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Current Drag in Capacitively Coupled Luttinger Constrictions
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We study the current drag in the system of two electrostatically coupled finite 1D electron channels.
We present the perturbation theory results along with the results for two nonperturbative regimes. It
is shown that the drag can become absolute; that is, the currents in the channels are equal in a finite
window of the bias voltages. [S0031-9007(98)06648-4]

PACS numbers: 71.10.Pm, 73.23.Ad

The recent experiments with two capacitively coupledtheir motion, and the electric currents in the channels
two-dimensional electron gases (2DEG) [1] demonstratedre equal.
that, owing to Coulomb interaction, electrons moving in  Such a simple model says very little about realistic 1D
one of the 2DEG drag the electrons of the adjacent 2DEGchannels where electrons are subjected to strong quantum
Therefore the system works as a dc current transformefluctuations. Below we develop a consistent theory of
The transformation coefficient is, however, much smallercurrent drag which accounts for these fluctuations. The
than one [2,3]. In specially designed coupled 1D arrays ofmain prediction of the theory is that the (almost) absolute
ultrasmall tunnel junctions Coulomb interaction can lead tacurrent drag survives quantum fluctuations. It can occur
the absolute current drag [4]. This means that the electrieven if the repulsive interaction is weak provided the
currents in two capacitively coupled circuits are equal inchannels are sufficiently long.
magnitude in a certain region of voltages applied to the We model each of the two coupled 1D conductors as
circuits, and the system may work as a current copier. This_uttinger constriction” with spinless electrons, i.e., use
prediction has been recently confirmed [5] experimentallythe standard Hamiltonian [8]
The mechanism of the absolute current drag in small dx (VO)?
tunnel junctions is, however, quite different from the H = / — [ ? + :| (1)
momentum-transfer mechanism in the 2DEG. The aim 2m 8
of the present work is to show that in the 1D electronHere®(x) is the displacement of electrons in the conduc-
channels, the momentum-transfer mechanism can also le&@r normalized in such a way that the local fluctuation of
to the absolute current drag. We consider a system of two
channels of finite length that are adiabatically connected
to the reservoirs of effectively noninteracting electrons
(Fig. 1). The channels are assumed to be coupled only
by the Coulomb interaction. We assume no impurities
in the channels that would cause electron backscattering.
Recent advances [6] demonstrate that such systems can be
successfully fabricated in the near future.
We stress that in the system of two wires studied Q/E
in this work the drag couplesdlissipative currents, and
the presence of the reservoirs is of crucial importance.
Another phenomenon, drag pérsistentcurrents, should ® L ¢
occur in closed 1D loops penetrated by magnetic flux [7]. ° ° f
To get an intuitive feeling of how the absolute current —_— 9% 0 ® o o ° |
drag can occur in such a system, let us consider the case ° o ¢ ® o °®
of strong electron repulsion. In this case, electrons in ° .\
each channel form a rigid Wigner lattice. Provided the
channels are close to each other, the repulsion coordinates ) ,
not only the positions of electrons inside the same channd]!G- 1. The system under consideration. Two 1D channels

i . . . are open to reservoirs and separated by insulating barrier. The
but also the positions of neighboring electrons in the Otheélectrostatic repulsion coordinates the positions of electrons

channel (Fig. 1). Now, if the electrons in one of the (plack circles) in the channels, the fact that can lead to the
channels move, electrons in the other channel must follovebsolute current drag.
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electron density i$Sn = —VO /7, andIl(x) is the con- «'s being compressibilities of electron liquids in the
jugated momentum density® (x), [1(x')] = iwh8(x —  channels. Writing the equations of motion for phages
x'). The velocityu and interaction strengtg = ur/u that follow from the HamiltoniarH = H; + H, + H,_:

are piecewise constantsofin the reservoirs they assume .. - > o, ; , _

their noninteracting valuesr and1. 0 = [uj®;] = (=1 Jup sin2(kry = kp2)x

The relevant part of the interaction of the two conduc- + 2[0(x) — O,(x)]},
tors responsible for the momentum transfer between them 4
can be written as ) )

L2 gy and using the fact that in the stationary cé®e = 0, we
H. = Jf 2w cog2(kr1 — krpa)x get thatéV, = —6V; = V, and
_ LroOFW)
+2[0:1(x) = O(0)]}, (2) V= dx —,
~L/2 e

where subscripts 1 and 2 refer to the two conductors, ]

krj = mn; are the Fermi wave vector, and is the F(x) = J(sin2(kp1 = kr2)x + 2[01(x) = €:(0)]H.
interaction constant depending on the specific electrostatic ©)
configuration of the system.

The model we just formulated is mathematically similar
to that of Luther and Emery [9]. The electrons of two
spin directions in their model correspond to electrons in
two different wires in our model. The essential difference % '
between the two models is that we deal with wires that X f dt Tl (B — o B) - (6)
interact within a finite lengtiL. Below we describe three 0
distinct drag regimes: (i) perturbative regime (weak drag)where A(x,x',1) = (¢, ¢'ly — ¢* — ¢'*)/2 and B(x,
(i) nonperturbative weak coupling regime (strong drag),x’.7) = (¢, ¢'])/2. Here ¢ = ¢(x,1), ¢’ = ¢(x’,0),
and (iii) strong coupling regime (absolute drag), the latterand the phase(x, ) is introduced by the relation:

In the first order of the perturbation theoryfh we get

J2 L/2
F(x) = — Re] dx'
2 -L/2

corresponding to perfect latching. _ _
When the coupling is weak, electrons in the two AO1x,1) = Bolx, ] = Q1 + lx,1), )
channels move independently and can carry generically Q =27, — IL)/e.

transfer between the channels leads to the appearanceTo e Fermi-momentum difference = 2(kr; = kr2) is

an extra voltage dropV; across each channel, in addition assumed to be smalll « k1. The average...) in the
. g pV; by ' definitions of the correlatord and B is taken over the
to the “ideal” Landauer valugl;/e*. Those can be found

. . . quilibrium fluctuations ofp.
IL%n::rt,gindé];;erence of chemical potentials at the ends of The equilibrium correlatorst, B can be expressed in

different currents/; andI,. WhenlI; # I, momentum 3

i a standard way in terms of the spectral densipgs=
SV, = ?’<5n,-(—L/2) — &n;(L/2)), (3) | (1/7) Im G¥ (x. x'. o),

Alx,x',t) = B(x,x",t) =2 Z fdw|:ei“”pj(x,x/,w) (Coth% + 1) - pilx,x,w) — pj(x/,x/,w)j|. (8)

j=12
The retarded Green's functiomﬁej) of the phase®); can be solved explicitly for our model of piecewise constan
and give
g_2 (1 + g»)cosv(x — x') + (1 — g?)cosvLcosv(x + x')
(1 + g2)%sir’ vL + 4g2cog vL ’

v=ow/u. 9

plx,x', w) =

Equation (5) combined with Egs. (8) and (9) allows where Er is the cutoff frequency of the order of Fermi
us to find the induced voltag& as a function of the energy. For) < u/L, the voltageV grows as()?, this
current differencel = I; — I, in various regimes. We growth slowing down td}? at larger(}.
consider first identical channels at zero temperature. In At small frequencies the spectral density (9) is domi-
the noninteracting case = 1 we get then from Eqg. (5) nated by the leads and approaches its nonint3eracting value

B 2 Lu0? ]m/u dx sinx — xcosx (1 ) ﬂ) ;{?lw.<<'l'gh;7er}((e)?r;sn;r:.1t the dependericex ()- is valid

20Er Jo L To see howV behaves at large current differences

(10) (Q > u/L) we can average the rapid oscillations of

\%
X x2
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stretches another one, and how this compression/stretch
1 c affects the magnitude of the friction itself.

Equation (12) with the force given by Eg. (11)
shows that in long channels,L > Lg, where
i d e 7 Lo' = 16gJ2u(Q/2Er)*/Q% is the characteristic
length of variation ofk(x), the density difference ap-
proaches the valu@ /7 u and saturates. This means that
the extra voltage difference drops at distances of the order
b of Lg near the edge of the interacting region and is equal
to h(I; — I,)/e*2g. The total voltage drops across the
channels are given then by “quasi Landauer” relations

€2V1
h
( Il— I2) ul/elL eV,

h
FIG. 2. Induced voltage differencéV in the perturbative . . . .
regime for constrictions withks = ks>, normalized to Another nonperturbative regime in which the currents

Vo(g) = JPuLEr*(u/ErL)*~2. The curves a, b, c,d,e IN the two channels are almost precisely equal is the
correspond tg = 0.1, 0.3, 0.5, 0.6, 1.0, respectively. limit of strong coupling of the two short channels with
L < Ly. This regime corresponds to the classical limit
; : ; of the sine-Gordon model [11]. In the limit gf— 0, one
spectral density (9) with the periaff/L. We get forv can treate as (almost) a classical variable that takes on
V =FL 27r X integer values. In our original model, this means
J2Luw? (VO? — 2k2 4g—2 ) . that the Luttinger liquids, or electron chains, are strictly
= T 2E2( E ) 0Q° — u'k?), correlated. However, they can move together and carry
(8)EF F equalcurrents in both constrictions. Sinéd/; = -6V,
(11)  from Eq. (3), we obtaif; = I, = ¢2(V, + V,)/2h.
¢ = (g1 + £2)/2. We see that the interaction inside the  This is, of course, an ideal situation, and at finjtand
constriction changes drastically the behaviorlofas a L the currents are not precisely equal. Let us show that,
function of Q giving rise to powerlike dependence. The N the wide region of parameters, the current difference
voltageV decreases at largefor ¢ < 1/2, so that there IS exponentially small. To this end, we switch from the
is optimum I = eu/L for which the induced voltage is Hamiltonian to Lagrangian in imaginary time;

maximum. If we take oscillating terms into account, the dedr | 1 >
f up'? + + Jcose |.

VI (0)

(0] 1 2

1
=5+ — (I — D),
1 Zg(l 2)

1
=1, + 2—(12—11). (13)
8

decrease at large current differences is nonmonotonous[¢ (x, 7)] = | 30
the voltage oscillates witlf) with the periodu/L. This &
resembles density of states behavior in a finite Luttinger (14)

cqnstrictic_)n [10]. All of these features can be seen inEquation (7) shows that the shift of at the boundary by
Fig. 2 which presents the results of numerical calculationg ; corresponds to transfer of one electron into the channel
of V as a function of; — I, from Egs. (6)—(8). 1 accompanied by the transfer of an electron out of the
Another important feature of Eq. (11) is that the voltagechannel 2. This suggests that in order to describe the
V grows with increasing. at any given current difference jnteraction of the electron channels with the electrodes, we

only for sufficiently short channels. In longer channels

the distribution of the voltage along the channel and the g, = f dr . r _ R —L/2
difference of electron densities associated with it in the b 4 (w2 = pDe(=L/2)
two channels should be determined self-consistently. The + (ub — ub)e(L/2)] (15)

variation of the density difference can be described by
the steady-state form of Eq. (4) which can be written asvhere 1> are the chemical potentials of the left-right

follows: electrode of the channels 1 and 2.
4g What are the processes that spoil the ideal current
K(x) = 7F(k(x),Q). (12)  copying? Obviously, those are slips gf by 27. If

the voltages applied to the constriction are sufficiently
Here the forceF is given by Eq. (11) but now wittocal  low, the slip should happen at once throughout the
k(x). Insimple terms, Eq. (12) describes how the frictioninteracting region. Otherwise a soliton would have been
between the moving liquids compresses one of them ancreated within the interacting region as a result of the
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FIG. 3. Soliton tunneling via the interacting region. The
optimal configuration ofe(x, 7) corresponds to three regions
of almost constanty separated byw-shaped soliton “wall”
(thick line).

slip. This would cost energyE; = /Ju/mg and is

forbidden by the energy considerations. The sudden slip
throughout the interacting region may be viewed as a

virtual soliton transfer via the “barrier’E;, provided
the barrier length exceeds the soliton siZe/Jg. The

rate of such a process is determined by the saddle-poin{?’]

configuration ofe(x, 7) as sketched in Fig. 3. The action
has contributions from the two soliton “walls” and the

boundary term,S = 2E\/T? + (L/u)* — 2T u, where

po=max(uf — w5)/2,(uf — u5)/2). Minimization
of S with respect tdl" yields
So = 2JE? — pn?L/u, (16)

and I, — I, « exp(—Sp). We see that the current dif-
ference is suppressed exponentially providet> u/E;
andur g < E;. The common wisdom of the sine-Gordon

model [12] suggests that these results are, in fact, valid not

only in the classical limitg — 0 but also at any < 1,

providedE; is properly renormalized corresponding to the

actual soliton energye,(g) = E;(E,;/Er)$/'~8 with the
coefficient depending on details of the cutoff.

tures with coupled 2DEG [1,3]. Indeed, the crude
estimate of interaction parameteg for Coulomb
electron-electron interaction screened at distabcg 3],

g 2 =1+ 2In(8Dn)/m*nag, shows that for reasonable
values ofD = 100 nm, g = 1/2 corresponds to electron
concentratiom = (50 nm)~!. In this case, for constric-
tions separated by = 10 nm (as in the 2D experiment
[3]) the maximum exponent (16) i§ = 2L /7 (dap)'/2

and the drag should become absolute already in relatively
short constrictions witli. = 0.3 um.
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