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Fluctuations in Electrolytes: The Lebowitz and Other Correlation Lengths
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Explicit low-density expansions (using Meeron and hypernetted-chain graphical resummations) are
reported for various charge and density correlation lengths in hard-sphere electrolytes with general
valencesz,,, and diametersy,,.. The “Lebowitz length” quantifies tharea lawfor charge fluctuations,

(03), in a large domain\; it approaches but differs from the Debye and other correlation lengths. All
corresponding, universal limiting-law predictions of generalized Debye-Hiickel (GDH) theory (Lee and
Fisher, 1996-1997) prove exact, thus validating GDH theory as a basis for studying anomalies in
Coulombic criticality. [S0031-9007(98)08035-1]

PACS numbers: 61.20.Qg, 61.20.Gy

Understanding the structure and equilibrium fluctuationsn A only if some of the neutral clusters are “cut” by the
of ionic systems remains a topic of profound theoreticaboundaryo A. If the clusters have no long-range positional
concern [1,2] reinforced in recent years by puzzling ex-or orientational correlations one should thus expect
periments on criticality in electrolytes [3]. Of especial 5
interest are the two-point charge and density correlation (QR)/|10Al = Ky(T, p) = capZ3q5éL(T.p),  (3)
functions which are most accessibly characterized by a va- . . .
riety of significantcorrelation lengths. In particular, the wherec, is a numerical constant. For a classical elec-

screening behavior of a conducting electrolyte is embodied 0y, Lebowitz then argued thg; should be identified

in the second-moment charge-charge correlation lengtVith the Debye lengths, defined in (1). .
Here we test this conjecture faf = 3, evaluating

&2.1(T, p), wherep = > p, denotes the overall number . L SO
déésity of ions of species and densityp,. Indeed, the &2(Zp) by regarding (3) as a definition in which, indeed,
we prove able to specify; so that one hag,/ép — 1

Debye-Hiickel (DH) approximation [2,3] predicts tb&- h ¢ I I
ponential decayf charge correlations on the scale of the)[';’]eelrég daggoror:a;iorfs; (t)k-lisHboeVr:Z\\//iec; ]\%f ti;?(tgﬁjseedm
Debye length T, p), given, for ions carrying charges "> ' . i . )

y 9th&n(T.p) g ying ¢ primitive model in which the Coulombic potentials,

9o = 2040, by g09+/Dr, are supplemented by reduckard-core poten-
1/€h = kp = 4mZ3bp, b =q5/DksT, (1) tials al_(r) = 0, for r = a,,. The diameters,,, need
whereb(T) is the Bjerrum length defined, say, wig the ~ Notbe additive, or even nonzero except that the diameter

charge of a proton, while a = a,, Maximizing—z,z,/a,, must not vanish so that
1/j all charges of opposite sign are kept a minimum distance
5= | Seboutn] @ apar
o In addition, we report exact calculations of the

defines thejth mean valence moment (with = 0 by  associated low-density expansions for the charge-charge
electroneutrality) and represents the “solvent dielectric and density-density second- and fourth-moment cor-
constant.” relation lengths [7—9], which are more susceptible to
However, screening can also be characterized by corebservation (and simulation) than the corresponding expo-
sidering the total (fluctuating) charg@, contained in a nential screening lengthg; .. andéy ... The expressions
subdomainA of regular shape, with surface\, in ad-  obtained demonstrate that the Lebowitz and all the other

dimensional electrolyte. Electroneutrality implig3,) = correlation lengths are quite distinct at finite densities:
0; but, in the absence of screening, one expects the chargee, e.g., Fig. 1.
quctuations,(Q%}, to grow like the volumégA| asA — « Furthermore, our results confirm the universal low-

(i.e., when|A| diverges through a sequence of self-similardensity predictions of the recently proposed “generalized
shapes). However, when the system is a conductor aridebye-Hiickel” (GDH) theory [7]: This approach, in
the charge-charge correlation functions decay sufficientlgontrast to the original DH analysis [2], yieldgensity-
rapidly, Martin and Yalcin [4—6] have proved, instead, thatdensity correlations that exhibit a divergent correlation
the charge fluctuations i grow only like thearea|dA|.  length at criticality [7(a)], as well as charge-charge correla-

Lebowitz [5] has interpreted this striking result by tions that display oscillations at higher densities [7(b)] (see
picturing the various ions as combined imeutralclusters  Fig. 1)andsatisfy the Stillinger-Lovett sum rules [1(b),10]
of densityn « p and linear dimensions Wewillcalll =  (at least when Bjerrum ion pairing is not imposed [7]).
&1(T, p) the “Lebowitz length” and have slightly extended This validates GDH theory as, currently, an optimal tool
his picture. In this light, net charge fluctuations can arisdor investigating the critical region [11] of theestricted
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7 kpb = \J[p/T3. Then, if we acceptc; = 1, the DH
! approximation (7) yieldg?” = £p[1 + 1 x2/(1 + x)].
6 I We may believe the leading behavior, but the correction
A factor[1 + O(p/T)] is suspect and, in fact, incorrect.
5| To go further we focus on the general charge-charge
] structure factorSzz(k) = GQQ(k)/pq(%. One can then
4l rewrite [6] the Lebowitz length as
arp == [ Lsuw, @
3 Ty JO
I where the convergence of the integral at the lower limit is
2 L ensured by electroneutrality [2,7].
i Now GDH theory for the RPM [7] provides closed
1 expressions of the expected form [2], namely,
Szz(k) = 3 [£5,k* — &5,k + OO, (10)
0 with [1(b),10] &2, = ép (when Bjerrum ion pairing is not
0 explicitly included [7]), and dourth-moment correlation
Xk x=K,ac\p/T Xx length £557 = ép[1 — x> + x> + ---]; the expo-

nential decay of5o(r) is controlled byéz .. = &ép[1 —

FIG. 1. Inverse charge correlation lengths (and oscillationt > , 1 3 :
wavelengthA,) for the RPM according to pure GDH theory g+ gx’ + -] For the GDH Lebowitz length we

[7]: xx andxy denote the Kirkwood and crystallization values. find €p [1 + x> — 5 x* + 3z x* + ... The leading

All plots become exact to order> x p whenx — 0. Note  behavior is again as hoped for but the correction factor

that £7 ,, as defined in (10), is predicted to vanish linearly anddiffers from that based on (5).

change sign at = 1.749. More interesting, however, are the GDH plots afé
vs x presented in Fig. 1. The “true” correlation length,

primitive model(RPM [2,3,12]) despite suggestions to the ¢ .., exhibits a bifurcation at a “Kirkwood valuegy =

contrary [13]. 1.178, beyond which charge-chargescillations with a
To proceed, lefp,(r) be the local density of ions of wavelengthAz(T, p) are predicted [7(b)]. At a higher
speciess with pair correlation functions value,xy = 6.652, the amplitude of oscillation no longer
Gyr(r) = (p, (0)p, — PPy, vanishes whem — «; this may be interpreted loosely as
) = oo @p- () = pop indicating crystallization. On the other hand, one finds
= po[85:8(r) + prhys(r)], (4) that the Lebowitz lengthé, decreases smoothly to a

mminimum of about0.48589a at x,, = 4.3166 but then
Rcreases again, diverging ag(xy — x) on approach to
“crystallization.” Although these GDH predictions cannot

where translational invariance is assumed. Then, in ter
of the charge-charge correlation function

Goo(r) = g Z 2627Gor (X)), (5) be trusted quantitatively for = 1, the increase of; in a
or dense electrolyte—physically a “molten salt”—could well
the previous analysis [4,5] gives the area-law amplitudde qualitatively correct.
as To check the validity of these and further GDH results,
KT p) = — f G dr. 6 we have appealed to the diagrammatic resummations con-
a(l'.p) @ | Goolr)dr ©) structed by Meeron [14] fok, . (r; T, p). Atfixedr these

where o, = % ' and % for d =3,2, and 1, Yield density _expansion_s correct up to error terms of or-
respectively. _derp3/2_(ln p)’ (where is a small integer) [8,9]; but on
To evaluate this and, thence, firf}, via (3), con- integration to obtain Fourier t_ransforms and correlation-
sider first the linearized DH approximation for equisizedfunction moments, precision is normally lost by factors
spherega,. = a), namely [2,7], of &p = p~1/2 [9(b)]. Furthermore, in the absence of
2oz be 0= charge symmetry, specifically whén # 0, it proves nec-

hor(r) = WP (r) = , r=a, essary in order to maintain accuracy, even in reduced or-
(I + kpa)r der, to include two five-bond graphs dropped by Meeron:
= —1, r<a. (7)  the(2,1,2) chain and the leading bridge diagram [14,15].
It is convenient to use the dimensionless parameter Care is needed in evaluating the many primary integrals;
a tedious technical task [9(b)] is bounding classes of inte-
X = kpa < qoa\/p/T, (8) grals that may be neglected.
which isnonuniversali.e., depends explicitly on the hard-  Defining density correlation lengths via

core diameters, in contrast to thmmiversal combination Syv(k)/Syy(0) =1 — g,%,,lkz + g;‘v,zk“ -, (11
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we find [9] the universal results Now, the overall isothermal bulk compressibil-
ity, Kr, of a mulitcomponent fluid should satisfy
Enva = Z2(béEp/48)2[1 + Y mikpb + -],  (12)  Swn(0) = pksTKy, provided the interactions decay
sufficiently rapidly. However, for an ionic fluid this sum
rule is valid only for two-component systems [17]. In
éna = (B3bED/3200'4[1 + 5 makpb + -1, that special case), reduces tozs in (15) which then
(13) reproduces the general expression gdpTK7 following
4 a4 6 116 -6 from the virial expansions for the pressure [18,19]. This
wheren,z; = 2274 — 22 — 9 z3 and represents a stringent check which, in particular, needs
the five-bond “non-Meeron” graphs mentioned above.

It also transpires [9(b)] that Meeron’s approdalis to
generate the charge-charge structure fastgr(k; 7T, p)
satisfactorily. To overcome this, we have used the
hypernetted-chain (HNC)resummation analysis [15].
This expresses thdirect correlation functionsc,,(r),

lengths even whep — 0; but for the RPM they precisely in terms of the interaction potentials and a functional
reproduce the corresponding GDH predictions [7(a)]. Fofﬂxpanspn In |p0\_/vetrs Oilzrr(lr;T’P)- Or(;eﬂrpay thus l:ﬁe
nonsymmetrienodels, charge and density fluctuations mix eeTO”OS ana_ys;s O.Ea cul at_e”(r), t?n 2”‘33’[;”& €
[9(c),16] so thatGyy (r) should display the charge-charge matrix Ornstein-Zernike relations, o tasiaz (k) [ (. ).
decay length. £, .. (see below), when — . However, By this route (as known [20]) one reconfirms the

the exponential decay length of the density correlation§t'|I'ngfr'lgﬁvett re![""_“f[)”;t{,\llol withé z | meg- I Furtheg
in species symmetricases obeygy.. ~ L ¢, (p — 0)  More, for theunrestricted two-componemodels, we ob-

tain [see (8
[7(a),9]. f [see (8)]
For Syy(0) we find the expression
NN() 54’2/;‘;4 1 % 3 / 116 ZEZ

X [773774 + 3505 =D (3o bor — yoyr)ﬁgﬂ
o,T

23 -2-4 9 56 1045621 -6
B (14)

2% T 1422 17010 <3 >

4 _
M3y =

while the nonuniversal corrections are of ordgyb? In x.
For 1:1 and 2:1 electrolytes one hgs,n, = 1,1, and
—8 %, —57.83, respectively.

None of these results match theharge correlation

1 + 3 Z3kpb + f—éK%bz[no + > yoyfﬁ,ﬁvT(KD,b)]
ag.,7T

(15)
with corrections of orderp32In/p, while 5y = 7§ — + 0(p*?Inip), (19)
26 /22 _ . .
|Z3/Z2’. Yo = po/p, and the nonuniversal term varies as .. aience coefficients given by;z3 = 73 — z{ and
np since
LX =333/ [INkpas: + ex — £(0,0)], M =25 - 38, wsh =27 - @5, (20)
(16) while L£Z follows from (16) with ez = yr + In3 =
where, with X = N, one hasey = yz + In3 + 3 =  1.67¢. For the RPM one hasy; = ns =0 so that
2.42, and GDH theory is verified toO(p'/?), but, of course, the
0 — _ b . T 17 nonuniversap In p term isnot predicted.
or = TZolr /“‘”’_ q”qf/_a‘” : 17) We can also calculate the Lebowitz length at low
We also need the “second-virial function” densities forcharge-symmetribvo-component models by
. / t o using the HNC+ Meeron form forSyy (k) in (9): this
Lodco)=> 6"/n(n —3) = fl 2 ar, yields [9(b)]
n=0
(18) 12,2 L
. . . ‘f/f ~ 1+ 355 kpb (0'50'7_ 0'1')£a'7’
where the divergent term in the sum is excluded and the Lsb 2P (,ZT Y Yo
integrated ionic Boltzmann factor is suitably subtracted. (21)

This yields the low-temperaturé — +%) asymptotic
expansion£(9) = (e?/6*)[3! + 41/6 + --.]; the expo-
nential divergence whefl — 0 directly reflects Bjerrum
(+, —) ion pairing [3,6,11,14(b)].

Because nonadditivity is allowed (e.@.++ + a—— #
2a4+-), effective short-range attractions between like an
unlike ions can be represented. At first sight, however
taking a “point-charge” limit in (16) (e.g.a++ — 0)
produces a logarithmic divergence, but sint@) =
—In|8| + £. when § — — [14(b)], that cancels and
yields well defined results. hor(r) = h2 (r) = exp{—ﬁiT(r) + we-(r)], (22)

where, in (16),e, = yg + In4 = 1.965. In summary,
one sees that our original claim that/ép — 1 when

p — 0 is fully justified, but, equally, ahonzerodensities
&, doesnot match any of the other charge or density
dcorrelation lengths that we have evaluated.

Finally, we remark that our results to ordeitn p (but
not order p) can be generated by dropping the bridge
function in the HNC resummation and using the leading
Meeron-based [14] approximation
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