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In itinerant electron ferromagnets, spectral weight is transferred at finite temperatures
quasiparticle peaks located at majority- and minority-spin band energies to shadow-band peaks
a given Bloch wave vector and band index, the majority-spin shadow-band peak is located ne
minority-spin quasiparticle energy and the minority-spin shadow-band peak is located near the ma
spin quasiparticle energy. This property can explain much of the temperature dependence seen
magnetoresistance of magnetic tunnel junctions. [S0031-9007(98)06624-1]
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Efforts [1] to achieve a complete understanding o
late transition metal ferromagnets have been frustrat
by fundamental difficulties associated with the ban
character of the electrons which carry the spontaneo
magnetic moment. The itinerant character of magnet
electrons in these systems is incontrovertibly establish
by de Haas–van Alphen studies [2] which map ou
majority- and minority-spin Fermi surfaces enclosin
$k-space volumes consistent with the measured saturat
moment per atom. Nevertheless, many finite-temperatu
properties of these systems are inconsistent with
simple Stoner-Wohlfarth [3] mean-field theory for
band ferromagnets and are more easily rationaliz
in a picture in which thed electrons are regarded as
localized. The localized versus itinerant conundrum
often most informatively addressed by probes of th
one-particle Green’s function. For example, photo
emission studies have [4] and continue [5] to improv
insight. The present work is motivated by recent suc
cess [6] in fabricating ferromagnet-insulator-ferromagn
magnetic tunnel junctions (MTJs) with reproducible
characteristics, opening up the possibility of obtainin
spin-resolved information on the tunneling density o
states of band ferromagnets. We point out that, in a
itinerant electron ferromagnet, a portion of the spectr
weight is transferred [7] at finite temperatures from
a majority- or minority-spin quasiparticle peak to a
shadow-band peak [8] located near the opposite sp
quasiparticle energy. The fraction of the spectral weig
transferred is proportional, at low temperatures, to th
saturation moment suppression. We propose that th
effect is responsible for much [9] of the temperatur
dependence of MTJ magnetoresistance (MR).

Tunneling measurements are usually interpreted
assuming a weak link which can be modeled by a ph
nomenological tunneling Hamiltonian. This approac
allows the tunneling current to be expressed quite ge
erally in terms of electronic spectral functions [10]
Assuming only that the temperature is much smaller tha
the respective bandwidths, the tunneling conductan
between two weakly linked ferromagnets is
0031-9007y98y81(3)y705(4)$15.00
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G ­
2pe2

h̄

X
s

X
nL, $kL

X
nR ,$kR

jtsnL, $kL; nR , $kRdj2

3 AL
nL, $kL,s

sEFdAR
nR ,$kR ,s

sEFd . (1)

HereAn,$ksEd is the spectral weight function for bandn at
wave vector$k, L (left) and R (right) label ferromagnets
on opposite sides of the MTJ, ands ­" (majority spin
on left side of junction),s#d (minority spin on left side of
junction) labels spin. To establish notation we first discus
our view of the band theory interpretation of junction
magnetoresistance.

In band theory, metallic ferromagnets are characterize
by spin-split temperature-independent energy bands wi
infinite quasiparticle lifetimes:An,$k,ssEd ­ dsEn,$k,s 2

Ed. We assume that the tunneling amplitudes appearin
in Eq. (1) can be approximately decoupled into factor
depending separately on band wave functions on oppos
sides of the barrier, i.e., thatjtsnL, $kL; nR , $kRdj2 ø jtsnL,
$kLdj jtsnR , $kRdj. This assumption is physically natural [11]
and, as we comment below, is necessary to explain th
common success of the Jullière [12] formula in interpretin
MR data. The tunneling conductance is then propo
tional to a sum over spin directions of the product of fac
tors depending separately on left and right ferromagnets

G ­
2pe2

h̄

X
s

tL
sNL

stR
sNR

s . (2)

Here Ns is the Fermi level density of states andts

is a weighted average of tunneling amplitude factor
defined by

tsNs ­
X
n,$k

jtn,$kjdsEF 2 En,$k,sd . (3)

From Eq. (2) we can evaluate the parameter usually us
to characterize the magnetoresistance of a MTJ:

GP 2 GA

GP
­

2PLPR

1 1 PLPR
. (4)

HereGP andGA are, respectively, the conductances whe
ordered moments on opposite sides of the junction hav
parallel and antiparallel orientations.
© 1998 The American Physical Society 705



VOLUME 81, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 20 JULY 1998

-

-
ose
r-
ta-

o
s
w-
ce

-

e
n.
m-
of
mi

le
gy
i-
c
he
f
r

e

P ­
taNa 2 tiNi

taNa 1 tiNi
, (5)

where the indicesa and i refer to majority and minority
spins, respectively. Comparing Eqs. (5) and (2),P can be
identified as the spin polarization of the tunneling curre
between a ferromagnet and a spin-unpolarized syste
This quantity has been measured for most systems
interest [13]. The tunneling current is generally foun
to be dominated by the majority spins, even when th
density of states is smaller, because tunneling amplitu
are larger [14] for states with a dominants-wave character.
Equation (4) is the Jullière [12] formula which is in goo
agreement with many experimental results; the pres
derivation demonstrates that its approximate validity re
on the factorizability of tunneling matrix elements.

We now address the importance for junction magn
toresistance of the modifications of band theory which a
required at finite temperatures. Up to room temperatu
and beyond, the main effect of finiteT on late transition
element ferromagnets is to excite low-energy lon
wavelength spin waves [1,2,15]. To a good approx
mation, the quasiparticle bands of the ferromagn
adiabatically follow the local instantaneous orientatio
of the magnetic moment. Although the quasipartic
spectrum in this approximation is rigid, its projectio
onto the time-averaged ordered moment direction
altered. A quasiparticle whose spin is aligned with th
fluctuating bands will at finite temperature be a majori
spin with probability f1 1 msT dym0gy2 and a minority
spin with probabilityf1 2 msTdym0gy2. HeremsT dym0

is the factor by which the saturation moment is reduc
at temperatureT due to thermally excited spin waves
A shadow-bandpeak must appear in the minority-spi
spectral function at the majority-spin quasiparticle e
ergy. The effect on MR of shadow-band features in t
majority- and minority-spin spectral functions is illustrate
schematically in Fig. 1. Two terms contribute tot"N" at
finite temperatures, one arising from the majority-sp
quasiparticle band, the other from the minority-sp
shadow band. For example, in the left ferromagnet,

tL
" NL

" ­
1 1 msT dym0

2
tL
a NL

a 1
1 2 msT dym0

2
tL
i NL

i ,

tL
# NL

# ­
1 1 msT dym0

2
tL
i NL

i 1
1 2 msT dym0

2
tL
a NL

a .

(6)

Corresponding expressions apply for the right ferroma
net. It follows that the Jullière formula continues to app
at finite temperatures with a reduced polarization fac
PsT d ­ fmsT dym0gPs0d for each ferromagnet. The satu
ration moments,msT d, of bulk late transition element fer-
romagnets are reduced by,5% betweenT ­ 0 and room
temperature, and reduction factors near the surface can
larger by a factor of 2 [16] or more [17]. Reductions in MR
of ,20% at room temperature, as seen in experiments,
readily accounted for by this mechanism. An experime
tally testable prediction which follows from this assertio
is that [18] MR should follow aT3y2 law at low tempera-
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FIG. 1. Schematic illustration of spin-polarized tunneling be
tween left (L) and right (R) ferromagnets with parallel (P)
and antiparallel (A) magnetizations at zero and finite tempera
ture. In each case long arrows represent quasiparticles wh
spins are aligned with the fluctuating bands while short a
rows represent quasiparticles with the opposing spin orien
tion. The number of large arrows forT ­ 0 is proportional
to taNa, and the number of small arrows proportional totiNi .
In this illustration,taNa ­ 10 and tiNi ­ 5 in arbitrary units.
At T ­ 0, G ­ 10 3 10 1 5 3 5 ­ 125 for parallel orien-
tations, G ­ 2 3 10 3 5 ­ 100 for antiparallel orientations,
and MR­ 20%. The finite temperature panels correspond t
msT dym0 ­ 0.6, so that 80% of the spectral weight reside
in quasiparticle peaks (solid lines) and 20% resides in shado
band peaks (dashed lines). The parallel orientation conductan
is then reduced toG ­ 9 3 9 1 6 3 6 ­ 117, the antiparallel
orientation conductance increased toG ­ 2 3 9 3 6 ­ 108,
and MR decreased to 7.7%.

tures: MRsT d ­ MRsT ­ 0d s1 2 AT3y2 1 · · ·d, whereA
is 1 2 MRsT ­ 0dy2 times the sum of theT3y2 coeffi-
cients for the relative magnetization of the two ferromag
netic electrodes.

We now turn to a more microscopic explanation of th
shadow-band features in the electron spectral functio
The abridged discussion presented here is intended to e
phasize that the effect requires only that the ground state
the ferromagnet be a spontaneously spin-polarized Fer
liquid. It is compatible with strong local correlation fea-
tures [5] being present in the spectral functions, compatib
with strong band dependence for the quasiparticle ener
spin splitting, and independent of the complexity and ind
viduality of the quasiparticle bands of particular metalli
ferromagnets. We assume that in the ground state of t
ferromagnet, the one-particle Green’s function is that o
a spin-polarized Fermi liquid, with quasiparticle peaks fo
both " and # spins which become arbitrarily sharp as th
Fermi energy is approached:
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Gns,n0s0 s $k, Ed ­ fdns,n0s0E 2 H
QP
ns,n0s0 s $k, Edg21

­ fdns,n0s0sssE 2 En,ss $k, Edddd

1 ids,s0Gns,n0ss $k, Edg21. (7)

The real part of the electronic self-energy is included
En,ss $k, Ed, and we use a representation where the Gree
function is diagonal in the band indexn. Invariance of
the system under spin rotations about the moment dir
tion guarantees thatG is diagonal in spin indices. At
the Fermi energy, chosen asE ­ 0, the imaginary part
of the self-energy,Gns,n0s0 , vanishes. In the most naive
version of ferromagnetic band theory the quasipartic
bands are rigidly spin split,En,"s $k, Ed ! Ens $kd 2 Dy2 and
En,#s$k, Ed ! Ens $kd 1 Dy2. Modern spin-density func-
tional ferromagnet quasiparticle bands arenot rigidly spin
split, and atT ­ 0, generally in qualitative [2,3] agree-
ment with experiment.

In Fe, Ni, Co, and their alloys it is a good approxima
tion, up to room temperature and beyond, to account
thermal fluctuations only in the ordered moment directio
to assume that these vary slowly on an atomic length sca
and to regard the quasiparticles as separate but coupled
grees of freedom. Keeping only the leading term in a gr
dient expansion, the excess energy density isrsj= $nj2y2,
where$n ­ snx , ny , nzd is the unit vector which defines the
local ordered moment orientation andrs is the spin stiff-
ness. For small tilts away from thêz direction, the excess
energy due to spin fluctuations,HSW , may be expressed in
terms of transverse components of the moment orientat
in
n’s

ec-

le

-
for
n,
le,
de-

a-

ion

vector. Fourier transforming we find that

HSW ­
rs

2V

X
$q

q2fnx2 $qnx $q 1 ny2 $qny $qg . (8)

The quantum commutator between transverse spin com
nents may be replaced by ac number as long as the satu
ration moment suppression is not large:

fnx2 $q, ny $q0 g ­ id$q, $q0

2V
m0

. (9)

In Eq. (9), which results from coarse graining electron sp
commutation relations,V is the system volume. This leads
to a free boson spin-wave Hamiltonian:

HSW ­ E0 1
X

$q

eSW s $qday
$q a $q , (10)

wherefa $q, a
y
$q0g ­ d$q,$q0 , andeSW s $qd ­ Dq2 ­ 2rsq2ym0.

The expression we use below for spin-wave quasiparti
coupling follows from the relationship between the spin
wave annihilation operator and the Fourier transforms
the transverse spin-orientation field:

a $q ­

µ
m0

4V

∂1y2

snx $q 1 iny $qd . (11)

In the fluctuating band picture of itinerant electron fe
romagnets, quasiparticle bands rotate in spin space al
with a slow variation in the ordered moment direction. A
the Fermi energy the imaginary part of the quasipartic
self-energy can be neglected and
n
r
es the

eads

e [20]

to
H
QP
ns,n0s0 s $k, E ­ 0d !

dn,n0

2
hfEn,"s $kd 1 En,#s$kdgds,s0 2 Dns $kd s $t ? $nds,s0 j , (12)

where components of$t are the Pauli matrices,Dns $kd ; En,#s $kd 2 En,"s$kd is the band and wave-vector dependent spi
splitting, and all self-energies have been evaluated atE ­ 0. Expanding the right-hand side of Eq. (12) to leading orde
in nx andny , the zeroth order term gives the ground state quasiparticle bands and the leading order correction giv
spin-wave quasiparticle interaction. Allowing the orientation to vary slowly [19] in space and Fourier transforming l
to the following interaction Hamiltonian between quasiparticles and spin waves, written in second quantized form:

HSW2QP ­
X

n,$k, $q

Dns $kd
p

Vm0
fcy

n,$k1 $qy2,"
cn,$k2$qy2,#a

y
$q 1 H.c.g . (13)

The evaluation of the single spin-wave-exchange self-energy is similar to the evaluation of the phonon-exchang
self-energy and leads to

Sn"s $k, Ed ­
Z d $q

s2pd3

D2
ns $k 1 $qy2d

m0

nBssseSW s $qdddd 1 nFsssEn#s$k 1 $qdddd
fE 1 eSW s $qd 2 En#s $k 1 $qdg

. (14)

Because of the gapless spin-wave excitations, the Fermi occupation factor,nF , in the numerator of the integrand can
be neglected at finite temperatures in comparison with the Bose factor,nB. The integration is dominated by thek-space
volume satisfyingeSW s $qd , kBT . We assume that at temperatures of interestq0s satisfying this inequality are small
compared to Brillouin-zone dimensions and set$q ! 0 on the right-hand side of Eq.(14). These approximations lead

Sn"s $k, Ed ø
D2

ns $kd
2

1 2 msT dym0

E 2 En#s $kd
. (15)
707
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where
msT d
m0

­ 1 2
2

m0

Z d $q
s2pd3

nBssseSW s $qdddd (16)

is the relative magnetization suppression due to therm
spin-wave excitations. A similar calculation gives the
contribution to the spin# self-energy:

Sn#s $k, Ed ø
D2

ns $kd
2

1 2 msT dym0

E 2 En"s$kd
. (17)

These simple self-energy expressions give Dyson equ
tions which can be solved analytically. The spin" Green’s
function has two simple poles, one atEn"s$kd and one at
En#s $kd. When the magnetization suppression is small, th
spectral weights of the two poles aref1 1 msT dym0gy2
andf1 2 msT dym0gy2, respectively, in agreement with the
naive fluctuating band argument given above. Similar
the spin# Green’s function splits its spectral weight be
tween poles at theT ­ 0 minority- and majority-band po-
sitions. Inserting these spectral functions in Eq. (1) lea
to Eq. (6), as argued previously. When the magnetizatio
suppression is large, the low-temperature approximatio
leading to this result begin to fail and alteration of the low
temperature spectral weights will become more comple
and more material specific.
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Note added.—A recent experimental study [21] we
learned of after this work was completed finds that th
temperature dependence of MR for CoyAl 2O3yNi80Fe20

junctions is described by aT3y2 law, as predicted here.
The interpretation offered there also starts from the claim
based on indications from low-energy cascade electrons
spin-polarized photoemission experiments [17], thatP is
proportional to theT-dependent saturation moment. The
theoretical framework presented here permits a simple a
consistent interpretation of both experiments.
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