelated to
one corresponding to escaping the remainder of the tubl¥, by a> = (4/5)N,b? (the coefficient being a matter of
by reptation. The portion of the stress relaxing by armconvention [2]). Inverting the scaling relation above, with

retraction takes a form identical to the star theory, an explicit Rouse model calculation to fix the coefficient,
Sd dG we find [10]
Grraa) = [ as LD ey, ) o
0 ds 7(s) = (22573/256)7.s*(N/N,)*, 2)

Heres (0 = s = 1) denotes the fractional distance from _ 12

the free end of a chain to the middle (the “joint” of the Whichis valid up tas = s, of order(N, /N)'/*, wherer(s)
two-arm star), and, the value ofs for which reptation i of orderr; and we cross over to the activated form for
becomes faster than arm retraction. 7(s) (from Ref. [10]). _ _

Equation (1) expresses the relaxation of the time- Beyonds,, retraction becomes increasingly slow [10],
dependent modulus after a step strain, by progressiva@d most of the remaining chain segments will relax their
removal of relaxed chain material from the entanglemen$tress by reptation at time,. Note that the contour-
network. Before reptation has occurred, the volumédeéngth fluctuations have the effect of shortening by a
fraction ¢ of still-entangled material is given simply by factor 1 — s the distance a chain segment must diffuse
d(s) =1 — s. along the tube to reach a relaxed tube segment, which

To use Eq. (1) we must specify how the modulus ofshortens the reptation time itself. We thus have
an entanglement network dilutes, i.e., the functi®fyp). 3 5
A simple argument based on entanglements in the melt Ta = Te(N/N' (1 = 54)” = 7(sa) , 3)
as “binary events” between Gaussian chains in the melt, . .
either of which may be “inactive” as a result of having Which with E_q. (2) (anq the r_esu!t.for Iargesr from
relaxed on some faster time scale, suggesis) = G b2, Ref._ [10]) definer, and give an implicit equation f(_)srd.
whereG is the melt plateau modulus. Measurements of Given a value f.oer.’ we take the DE expression for
the plateau modulus of well-entangled theta solutions [12]the reptation contribution to stress relaxation [2], with the
as well as a subtle scaling argument [13], suggest instear‘HOd'flcat'on that only a fractiofi(¢ (s4))/G of the stress
G(¢) = G¢'?. Thisis a significant difference for star remains to be relaxed:

melts; here, since the value ©f in the crossover region _
is becoming small [of ordeV, /N)~'/?], the differencg s Crepae(t) = G(¢(s4)) > 8/m)p * exd—p’t/7al.
not serious, and for simplicity we tak&(¢) = G ¢2. podd )
We have computed the relaxation timés) for retract-
ing star arms as part of the theory for star melts. There Finally, we add a Rouse stress relaxation function with
are two regimes: for sufficiently large the entropic bar- modes down tag, which is meant to account for (1) the
rier to retraction is large compared k@7 and retraction stress relaxation on time scales shorter thaor which
is well described by diffusion of a single coordinate (thethe tube constraint has not yet been explored, and (2) the
free end location) uphill in an effective potential. This longitudinal Rouse modes inside the tube that leave the free
regime is described in Refs. [14] and [10], but is not scend fixed but relax stress by redistributing chain segments
relevant for contour-length fluctuations of linear chains. inside the tube. The Rouse stress relaxation function takes
For smalls, the barrier is irrelevant, and the motion the form
of the free end in the tube is described in terms of the N
Rouse modes of a semi-infinite chain in a tube [10]. Grouse(1) = G(N./N) > exd—p’t/7r].  (5)
The mean-square fluctuations of the end location grow p=1
with time, as lower Rouse modes with longer relaxationTransverse Rouse modes on time scales longer than
times contribute. At the Rouse timg, the mean-square are forbidden by the tube. To include in an approximate
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way only longitudinal Rouse modes on time scales longeby a factor of 10, the difference between terminal behavior
than 7., we break the sum in Eq. (5) into two parts£  scaling asv? andN3#is 10%* = 2.5; a discrepancy of this
p =N/N, andN/N, < p < N) and multiply the low- size would be evident in the figure.
frequency contribution byl /3, as only one of the three  The theory also shows the same evolution with chain
vector components of the Rouse modes remains free.  length of the slope ofi”(w) as the data, in the interme-
The full stress relaxation function is then simply diate frequency range between the terminal peak and the
G(1) = Grmaat) + Grepuie) + Greae(t). (8)  FL T B o o e Comtou
The dynamical modulusG(w) (ratio of frequency- The reptation contributio e (w) dominates at low
dependent stress to strain) is given in terms of the Fourieffequencies ¢ 7, < 1), and leads to a plateau iG'(w)
transform ofG(¢) by G(w) = iw F[G(1)](w); the zero-  for high frequenciesdgr, > 1), but by itself would only
shear viscosityy is lim,_o G(w)/(iw). contribute a power law irG"(w) of w~'/2 for wry >
Calculated results fom are shown in Fig. 1, plotted 1. The Rouse contributiofg . (@) dominates at high
log-log versusM /M,.. Note the effective exponent for frequencies, resulting iG'(w) andG”(w) both going as
n of 3.4 over an extremely wide range df/M, before  »!'/2. The Rouse and reptation contributions G&(w)
crossing over to the asymptotic exponent of 3, whichbecome comparable atr, ~ 1.
arises from our theory with no adjustable parameters. Without the contribution ofG eyaci(@), the frequency
Deviations from the effective exponent can be madeanger;' < w < 7, ! would have a power law i (w)
more evident by plotting logn/(M/M.)* versus of w~!/2; this is much steeper than experimental data,
log,,(M/M.), shown in the inset of Fig. 1. Plotted in which show a power law in this region depending on
this way [7], deviations from the 0.4 slope begin at abouichain length and never steeper thai/4.
103 = 300; this behavior is quite consistent with that In fact, the fast-relaxing contour-length fluctuations
reported by Colbyet al.in Ref. [15]. So the present G,.....(w) contribute in this intermediate frequency range,
theory also gives a reasonable location for the crossoveand give rise to a power law ii”(w) of w ~'/4. This can
again without adjustable parameters. be shown easily from Egs. (1) and (2), the result being that
We have compared our predictions f6i(w) to data a power lawr(s) ~ s# leads to a power law iItG"(w)
of Schausbergeet al.[16] on reasonably monodisperse of w~!/8. The relaxation processes in this intermediate
polystyrene (PS) chains of three different length6,=  frequency range are a direct signature of contour-length
292K,757K,2540K g/mol corresponding toN/N, = fluctuations, which relax stress at the ends of the tube by
22,57,191 (M, = 13300 g/mol). In our comparison we retracting the chain end inwards and popping it out again
have chosen a single value af and plateau modulu§  into a new tube.
(i.e., a single common horizontal and vertical shift on a For sufficiently large chain lengthv, the experi-
log-log plot) to compare theory to data. The resultingmentally observed power law in this region is indeed
plots of G”(w) are shown in Fig. 2. —1/4; for smallerN, as our computed curves f6t" (o)

The terminal behaviors of all three curves are wellshow, the Rouse relaxations contribute sufficiently in the
matched by the theory without any adjustment to achieve

the 3.4 effective scaling. Since the value\yfN, changes
55
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1.5 2 25 3 35 4 FIG. 2. Computed loss modulug’(w) compared to data of
log N/Ng Ref. [16] for narrow-MWD polystyrene melts. A common

value of r, and G has been taken for the three curves. The
FIG. 1. Predicted viscosity; as a function of chain length variation in slope above 7, = 1 results from “contamination”
N/N, shows without adjustable parameters an effective expoef the —1/4 behavior by Rouse modes inside the tube. Arrows
nent of 3.4. Plotted ag /N> versusN /N,, crossover occurs at mark w7, = 1. (Lines are guides to the eye of slopg8l
aroundN /N, = 200, as in experiment [15]. 1/5.5, 1/4.5).
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intermediate region to flatten the curve, resulting in a prothe expectedO(N ~'/2), so that (1) unrealistically large
gressively smaller slope for smallaf. values of N, (13 times too large) were required for fits
We have deliberately not included effects of polydisper-to data, and (2) the region of effective 3.4 exponent for
sity and constraint release modes arising fr@ptationof  viscosity was limited tav/N, < 20.
other chains, and suggest that these are jointly responsibleFinally, we note that the contour-length fluctuations
for the differences between theory and data in the detailecthay also affect the chain self-diffusion, because the
peak shape abr, ~ 1. One approach to constraint re- smallest uncorrelated spatial step for the chain center of
lease in entangled linear chains entails endowing the tubmass becomeB(1 — s4)'/? with a time stepry(1 — s54)>.
itself with Rouse motion, whose fastest mode is generate@orrections to scaling of the diffusion constant are then
by the reptational release of entanglements [9]. It thereDys(N) ~ N~[1 — O(N~'/?)7'], which would in-
fore affects the relaxation modulus at and to the left ofcrease the apparent power lawiag:(N). Larger power
w7y ~ 1. The same is true of mild polydispersity, which laws are indeed seen in concentrated solutions [19] but
generates a spread #, but will not alter the higher fre- not in melts [20,21]. There are also theoretical issues [22]
quency response arising from fluctuations. that are less well resolved in self-diffusion than for stress
Our results have several clear consequences to lrelaxation. We hope that the present approach will help
explored. First, contour-length fluctuations cannot conin addressing these further challenges.
tribute to stress relaxation at frequencies too far below
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