Fluctuations in Electrolytes: The Lebowitz and Other Correlation Lengths

Stefan Bekiranov and Michael E. Fisher

Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742

(Received 15 September 1998)

Explicit low-density expansions (using Meeron and hypernetted-chain graphical resummations) are reported for various charge and density correlation lengths in hard-sphere electrolytes with general valences, z_{σ} , and diameters, $a_{\sigma\tau}$. The "Lebowitz length" quantifies the *area law* for charge fluctuations, $\langle Q_{\Lambda}^2 \rangle$, in a large domain Λ ; it approaches but differs from the Debye and other correlation lengths. All corresponding, universal limiting-law predictions of generalized Debye-Hückel (GDH) theory (Lee and Fisher, 1996–1997) prove exact, thus validating GDH theory as a basis for studying anomalies in Coulombic criticality. [S0031-9007(98)08035-1]

PACS numbers: 61.20.Qg, 61.20.Gy

Understanding the structure and equilibrium fluctuations of ionic systems remains a topic of profound theoretical concern [1,2] reinforced in recent years by puzzling experiments on criticality in electrolytes [3]. Of especial interest are the two-point charge and density correlation functions which are most accessibly characterized by a variety of significant *correlation lengths.* In particular, the screening behavior of a conducting electrolyte is embodied in the second-moment charge-charge correlation length, $\zeta_{Z,1}(T,\rho)$, where $\rho = \sum_{\sigma} \rho_{\sigma}$ denotes the overall number density of ions of species σ and density ρ_{σ} . Indeed, the Debye-Hückel (DH) approximation [2,3] predicts the *exponential decay* of charge correlations on the scale of the Debye length, $\xi_D(T, \rho)$, given, for ions carrying charges $q_{\sigma} = z_{\sigma}q_0$, by

$$
1/\xi_D^2 = \kappa_D^2 = 4\pi \bar{z}_2^2 b \rho, \qquad b = q_0^2 / D k_B T, \qquad (1)
$$

where $b(T)$ is the Bjerrum length defined, say, with q_0 the charge of a proton, while

$$
\bar{z}_j = \left[\sum_{\sigma} z_{\sigma}^j \rho_{\sigma} / \rho \right]^{1/j} \tag{2}
$$

defines the *j*th mean valence moment (with $\bar{z}_1 = 0$ by electroneutrality) and *D* represents the "solvent dielectric constant."

However, screening can also be characterized by considering the total (fluctuating) charge Q_{Λ} contained in a subdomain Λ of regular shape, with surface $\partial \Lambda$, in a *d*dimensional electrolyte. Electroneutrality implies $\langle Q_{\Lambda} \rangle$ = 0; but, in the absence of screening, one expects the charge fluctuations, $\langle Q_{\Lambda}^2 \rangle$, to grow like the volume $|\Lambda|$ as $\Lambda \to \infty$ (i.e., when $|\Lambda|$ diverges through a sequence of self-similar shapes). However, when the system is a conductor and the charge-charge correlation functions decay sufficiently rapidly, Martin and Yalcin [4–6] have proved, instead, that the charge fluctuations in Λ grow only like the *area* $|\partial \Lambda|$.

Lebowitz [5] has interpreted this striking result by picturing the various ions as combined into *neutral* clusters of density $n \propto \rho$ and linear dimensions *l*. We will call $l \equiv$ $\xi_L(T, \rho)$ the "Lebowitz length" and have slightly extended his picture. In this light, net charge fluctuations can arise in Λ only if some of the neutral clusters are "cut" by the boundary $\partial \Lambda$. If the clusters have no long-range positional or orientational correlations one should thus expect

$$
\langle Q_{\Lambda}^{2} \rangle / |\partial \Lambda| \approx \mathcal{K}_{d}(T,\rho) = c_{d} \rho \bar{z}_{2}^{2} q_{0}^{2} \xi_{L}(T,\rho), \quad (3)
$$

where c_d is a numerical constant. For a classical electrolyte, Lebowitz then argued that ξ_L should be identified with the Debye length, ξ_D defined in (1).

Here we test this conjecture for $d = 3$, evaluating $\xi_L(T, \rho)$ by regarding (3) as a definition in which, indeed, we prove able to specify c_3 so that one has $\xi_L/\xi_D \rightarrow 1$ when $\rho \rightarrow 0$ for all $T > 0$. However, we also present the leading *corrections* to this behavior for the *extended* primitive model in which the Coulombic potentials, $q_{\sigma}q_{\tau}/Dr$, are supplemented by reduced *hard-core potentials* $\bar{u}^{\dagger}_{\sigma\tau}(r) = 0$, ∞ for $r \ge a_{\sigma\tau}$. The diameters $a_{\sigma\tau}$ need *not* be additive, or even nonzero except that the diameter $a \equiv a_{\lambda\mu}$ maximizing $-z_{\lambda}z_{\mu}/a_{\lambda\mu}$ must not vanish so that all charges of opposite sign are kept a minimum distance apart.

In addition, we report exact calculations of the associated low-density expansions for the charge-charge and density-density second- and fourth-moment correlation lengths [7–9], which are more susceptible to observation (and simulation) than the corresponding exponential screening lengths, $\xi_{Z,\infty}$ and $\xi_{N,\infty}$. The expressions obtained demonstrate that the Lebowitz and all the other correlation lengths are quite distinct at finite densities: see, e.g., Fig. 1.

Furthermore, our results confirm the universal lowdensity predictions of the recently proposed "generalized Debye-Hückel" (GDH) theory [7]: This approach, in contrast to the original DH analysis [2], yields *densitydensity* correlations that exhibit a divergent correlation length at criticality [7(a)], as well as charge-charge correlations that display oscillations at higher densities [7(b)] (see Fig. 1) *and* satisfy the Stillinger-Lovett sum rules [1(b),10] (at least when Bjerrum ion pairing is not imposed [7]). This validates GDH theory as, currently, an optimal tool for investigating the critical region [11] of the *restricted*

FIG. 1. Inverse charge correlation lengths (and oscillation wavelength λ_Z) for the RPM according to pure GDH theory [7]: x_K and x_K denote the Kirkwood and crystallization values. All plots become exact to order $x^2 \propto \rho$ when $x \to 0$. Note that $\xi_{Z,2}^4$, as defined in (10), is predicted to vanish linearly and change sign at $x \approx 1.749$.

primitive model (RPM [2,3,12]) despite suggestions to the contrary [13].

To proceed, let $\rho_{\sigma}(\mathbf{r})$ be the local density of ions of species σ with pair correlation functions

$$
G_{\sigma\tau}(\mathbf{r}) = \langle \rho_{\sigma}(0)\rho_{\tau}(\mathbf{r}) \rangle - \rho_{\sigma}\rho_{\tau},
$$

= $\rho_{\sigma} [\delta_{\sigma\tau}\delta(\mathbf{r}) + \rho_{\tau}h_{\sigma\tau}(\mathbf{r})],$ (4)

where translational invariance is assumed. Then, in terms of the charge-charge correlation function

$$
G_{QQ}(\mathbf{r}) = q_0^2 \sum_{\sigma,\tau} z_{\sigma} z_{\tau} G_{\sigma\tau}(\mathbf{r}), \qquad (5)
$$

the previous analysis [4,5] gives the area-law amplitude as

$$
\mathcal{K}_d(T,\rho) = -\alpha_d \int r G_{QQ}(r) \, d\mathbf{r},\qquad (6)
$$

where $\alpha_d = \frac{1}{4}, \pi^{-1}$, and $\frac{1}{2}$ for $d = 3, 2$, and 1, respectively.

To evaluate this and, thence, find ξ_L via (3), consider first the linearized DH approximation for equisized spheres $(a_{\sigma\tau} = a)$, namely [2,7],

$$
h_{\sigma\tau}(r) \simeq h_{\sigma\tau}^{DH}(r) \equiv -\frac{z_{\sigma}z_{\tau}be^{-\kappa_D(r-a)}}{(1+\kappa_D a)r}, \qquad r \ge a,
$$

= -1, \qquad r \le a. (7)

It is convenient to use the dimensionless parameter

$$
x = \kappa_D a \propto q_0 a \sqrt{\rho/T}, \qquad (8)
$$

which is *nonuniversal,* i.e., depends explicitly on the hardcore diameters, in contrast to the *universal* combination $\kappa_D b \propto \sqrt{\rho/T^3}$. Then, if we accept $c_3 = \frac{1}{2}$, the DH approximation (7) yields $\xi_L^{DH} = \xi_D [1 + \frac{1}{2} x^2/(1 + x)].$ We may believe the leading behavior, but the correction factor $\left[1 + O(\rho/T)\right]$ is suspect and, in fact, incorrect.

To go further we focus on the general charge-charge structure factor $S_{ZZ}(\mathbf{k}) = \hat{G}_{QQ}(\mathbf{k}) / \rho q_0^2$. One can then rewrite [6] the Lebowitz length as

$$
\xi_L(T,\rho) = \frac{2}{\pi \bar{z}_2^2} \int_0^\infty \frac{dk}{k^2} S_{ZZ}(k),\tag{9}
$$

where the convergence of the integral at the lower limit is ensured by electroneutrality [2,7].

Now GDH theory for the RPM [7] provides closed expressions of the expected form [2], namely,

$$
S_{ZZ}(k) = \bar{z}_2^2 \left[\xi_{Z,1}^2 k^2 - \xi_{Z,2}^4 k^4 + O(k^6) \right],\tag{10}
$$

with [1(b),10] $\xi_{Z,1} \equiv \xi_D$ (when Bjerrum ion pairing is not explicitly included [7]), and a *fourth-moment correlation length* $\dot{\xi}_{Z,2}^{\text{GDH}} = \xi_D [1 - \frac{1}{8}x^2 + \frac{1}{18}x^3 + \cdots];$ the exponential decay of $G_{QQ}(r)$ is controlled by $\xi_{Z,\infty} = \xi_D [1 \frac{1}{4}x^2 + \frac{1}{9}x^3 + \cdots$. For the GDH Lebowitz length we find ξ_D $\left[1 + \frac{1}{4}x^2 - \frac{5}{18}x^3 + \frac{31}{96}x^4 + \cdots \right]$: The leading behavior is again as hoped for but the correction factor differs from that based on (5).

More interesting, however, are the GDH plots of a/ξ vs *x* presented in Fig. 1. The "true" correlation length, $\xi_{Z,\infty}$, exhibits a bifurcation at a "Kirkwood value," $x_K \simeq$ 1.178, beyond which charge-charge *oscillations* with a wavelength $\lambda_Z(T, \rho)$ are predicted [7(b)]. At a higher value, $x_x \approx 6.652$, the amplitude of oscillation no longer vanishes when $r \rightarrow \infty$; this may be interpreted loosely as indicating crystallization. On the other hand, one finds that the Lebowitz length ξ_L decreases smoothly to a minimum of about 0.485 89*a* at $x_m \approx 4.3166$ but then increases again, diverging as $1/(x_X - x)$ on approach to "crystallization." Although these GDH predictions cannot be trusted quantitatively for $x \ge 1$, the increase of ξ_L in a dense electrolyte—physically a "molten salt"—could well be qualitatively correct.

To check the validity of these and further GDH results, we have appealed to the diagrammatic resummations constructed by Meeron [14] for $h_{\sigma\tau}(\mathbf{r}; T, \rho)$. At fixed **r** these yield density expansions correct up to error terms of order $\rho^{3/2}$ (ln ρ)^{*j*} (where *j* is a small integer) [8,9]; but on integration to obtain Fourier transforms and correlationfunction moments, precision is normally lost by factors of $\xi_D \propto \rho^{-1/2}$ [9(b)]. Furthermore, in the absence of charge symmetry, specifically when $\bar{z}_3 \neq 0$, it proves necessary in order to maintain accuracy, even in reduced order, to include two five-bond graphs dropped by Meeron: the $(2, 1, 2)$ chain and the leading bridge diagram [14,15]. Care is needed in evaluating the many primary integrals; a tedious technical task [9(b)] is bounding classes of integrals that may be neglected.

Defining density correlation lengths via

$$
S_{NN}(k)/S_{NN}(0) = 1 - \xi_{N,1}^2 k^2 + \xi_{N,2}^4 k^4 - \cdots, \quad (11)
$$

we find [9] the universal results

$$
\xi_{N,1} = \bar{z}_2 (b \xi_D / 48)^{1/2} [1 + \frac{1}{8} \eta_1 \kappa_D b + \cdots], \quad (12)
$$

$$
\xi_{N,2} = (\bar{z}_2^2 b \xi_D^3 / 320)^{1/4} [1 + \frac{7}{72} \eta_2 \kappa_D b + \cdots],
$$
\n(13)

where $\eta_1 \bar{z}_2^4 = 2 \bar{z}_2^2 \bar{z}_4^4 - \bar{z}_2^6 - \frac{116}{9} \bar{z}_3^6$ and

$$
\eta_2 \bar{z}_2^4 = \frac{23}{14} \bar{z}_2^2 \bar{z}_4^4 - \frac{9}{14} \bar{z}_2^6 - \frac{1045621}{17010} \bar{z}_3^6, \qquad (14)
$$

while the nonuniversal corrections are of order $\kappa_D^2 b^2 \ln x$. For 1:1 and 2:1 electrolytes one has $\eta_1, \eta_2 = 1, 1$, and $-8\frac{8}{9}$, -57.8_3 , respectively.

None of these results match the *charge* correlation lengths even when $\rho \rightarrow 0$; but for the RPM they precisely reproduce the corresponding GDH predictions [7(a)]. For *nonsymmetric* models, charge and density fluctuations mix [9(c),16] so that $G_{NN}(\mathbf{r})$ should display the charge-charge decay length. $\xi_{Z,\infty}$ (see below), when $r \to \infty$. However, the exponential decay length of the density correlations in *species symmetric* cases obeys $\xi_{N,\infty} \approx \frac{1}{2} \xi_D$ ($\rho \to 0$) $[7(a), 9]$.

For $S_{NN}(0)$ we find the expression

$$
1 + \frac{1}{4} \bar{z}_2^2 \kappa_D b + \frac{1}{16} \kappa_D^2 b^2 \bigg[\eta_0 + \sum_{\sigma,\tau} y_{\sigma} y_{\tau} \mathcal{L}_{\sigma\tau}^N(\kappa_D, b) \bigg],
$$
\n(15)

with corrections of order $\rho^{3/2} \ln^j \rho$, while $\eta_0 = \bar{z}_4^4$ – \bar{z}_3^6/\bar{z}_2^2 , $y_\sigma \equiv \rho_\sigma/\rho$, and the nonuniversal term varies as $ln \rho$ since

$$
\mathcal{L}_{\sigma\tau}^{X} = \frac{8}{3} \left(z_{\sigma}^{3} z_{\tau}^{3} / \bar{z}_{2}^{2} \right) \left[\ln \kappa_{D} a_{\sigma\tau} + e_{X} - \mathcal{E}(\theta_{\sigma\tau}) \right],\tag{16}
$$

where, with $X = N$, one has $e_N = \gamma_E + \ln 3 + \frac{3}{4} \approx$ $2.42₆$ and

$$
\theta_{\sigma\tau} = -z_{\sigma}z_{\tau}b/a_{\sigma\tau} \propto q_{\sigma}q_{\tau}/a_{\sigma\tau}T. \qquad (17)
$$

We also need the "second-virial function"

$$
\frac{1}{6} \theta^3 \mathcal{E}(\theta) = \sum_{n=0}^{\infty} \theta^n / n! (n-3) \equiv \int_1^{\dagger} e^{\theta/r} r^2 dr , \qquad (18)
$$

where the divergent term in the sum is excluded and the integrated ionic Boltzmann factor is suitably subtracted. This yields the low-temperature $(\theta \rightarrow +\infty)$ asymptotic expansion $\mathcal{E}(\theta) \approx (e^{\theta}/\theta^4) [3! + 4!/ \theta + \cdots]$; the exponential divergence when $T \rightarrow 0$ directly reflects Bjerrum $(+, -)$ ion pairing [3,6,11,14(b)].

Because nonadditivity is allowed (e.g., $a_{++} + a_{--} \neq a$ $2a_{+-}$), effective short-range attractions between like and unlike ions can be represented. At first sight, however, taking a "point-charge" limit in (16) (e.g., $a_{++} \rightarrow 0$) produces a logarithmic divergence, but since $\mathcal{E}(\theta) \approx$ $- \ln |\theta| + \mathcal{E}_{\infty}$ when $\theta \to -\infty$ [14(b)], that cancels and yields well defined results.

Now, the overall isothermal bulk compressibility, K_T , of a mulitcomponent fluid should satisfy $S_{NN}(0) = \rho k_B T K_T$, *provided* the interactions decay sufficiently rapidly. However, for an ionic fluid this sum rule is valid *only* for *two*-component systems [17]. In that special case η_0 reduces to \bar{z}_2^4 in (15) which then reproduces the general expression for $\rho k_B T K_T$ following from the virial expansions for the pressure [18,19]. This represents a stringent check which, in particular, needs the five-bond "non-Meeron" graphs mentioned above.

It also transpires [9(b)] that Meeron's approach *fails* to generate the charge-charge structure factor $S_{ZZ}(\mathbf{k}; T, \rho)$ satisfactorily. To overcome this, we have used the hypernetted-chain (HNC) *resummation* analysis [15]. This expresses the *direct* correlation functions, $c_{\sigma\tau}(\mathbf{r})$, in terms of the interaction potentials and a functional expansion in powers of $h_{\sigma\tau}(r; T, \rho)$. One may thus use Meeron's analysis to calculate $c_{\sigma\tau}(\mathbf{r})$, and thence, via the matrix Ornstein-Zernike relations, obtain $S_{ZZ}(k)$ [9(b)].

By this route (as known [20]) one reconfirms the Stillinger-Lovett relations [10] with $\xi_{Z,1} = \xi_D$. Furthermore, for the *unrestricted two-component* models, we obtain [see (8)]

$$
\xi_{Z,2}^{4}/\xi_{D}^{4} = 1 + \frac{1}{4} \eta_{3} \kappa_{D} b + \frac{1}{16} \kappa_{D}^{2} b^{2}
$$

$$
\times \left[\eta_{3} \eta_{4} + \frac{8}{3} \eta_{5} - \sum_{\sigma,\tau} (y_{\sigma} \delta_{\sigma \tau} - y_{\sigma} y_{\tau}) \mathcal{L}_{\sigma \tau}^{Z} \right]
$$

+ $O(\rho^{3/2} \ln^{j} \rho),$ (19)

with valence coefficients given by $\eta_3 \bar{z}_2^2 = \bar{z}_2^4 - \bar{z}_4^4$ and

$$
\eta_4 \bar{z}_2^4 = \bar{z}_2^6 - \frac{2}{3} \bar{z}_3^6, \qquad \eta_5 \bar{z}_2^4 = \bar{z}_3^6 \bar{z}_2^2 - \bar{z}_5^5 \bar{z}_3^3, \qquad (20)
$$

while $\mathcal{L}_{\sigma\tau}^{Z}$ follows from (16) with $e_Z = \gamma_E + \ln 3 \simeq$ 1.67₆. For the RPM one has $\eta_3 = \eta_5 = 0$ so that GDH theory is verified to $O(\rho^{1/2})$, but, of course, the nonuniversal ρ ln ρ term is *not* predicted.

We can also calculate the Lebowitz length at low densities for *charge-symmetric* two-component models by using the HNC + Meeron form for $S_{NN}(k)$ in (9): this yields [9(b)]

$$
\xi_L/\xi_D \approx 1 + \frac{1}{32} \kappa_D^2 b^2 \sum_{\sigma,\tau} (y_\sigma \delta_{\sigma\tau} - y_\sigma y_\tau) \mathcal{L}_{\sigma\tau}^L,
$$
\n(21)

where, in (16), $e_L = \gamma_E + \ln 4 \approx 1.96_3$. In summary, one sees that our original claim that $\xi_L/\xi_D \rightarrow 1$ when $\rho \rightarrow 0$ is fully justified, but, equally, at *nonzero* densities ξ_L does *not* match any of the other charge or density correlation lengths that we have evaluated.

Finally, we remark that our results to order $\rho \ln \rho$ (but *not* order ρ) can be generated by dropping the bridge function in the HNC resummation and using the leading Meeron-based [14] approximation

$$
h_{\sigma\tau}(r) \simeq h_{\sigma\tau}^D(r) = \exp[-\bar{u}_{\sigma\tau}^\dagger(r) + w_{\sigma\tau}(r)], \quad (22)
$$

where the reduced screened Coulomb interaction is

$$
w_{\sigma\tau}(r) = -z_{\sigma}z_{\tau}b \exp[-\kappa_D r]/r. \qquad (23)
$$

On this basis, the nearest pole of $S_{ZZ}(k)$ on the imaginary axis leads to $[9(b)]$

$$
\xi_{Z,\infty}/\xi_D = 1 - \frac{1}{12} \bar{z}_2^4 \kappa_D^2 b^2 \ln x + O(\kappa_D^2 b^2), \quad (24)
$$

for the RPM. Remarkably, although derived by a truncation not designed to ensure precision in determining the correlation decay when $r \rightarrow \infty$, this agrees precisely (for the RPM) with the long-distance analysis of Kjellander and Mitchell [20(b)] (which required a study of the bridge function for $r \to \infty$). Of course, it is not surprising that the leading correction term in (24), of order (ρ/T^3) ln ρ , is *not* found by GDH theory [7]; but, as shown, the GDH approximation does predict precisely *all* the universal forms to relative order $\rho^{1/2}$.

We are grateful to Joel L. Lebowitz for drawing our attention to Ref. [4] and his work, to D. M. Zuckerman and B. P. Lee for interest and assistance, and to the NSF for support (under Grant No. CHE 96-14495).

- [1] See, e.g., (a) *Strongly Coupled Coulomb Systems*, edited by G. J. Kalman *et al.* (Plenum, New York, 1998); (b) D. C. Brydges and Ph. A. Martin, Rev. Mod. Phys. (to be published).
- [2] D. A. McQuarrie, *Statistical Mechanics* (Harper-Collins, New York, 1976), Chap. 15.
- [3] See, e.g., M. E. Fisher, J. Stat. Phys. **75**, 1 (1994); J. Phys. Condens. Matter **8**, 9103 (1996).
- [4] Ph. A. Martin and T. Yalcin, J. Stat. Phys. **22**, 435 (1980).
- [5] J. L. Lebowitz, in Ref. [1(a)]; Phys. Rev. A **27**, 1491 (1983).
- [6] B. Jancovici, J.L. Lebowitz, and G. Manificat, J. Stat. Phys. **72**, 773 (1993).
- [7] B. P. Lee and M. E. Fisher, (a) Phys. Rev. Lett. **76**, 2906 (1996); (b) Europhys. Lett. **39**, 611 (1997).
- [8] M. E. Fisher, B. P. Lee, and S. Bekiranov, in Ref. [1(a)].
- [9] S. Bekiranov and M. E. Fisher, (a) Bull. Am. Phys. Soc. **42**, 725 (1997) Q 16 8; (b) Phys. Rev. E (to be published); (c) to be published.
- [10] F. H. Stillinger and R. Lovett, J. Chem. Phys. **48**, 3858 (1968).
- [11] M. E. Fisher and B. P. Lee, Phys. Rev. Lett. **77**, 3561 (1996).
- [12] For the RPM $\sigma = \pm$, $z_{\pm} = \pm 1$, $a_{++} = a_{+-} = a_{--} = a$.
- [13] V. C. Weiss and W. Schröer, J. Chem. Phys. **106**, 1930 (1997); W. Schröer and V. C. Weiss, *ibid.* **106**, 7458 (1997). These findings have since been retracted (private communication).
- [14] (a) E. Meeron, J. Chem. Phys. **28**, 630 (1958). See also (b) H. Falkenhagen and W. Ebeling, in *Ionic Fluids*, edited by S. Petrucci (Academic, New York, 1971), Vol. I.
- [15] See G. Stell, in *The Equilibrium Theory of Classical Fluids*, edited by H. L. Frisch and J. L. Lebowitz (W. A. Benjamin Inc., New York, 1964), and references therein.
- [16] B. Hafskjold and G. Stell, in *Studies in Statistical Mechanics,* edited by E. W. Montroll and J. L. Lebowitz (North-Holland, Amsterdam, 1982), Vol. 8, Sec. 3.
- [17] J.-P. Hansen and I. R. McDonald, *Theory of Simple Liquids* (Academic, London, 1986), p. 374.
- [18] E. Haga, J. Phys. Soc. Jpn. **8**, 714 (1953), but note, in particular, a slip in Eq. (25.4) for S_2 where the last term should be $+\kappa^5 a^2/16\pi$.
- [19] G. Kelbg, W. Ebeling, and H. Krienke, Z. Phys. Chem. (Leipzig) **238**, 76 (1968).
- [20] See, e.g., (a) P. Attard, Phys. Rev. E **48**, 3604 (1993); (b) R. Kjellander and D. J. Mitchell, J. Chem. Phys. **101**, 603 (1994).