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Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication

H.-J. Briegel,1,2,* W. Dür,1 J. I. Cirac,1,2 and P. Zoller1
1Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria

2Departamento de Fisica, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
(Received 20 March 1998)

In quantum communication via noisy channels, the error probability scales exponentially with the
length of the channel. We present a scheme of a quantum repeater that overcomes this limitation. The
central idea is to connect a string of (imperfect) entangled pairs of particles by using a novel nested
purification protocol, thereby creating a single distant pair of high fidelity. Our scheme tolerates general
errors on the percent level, it works with a polynomial overhead in time and a logarithmic overhead in
the number of particles that need to be controlled locally. [S0031-9007(98)08063-6]

PACS numbers: 03.67.Hk, 03.65.Bz, 42.50.–p
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Quantum communication deals with the transmissio
and exchange of quantum information between dista
nodes of a network. Remarkable experimental progre
has been reported recently, for example, on secret k
distribution for quantum cryptography [1,2], teleportation
of the polarization state of a single photon [3,4], and th
creation of entanglement between different atoms [5]. O
the other hand, first steps towards the implementation
quantum logical operations, which are the building block
of quantum computing, have been demonstrated [6].
view of this progress, it is not farfetched to expect th
creation of small quantum networks in the near future
Such networks will involve nodes, where qubits are store
and locally manipulated, and which are connected b
quantum channels over which communication takes pla
by sending qubits. This will open the possibility for more
complex activities such as multiparty communication an
distributed quantum computing [7].

The bottleneck for communication between distan
nodes is the scaling of the error probability with the lengt
of the channel connecting the nodes. For channels su
as an optical fiber, the probability for both absorptio
and depolarization of a photon (i.e., the qubit) grow
exponentially with the lengthl of the fiber. This has
two effects: (i) to transmit a photon without absorption
the number of trials scales exponentially withl; (ii) even
when a photon arrives, the fidelity of the transmitted sta
decreases exponentially withl. One may think that this
last problem can be circumvented by standard purificatio
schemes [8–10]. However, purification schemes requ
a certain minimum fidelityFmin to operate, which cannot
be achieved asl increases. Furthermore, in any realisti
situation, the operations that are part of the purificatio
protocol are themselves imperfect, and this defines
maximum attainable fidelityFmax and limits the efficiency
of the scheme. For this reason, it is not obvious, firs
what the allowed error tolerances of local operations a
for entanglement purification to be applicable at all and
second, how the resources that are needed for purificat
grow with the length of the channel. In the experiment
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the distance between the nodes is presently limited by
few times) the absorption length of the fiber [11].

The theory of fault-tolerant quantum computing [12]
implies that any computation can be performed with
polylogarithmic cost in time and space [13], if the
error probability for each gate operation can be mad
sufficiently small. A special case of a computation is th
transmission of information, for which these fault-toleran
methods must therefore have the same (or a bette
asymptotic complexity. An explicit scheme for quantum
transmission has been discussed by Knill and Laflamm
using concatenated quantum codes [14]. Their metho
requires one to encode a single qubit into an entangle
state of a polynomially large number of qubits, and to
operate on this code repeatedly during the transmissio
process. The tolerable error probabilities for transmissio
are less than1022, whereas for local operations they are
less than5 3 1025. This seems to be outside the range
of any practical implementation in the near future. A
crucial figure for any experiment will be the number of
particles that can be manipulated locally in a coheren
fashion, together with the precision with which such loca
manipulations can be realized.

In this Letter, we present a model of aquantum repeater
that allows the creation of an entangled (EPR) pair of pa
ticles over arbitrary large distances with a tolerability o
errors in the percent region. Once an EPR pair is cre
ated, it can be employed to teleport any quantum info
mation [15,16]. Our solution of this problem comprises
three novel elements: (i) entanglementpurification with
imperfect means,including analytic results for the range
and the working conditions of standard protocols; (ii) a
method for creation of entanglement between particles
distant nodes that uses auxiliary particles at intermedia
“connection points” and anested purification protocol;
(iii) a scheme for which the time needed for entanglemen
creation scales polynomially whereas the required materi
resources per connection point grow onlylogarithmically
with the distance. Since our model is based on two-wa
classical communication, it is qualitatively different from
© 1998 The American Physical Society
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quantum error correction. By exploiting this property w
will obtain a higher efficiency and significantly more fa
vorable error tolerances.

In classical communication, the problem of exponenti
attenuation can be overcome by using repeaters at cer
points in the channel, which amplify the signal an
restore it to its original shape. Guided by these idea
for quantum communication, we divide the channel int
N segments with connection points (i.e., auxiliary node
in between. We then createN elementary EPR pairs
of fidelity F1 between the nodesA and C1, C1 and
C2, . . . , CN21 and B, as in Fig. 1(a). The numberN
is chosen such thatFmin , F1 & Fmax. Subsequently,
we connect these pairs by making Bell measurements
the nodesCi and classically communicating the result
between the nodes as in the schemes for teleportat
[15] and entanglement swapping [15,17]. Unfortunatel
with every connection, the fidelityF0 of the resulting pair
will decrease: on the one hand, the connection proce
involves imperfect operations which introduce noise; o
the other hand, even for perfect connections, the fidel
decreases. Both effects lead to an exponential decre
of the fidelity FN with N of the final pair shared between
A andB. Eventually, the value ofFN drops belowFmin,
and therefore it will not be possible to increase the fideli
by purification. The number of pairsL ø N that may be
connected by this method seems therefore to be restric
by the conditionFL . Fmin.

Our proposal, thenested purification protocol,combines
the methods of entanglement swapping and purificati
into a single (meta) protocol that circumvents this restri
tion. For simplicity, assume thatN ­ Ln for some inte-
ger n. On the first level, we simultaneously connect th
pairs (initial fidelity F1) at all of the checkpoints except
at CL, C2L, . . . , CN2L. As a result, we haveNyL pairs of
lengthL and fidelityFL betweenA andCL, CL andC2L,
and so on. To purify these pairs, we need a certain nu
berM of copies that we construct in parallel fashion. W
then use these copies on the segmentsA andCL, CL and
C2L, etc., to purify and obtain one pair of fidelity$F1 on
each segment. This last condition determines the (av
age) number of copiesM that we need, which will depend
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(b)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
max

min

F

F
FL

F

´


(c)(a)

FIG. 1. (a) Connection of a sequence ofN EPR pairs; (b)
nested purification with repeated creation of auxiliary pair
(c) “purification loop” for connecting and purifying EPR pairs
Parameters areL ­ 3, h ­ p1 ­ 1, andp2 ­ 0.97.
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on the initial fidelity, the degradation of the fidelity un-
der connections, and the efficiency of the purification pro
tocol. The total number of elementary pairs involved i
constructing one of the more distant pairs of lengthL is
LM. On the second level, we connectL of these more
distant pairs at every checkpointCkL (k ­ 1, 2, . . .) except
at CL2 , C2L2 , . . . , CN2L2 . As a result, we haveNyL2 pairs
of length L2 betweenA and CL2 , CL2 and C2L2 , and so
on, of fidelity $FL. Again, we needM parallel copies of
these long pairs to repurify up to the fidelity$F1. The
total number of elementary pairs involved in constructin
one pair of lengthL2 is thussLMd2. We iterate the pro-
cedure to higher and higher levels, until we reach thenth
level. As a result, we have obtained a final pair betwee
A and B of length N and fidelity $F1. In this way, the
total numberR of elementary pairs will besLMdn. We
can reexpress this result in the form

R ­ N logL M11, (1)

which shows that the resources grow polynomially wit
the distanceN . A similar formula was obtained in [14]
for the overhead required in propagating the concatena
quantum code. Note thatR depends only onL andM. In
order to evaluateM, we need to know the specific form
of the error mechanisms involved in the purification an
connections, which in turn depend on the specific physic
implementation of the quantum network. In general, w
have only limited knowledge of these details. In orde
to estimateM, we will choose a generic error model for
imperfect operations and measurements.

We defineimperfect operationson states of one or more
qubits by the following maps:

r ! O1r ­ p1Oideal
1 r 1

1 2 p1

2
tr1hrj ≠ I1 , (2)

r ! O12r ­ p2Oideal
12 r 1

1 2 p2

4
tr12hrj ≠ I12 , (3)

the first of which describes an imperfect one-qubit op
eration on particle 1, and the second an imperfect tw
qubit operation on particles 1 and 2. In these expressio
Oideal is the ideal operation, andI1 and I12 denote unit
operators on the subspace where the ideal operation a
The quantitiesp1 and p2 measure thereliability of the
operations. The expressions (2) and (3) describe a si
ation where we have no knowledge about the result of
error occurring during some operation (“depolarization”)
except that it happens with a certain probabilitys1 2 pjd.
Any sequence of two one-qubit operations on the sam
qubit is equivalent to a single one-qubit operation, and
therefore described by a single parameterp1. Similarly,
a sequence of a two- and a one-qubit operation coun
as a single two-qubit operation and is thus described
p2. An imperfect measurementon a single qubit in the
computational basis is described by a POVM (positive
operator-valued measure) corresponding to

P
h
0 ­ hj0l k0j 1 s1 2 hd j1l k1j ,

P
h
1 ­ hj1l k1j 1 s1 2 hd j0l k0j .

(4)
5933
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The parameterh is a measure for the quality of the projec
tion onto the basis states. For example, for the stater ­
j0l k0j the measuring apparatus will give the wrong resu
(“1”) with probability 1 2 h $ 0. A detailed discussion
of this and more general models for imperfect operatio
will be given elsewhere [18]. With these error models, w
have a toolbox to analyze all of the processes involved
the connection and purification procedures. For examp
the Bell measurement required in the connection can
decomposed into a controlled-NOT (CNOT) operation, ef-
fecting, e.g.,j0l j0l 6 j1l j1l ! sj0l 6 j1ld j0l, followed
by two single-qubit measurements.

The basic elements of the nested purification protoc
are (i) pair connections and (ii) purification. In the fol
lowing we analyze these elements using the error mod
introduced above. Assume now that all of the pairs
Fig. 1(a) are in Werner states (see [8]). These states c
be produced using depolarization (as in Ref. [8]) after ea
connection and purification process. This depolarizatio
5934
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works even in the presence of errors which we take in
account. ConnectingL neighboring pairs as explained ear
lier, one obtains a new “L pair” with fidelity

FL ­
1
4

1
3
4

√
p2

1p2s4h2 2 1d
3

!L21√
4F 2 1

3

!L

. (5)

This formula describes an exponential decrease of
resulting fidelity, unless both the elementary pairs a
all of the operations involved in the connection proce
are perfect. There are several possibilities to do t
purification, and we first analyze the scheme introduc
by Bennettet al. [8] in the case of imperfect gate and
measurement operations. In short, the scheme takes
adjacentL pairs of fidelity F, performs local (1-bit and
2-bit) operations on the particles at the same ends of
pairs, and obtains with a certain probabilitypsucc a new
pair of fidelity
F0 ­
fF2 1 s 12F

3 d2g fh2 1 s1 2 hd2g 1 fFs 12F
3 d 1 s 12F

3 d2g f2hs1 2 hdg 1 s 12p2
2

8p2
2

d

fF2 1
2
3 Fs1 2 Fd 1

5
9 s1 2 Fd2g fh2 1 s1 2 hd2g 1 fFs 12F

3 d 1 s 12F
3 d2g f8hs1 2 hdg 1 4s 12p2

2

8p2
2

d
. (6)
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The value ofpsucc is given byp2
2 times the denominator

of this expression. For perfect operations,h ­ 1 and
p2 ­ 1, (6) reduces to the formula given in Ref. [8].

Figure 1(c) shows the curves for connection (5) an
purification (6) for a certain set of parameters. Th
purification curve has three intersection points with th
diagonal, which are the real fixpoints of the map (6). I
addition to the trivial point atF ­ 1y4, there are two
nontrivial fixpoints. The upper point,Fmax , 1, is an
attractor and gives the maximum value of the fidelit
beyond which no pair can be purified. Note also th
existence of the minimum valueFmin . 1y2. Together,
they define the interval within which purification is
possible. The limiting situationFmax ­ Fmin defines the
threshold for the applicability of the purification protoco
For all pairs sp2, hd for which there is only one real
fixpoint (at F ­ 1y4), the imperfections of the local
operations introduce more noise than one gains from
purification, so the scheme breaks down. For examp
for h ­ 1 the threshold is atp2 . 0.95; that is, theCNOT

gate must work with a reliability of95%, at least. Please
note that the fixpoints and the threshold condition ca
all be given analytically from (6). The connection curve
which looks like a simple power in Fig. 1(c), stays below
the diagonal for all values ofF between1y4 and1. The
offset of this curve atF ­ 1 from the ideal valueF0 ­ 1
quantifies the amount of noise that is introduced throu
imperfect operations in the connection process.

With the above results, we can now analyze the nes
purification protocol. Let us consider a given levelk in
this protocol, where we haveNyLk21 pairs of fidelity F
each. The two-step process connection-purification c
now be visualized as follows [see Fig. 1(c)]. Startin
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from F, the fidelity FL after connectingL pairs can be
read off from the curve below the diagonal. Reflectin
this value back to the diagonal line, as indicated b
the arrows in Fig. 1(c), sets the starting value for th
purification curve. If FL lies within the purification
interval, then iterated application of (6) leads back to th
initial value F (staircase). Once the initial valueF is
reobtained, we haveNyLk pairs and we can start with
the levelk 1 1. In summary, each level in the protoco
corresponds to one cycle in Fig. 1(c). Note that if, i
the loop, FL # Fmin then purification is not possible.
Being polynomial in F, the lower curve gets steepe
and steeper nearF ­ 1 for higher values ofL. From
this, one sees that for a given starting fidelityF, there
is a maximum number of pairs one can connect befo
purification becomes impossible.

For the resources we obtainM ­
Qmmax

m 2ypsmd
succ,

where psmd
succ is the probability of obtaining the required

outcome (00 or 11) in the measurement at themth
purification step. The total number of steps,mmax, is the
same as in the staircase of Fig. 1(c).

In Fig. 2(a),M is plotted against the working fidelityF.
Because of the discrete nature of the purification proce
the fidelity of the repurified pairs need not be exactly th
same on each nesting level. The working fidelity is thu
defined as the fidelity maintainedon averagewhen going
through different nesting levels. The error parameters
this plot areh ­ p1 ­ p2 ­ 0.995. One can see that
there exists an optimum working fidelity of about0.94
which requires a minimum number of about 15 resource

A purification protocol that converges faster an
therefore involves less parallel channels was propos
by Deutschet al. [9]. We have employed this protocol,
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FIG. 2. M (see text) versus working fidelityF. (a) Realiza-
tion of the repeater with the aid of the purification schemes
Refs. [8] (upper curve) and [9] (lower curve). The error proba
bilities of all operations are 0.5% (error parameters 0.995), a
L ­ 2. (b) Lower curve in (a) for different error probabilities.
From bottom to top:0%, 0.25%, 0.5%, 0.75%, 1%.

using imperfect operations (2)–(4). As is demonstrate
in Fig. 2(a),M can be reduced by a factor of the orde
of 10. Since this number has to be taken to thenth
power, this reduces the number of total resources th
are required at each connection point by many orders
magnitude. In Fig. 2(b),M is plotted versus the working
fidelity for different error parameters. One can see th
for errors in the one percent region, a working fidelity
can be maintained with, on average, fiveL pairs on each
nesting level. We note that the procedure also work
for error probabilities up to about3%, but the number of
purification resources gets larger.

In the remainder of this paper, we propose a metho
for which the resources grow only logarithmically with
the distance, whereas the totaltime needed for building
the pair scales polynomially. Imagine that we purify a
pair not with the help ofM copies, but instead with one
auxiliary pair of constant fidelityp0 that is repeatedly
created at each purification step. The purification wit
the help of such a pair leads to a maximum achievab
fidelity Fmaxsp0d that depends on the value ofp0 and,
more generally, on the state of the auxiliary pair. Thi
purification method is different from the standard schem
[8,9], and the purification limitFmax is usually smaller
than for the destillation method. In the context of th
repeater protocol, it is therefore nota priori clear whether
the fidelity that is lost by the connection process can b
regained with this method.

When connectingL pairs of fidelityF as in Fig. 1(b),
we obtain a resultingL pair of fidelity p0 ; FL. In the
first step, this pair is swapped to two auxiliary particle
at the ends of theL pair, as indicated by the arrows
in Fig. 1(b). In the next step, anL-pair of fidelity p0
is again created by using the same string of particl
as before, which is now used to purify the pair store
between the auxiliary particles. This procedure can b
iterated and thus the stored pair be purified back to t
fidelity F given that the nesting conditionFmaxsFLd . F
is satisfied.If this is the case, then the same procedure ca
be applied at higher levels, thereby purifying correlation
between more and more distant particles as indicated
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Fig. 1(b). Here, the dependence of the fixpoint on th
form of the auxiliary pair becomes quite important: When
we use our method together with the recurrence protoc
of Ref. [8], which is based on Werner states, the fixpoin
Fsp0d is too small and the nesting condition cannot b
satisfied for anyL $ 2. On the other hand, the nesting
condition can be satisfied if we adopt a similar sequenc
of local operations as in Ref. [9], which does not involve
a depolarization to Werner states.

Using this method, the vertical axes in Fig. 2 are
essentially translated into temporal resources [18]. O
the other hand, the number of particles at each no
[see Fig. 1(b)] increases by unity with every additiona
nesting level, and thus depends only logarithmically o
the distance between the initial and the final node. I
the context of a quantum optical implementation [19], fo
example, this would correspond to the number of ions th
need to be controlled in a cavity at each node [20]. Not
however, that this method requires perfect memory durin
the process. In this particular implementation, the storag
decoherence time is orders of magnitude longer than t
estimated duration of the process [20].
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