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We study the current drag in the system of two electrostatically coupled finite 1D electron channe
We present the perturbation theory results along with the results for two nonperturbative regimes.
is shown that the drag can become absolute; that is, the currents in the channels are equal in a fi
window of the bias voltages. [S0031-9007(98)06648-4]
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The recent experiments with two capacitively couple
two-dimensional electron gases (2DEG) [1] demonstrate
that, owing to Coulomb interaction, electrons moving in
one of the 2DEG drag the electrons of the adjacent 2DE
Therefore the system works as a dc current transforme
The transformation coefficient is, however, much smalle
than one [2,3]. In specially designed coupled 1D arrays
ultrasmall tunnel junctions Coulomb interaction can lead t
the absolute current drag [4]. This means that the electr
currents in two capacitively coupled circuits are equal i
magnitude in a certain region of voltages applied to th
circuits, and the system may work as a current copier. Th
prediction has been recently confirmed [5] experimentall

The mechanism of the absolute current drag in sma
tunnel junctions is, however, quite different from the
momentum-transfer mechanism in the 2DEG. The aim
of the present work is to show that in the 1D electro
channels, the momentum-transfer mechanism can also le
to the absolute current drag. We consider a system of tw
channels of finite lengthL that are adiabatically connected
to the reservoirs of effectively noninteracting electron
(Fig. 1). The channels are assumed to be coupled on
by the Coulomb interaction. We assume no impuritie
in the channels that would cause electron backscatterin
Recent advances [6] demonstrate that such systems can
successfully fabricated in the near future.

We stress that in the system of two wires studie
in this work the drag couplesdissipativecurrents, and
the presence of the reservoirs is of crucial importanc
Another phenomenon, drag ofpersistentcurrents, should
occur in closed 1D loops penetrated by magnetic flux [7

To get an intuitive feeling of how the absolute curren
drag can occur in such a system, let us consider the ca
of strong electron repulsion. In this case, electrons
each channel form a rigid Wigner lattice. Provided th
channels are close to each other, the repulsion coordina
not only the positions of electrons inside the same chann
but also the positions of neighboring electrons in the oth
channel (Fig. 1). Now, if the electrons in one of the
channels move, electrons in the other channel must follo
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their motion, and the electric currents in the channe
are equal.

Such a simple model says very little about realistic 1D
channels where electrons are subjected to strong quant
fluctuations. Below we develop a consistent theory o
current drag which accounts for these fluctuations. Th
main prediction of the theory is that the (almost) absolut
current drag survives quantum fluctuations. It can occ
even if the repulsive interaction is weak provided th
channels are sufficiently long.

We model each of the two coupled 1D conductors a
“Luttinger constriction” with spinless electrons, i.e., use
the standard Hamiltonian [8]

H ­
Z dx

2p
u

"
gP2 1

s=Qd2

g

#
. (1)

HereQsxd is the displacement of electrons in the conduc
tor normalized in such a way that the local fluctuation o

V1

1I

V2

2I

µL
1

µR
1

µL
2

µR
2

L

FIG. 1. The system under consideration. Two 1D channe
are open to reservoirs and separated by insulating barrier. T
electrostatic repulsion coordinates the positions of electro
(black circles) in the channels, the fact that can lead to th
absolute current drag.
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electron density isdn ­ 2=Qyp, andPsxd is the con-
jugated momentum density:fQsxd, Psx0dg ­ ip h̄dsx 2

x0d. The velocityu and interaction strengthg ­ uFyu
are piecewise constants ofx: in the reservoirs they assume
their noninteracting valuesuF and1.

The relevant part of the interaction of the two condu
tors responsible for the momentum transfer between th
can be written as

Hc ­ J
Z Ly2

2Ly2

dx
2p

cosh2skF1 2 kF2dx

1 2fQ1sxd 2 Q2sxdgj , (2)

where subscripts 1 and 2 refer to the two conducto
kFj ­ pnj are the Fermi wave vector, andJ is the
interaction constant depending on the specific electrosta
configuration of the system.

The model we just formulated is mathematically simila
to that of Luther and Emery [9]. The electrons of tw
spin directions in their model correspond to electrons
two different wires in our model. The essential differenc
between the two models is that we deal with wires th
interact within a finite lengthL. Below we describe three
distinct drag regimes: (i) perturbative regime (weak drag
(ii) nonperturbative weak coupling regime (strong drag
and (iii) strong coupling regime (absolute drag), the latt
corresponding to perfect latching.

When the coupling is weak, electrons in the tw
channels move independently and can carry generica
different currentsI1 and I2. When I1 fi I2, momentum
transfer between the channels leads to the appearanc
an extra voltage dropdVj across each channel, in additio
to the “ideal” Landauer valuehIjye2. Those can be found
from the difference of chemical potentials at the ends
the channels,

dVj ­
kj

e
kdnjs2Ly2d 2 dnjsLy2dl , (3)
654
c-
em

rs,

tic

r
o
in
e
at

),
),
er

o
lly

e of
n

of

k’s being compressibilities of electron liquids in the
channels. Writing the equations of motion for phasesQ

that follow from the HamiltonianH ­ H1 1 H2 1 Hc:

Q̈j 2 fu2
jQ0

jg0 ­ s21djJuF sinh2skF1 2 kF2dx

1 2fQ1sxd 2 Q2sxdgj ,

(4)

and using the fact that in the stationary casekQ̈l ­ 0, we
get thatdV2 ­ 2dV1 ; V , and

V ­
Z Ly2

2Ly2
dx

Fsxd
e

,

Fsxd ­ Jksinh2skF1 2 kF2dx 1 2fQ1sxd 2 Q2sxdgjl .
(5)

In the first order of the perturbation theory inHc we get

Fsxd ­
J2

2
Re

Z Ly2

2Ly2
dx0

3
Z `

0
dt eifksx2x 0d1VtgeAseB 2 e2Bd , (6)

where Asx, x0, td ­ kfw, w0g1 2 w2 2 w02ly2 and Bsx,
x0, td ­ kfw, w0gly2. Here w ­ wsx, td, w0 ­ wsx0, 0d,
and the phasewsx, td is introduced by the relation:

2fQ1sx, td 2 Q2sx, tdg ­ Vt 1 wsx, td ,

V ­ 2psI1 2 I2dye .
(7)

The Fermi-momentum differencek ­ 2skF1 2 kF2d is
assumed to be smallk ø kF1,2. The averagek. . .l in the
definitions of the correlatorsA and B is taken over the
equilibrium fluctuations ofw.

The equilibrium correlatorsA, B can be expressed in
a standard way in terms of the spectral densitiesrj ;
s1ypd Im G

sjd
R sx, x0, vd,
Asx, x0, td 6 Bsx, x0, td ­ 2
X

j­1,2

Z
dv

"
eivtrjsx, x0, vd

√
coth

v

2T
6 1

!
2 rjsx, x, vd 2 rjsx0, x0, vd

#
. (8)

The retarded Green’s functionsG
s jd
R of the phasesQj can be solved explicitly for our model of piecewise constantusxd

and give

rsx, x0, vd ­
g2

v

s1 1 g2d cosnsx 2 x0d 1 s1 2 g2d cosnL cosnsx 1 x0d
s1 1 g2d2 sin2 nL 1 4g2 cos2 nL

, n ­ vyu . (9)
i-
lue

f

Equation (5) combined with Eqs. (8) and (9) allow
us to find the induced voltageV as a function of the
current differenceI ­ I1 2 I2 in various regimes. We
consider first identical channels at zero temperature.
the noninteracting caseg ­ 1 we get then from Eq. (5)

V ­
pJ2LuV2

2eE4
F

Z LVyu

0

dx
x

sinx 2 x cosx
x2

√
1 2

xu
LV

!
,

(10)
s

In

where EF is the cutoff frequency of the order of Fermi
energy. ForV ø uyL, the voltageV grows asV3, this
growth slowing down toV2 at largerV.

At small frequencies the spectral density (9) is dom
nated by the leads and approaches its noninteracting va
1y2v. This means that the dependenceV ~ V3 is valid
at V ø guyL for anyg.

To see howV behaves at large current differences
(V ¿ uyL) we can average the rapid oscillations o
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FIG. 2. Induced voltage differencedV in the perturbative
regime for constrictions with kF1 ­ kF2, normalized to
V0sgd ; J2uLE22

F suyEFLd4g22. The curves a, b, c, d, e
correspond tog ­ 0.1, 0.3, 0.5, 0.6, 1.0, respectively.

spectral density (9) with the perioduyL. We get forV

V ­ FL

­
J2Lup2

Gsgd2E2
F

√p
V2 2 u2k2

2EF

!4g22

QsV2 2 u2k2d ,

(11)

g ­ sg1 1 g2dy2. We see that the interaction inside th
constriction changes drastically the behavior ofV as a
function of V giving rise to powerlike dependence. The
voltageV decreases at largeI for g , 1y2, so that there
is optimum I . euyL for which the induced voltage is
maximum. If we take oscillating terms into account, th
decrease at large current differences is nonmonotono
the voltage oscillates withV with the perioduyL. This
resembles density of states behavior in a finite Lutting
constriction [10]. All of these features can be seen
Fig. 2 which presents the results of numerical calculatio
of V as a function ofI1 2 I2 from Eqs. (6)–(8).

Another important feature of Eq. (11) is that the voltag
V grows with increasingL at any given current difference
V regardless ofg. This suggests that Eq. (11) is valid
only for sufficiently short channels. In longer channe
the distribution of the voltage along the channel and th
difference of electron densities associated with it in th
two channels should be determined self-consistently. T
variation of the density difference can be described b
the steady-state form of Eq. (4) which can be written a
follows:

k0sxd ­
4g
u

Fsssksxd, Vddd . (12)

Here the forceF is given by Eq. (11) but now withlocal
ksxd. In simple terms, Eq. (12) describes how the frictio
between the moving liquids compresses one of them a
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stretches another one, and how this compression/stre
affects the magnitude of the friction itself.

Equation (12) with the force given by Eq. (11
shows that in long channels,L ¿ LV , where
L21

V ; 16gJ2usVy2EF d4gyV3 is the characteristic
length of variation ofksxd, the density difference ap-
proaches the valueVypu and saturates. This means tha
the extra voltage difference drops at distances of the or
of LV near the edge of the interacting region and is equ
to hsI1 2 I2dye22g. The total voltage drops across th
channels are given then by “quasi Landauer” relations

e2V1

h
­ I1 1

1
2g

sI1 2 I2d ,

e2V2

h
­ I2 1

1
2g

sI2 2 I1d . (13)

Another nonperturbative regime in which the curren
in the two channels are almost precisely equal is t
limit of strong coupling of the two short channels wit
L ø LQ . This regime corresponds to the classical lim
of the sine-Gordon model [11]. In the limit ofg ! 0, one
can treatw as (almost) a classical variable that takes
2p 3 integer values. In our original model, this mean
that the Luttinger liquids, or electron chains, are strict
correlated. However, they can move together and ca
equalcurrents in both constrictions. SincedV1 ­ 2dV2

from Eq. (3), we obtainI1 ­ I2 ­ e2sV1 1 V2dy2h.
This is, of course, an ideal situation, and at finiteg and

L the currents are not precisely equal. Let us show th
in the wide region of parameters, the current differen
is exponentially small.To this end, we switch from the
Hamiltonian to Lagrangian in imaginary time;

Sfwsx, tdg ­
Z dxdt

2p

"
1

8g

√
uw02 1

Ùw2

u

!
1 J cosw

#
.

(14)

Equation (7) shows that the shift ofw at the boundary by
4p corresponds to transfer of one electron into the chan
1 accompanied by the transfer of an electron out of t
channel 2. This suggests that in order to describe
interaction of the electron channels with the electrodes,
should add to the Lagrangian the boundary term

Sb ­
Z dt

4p
fsmR

2 2 mR
1 dws2Ly2d

1 smL
1 2 mL

2 dwsLy2dg , (15)

where m
L,R
1,2 are the chemical potentials of the left-righ

electrode of the channels 1 and 2.
What are the processes that spoil the ideal curr

copying? Obviously, those are slips ofw by 2p. If
the voltages applied to the constriction are sufficien
low, the slip should happen at once throughout t
interacting region. Otherwise a soliton would have be
created within the interacting region as a result of t
655
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FIG. 3. Soliton tunneling via the interacting region. The
optimal configuration ofwsx, td corresponds to three regions
of almost constantw separated byV-shaped soliton “wall”
(thick line).

slip. This would cost energyEs ­
p

Juypg and is
forbidden by the energy considerations. The sudden s
throughout the interacting region may be viewed as
virtual soliton transfer via the “barrier”Es, provided
the barrier length exceeds the soliton size

p
uyJg. The

rate of such a process is determined by the saddle-po
configuration ofwsx, td as sketched in Fig. 3. The action
has contributions from the two soliton “walls” and the
boundary term,S ­ 2Es

p
T 2 1 sLyud2 2 2Tm, where

m ­ maxssssmL
1 2 m

L
2 dy2, smR

1 2 m
R
2 dy2ddd. Minimization

of S with respect toT yields

S0 ­ 2
q

E2
s 2 m2 Lyu , (16)

and I1 2 I2 ~ exps2S0d. We see that the current dif-
ference is suppressed exponentially providedL ¿ uyEs

andmL,R , Es. The common wisdom of the sine-Gordon
model [12] suggests that these results are, in fact, valid n
only in the classical limitg ! 0 but also at anyg , 1,
providedEs is properly renormalized corresponding to th
actual soliton energyEssgd ~ EssEsyEFdgy12g with the
coefficient depending on details of the cutoff.

In conclusion, we have considered current drag
the system of two capacitively coupled Luttinger con
strictions. We have presented perturbative results a
have found two nonperturbative regimes. In one of th
regimes, the system works as an ideal current cop
of exponential accuracy. Both nonperturbative regim
can be realized in constrictions made of the heterostru
656
lip
a

int

ot

e

in
-
nd
e
ier
es
c-

tures with coupled 2DEG [1,3]. Indeed, the crud
estimate of interaction parameterg for Coulomb
electron-electron interaction screened at distanceD [13],
g22 ­ 1 1 2 lns8Dndyp2naB, shows that for reasonable
values ofD . 100 nm, g ­ 1y2 corresponds to electron
concentrationn . s50 nmd21. In this case, for constric-
tions separated byd . 10 nm (as in the 2D experiment
[3]) the maximum exponent (16) isS . 2LypsdaBd1y2
and the drag should become absolute already in relativ
short constrictions withL . 0.3 mm.

We thank A. A. Odintsov for his contribution a
preliminary stages of this work. We are indebted
S. Tarucha for his communications that gave an impe
to the present research, and to G. E. W. Bauer and M. P
Fisher for very instructive discussions of the results. Th
work has been made possible by financial support
North Atlantic Treaty Organization, Grant No. 950279.

[1] P. M. Solomon, P. J. Price, D. J. Frank, and D. C. L
Tulipe, Phys. Rev. Lett.63, 2508 (1989); T. J. Gramila,
J. P. Eisenstein, A. H. MacDonald, L. N. Pfeiffer, an
K. W. West, Phys. Rev. Lett.66, 1216 (1991).

[2] A. Kamenev and Yu. Oreg, Phys. Rev. B52, 7516 (1995);
K. Flensberget al., Phys. Rev. B52, 14 761 (1995).

[3] M. P. Lilly, J. P. Eisenstein, L. N. Pfeiffer, and K. W.
West, Phys. Rev. Lett.80, 1714 (1998).

[4] D. V. Averin, A. N. Korotkov, and Yu. V. Nazarov, Phys.
Rev. Lett.66, 2818 (1991).

[5] M. Matters, J. J. Versluys, and J. E. Mooij, Phys. Re
Lett. 78, 2469 (1997); P. Delsing, D. B. Haviland, and
P. Davidsson, Czech. J. Phys.46, 2359 (1996).

[6] S. Tarucha, T. Honda, and T. Saku, Solid State Commu
94, 413 (1995); A. Yacoby, H. L. Stormer, Ned S
Wingreen, L. N. Pfeiffer, K. W. Baldwin, and K. W. West,
Phys. Rev. Lett.77, 4612 (1996).

[7] A. G. Rojo and G. D. Mahan, Phys. Rev. Lett.68, 2074
(1992); T. V. Shahbazyan and S. E. Ulloa, Phys. Rev.
55, 13 702 (1997).

[8] F. D. M. Haldane, Phys. Rev. Lett.47, 1840 (1981); for
review see, e.g., J. Voit, Rep. Prog. Phys.58, 997 (1995).

[9] A. Luther and V. J. Emery, Phys. Rev. Lett.33, 589
(1974).

[10] Yu. V. Nazarov, A. A. Odintsov, and D. V. Averin, Euro-
phys. Lett.37, 213 (1997).

[11] S. Coleman, Phys. Rev. D11, 2088 (1975), and references
therein.

[12] R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev
11, 3424 (1975); A. Luther, Phys. Rev. B14, 2153 (1976).

[13] L. I. Glazman, I. M. Ruzin, and B. I. Shklovskii, Phys
Rev. B45, 8454 (1992).


