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Explicit low-density expansions (using Meeron and hypernetted-chain graphical resummations
reported for various charge and density correlation lengths in hard-sphere electrolytes with ge
valences,zs , and diameters,ast . The “Lebowitz length” quantifies thearea lawfor charge fluctuations,
kQ2

Ll, in a large domainL; it approaches but differs from the Debye and other correlation lengths. A
corresponding, universal limiting-law predictions of generalized Debye-Hückel (GDH) theory (Lee
Fisher, 1996–1997) prove exact, thus validating GDH theory as a basis for studying anomalie
Coulombic criticality. [S0031-9007(98)08035-1]

PACS numbers: 61.20.Qg, 61.20.Gy
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Understanding the structure and equilibrium fluctuation
of ionic systems remains a topic of profound theoretic
concern [1,2] reinforced in recent years by puzzling e
periments on criticality in electrolytes [3]. Of especia
interest are the two-point charge and density correlati
functions which are most accessibly characterized by a v
riety of significantcorrelation lengths. In particular, the
screening behavior of a conducting electrolyte is embodi
in the second-moment charge-charge correlation leng
jZ,1sT , rd, wherer 

P
s rs denotes the overall number

density of ions of speciess and densityrs. Indeed, the
Debye-Hückel (DH) approximation [2,3] predicts theex-
ponential decayof charge correlations on the scale of th
Debye length,jDsT , rd, given, for ions carrying charges
qs  zsq0, by

1yj2
D ; k2

D  4p z̄2
2br, b  q2

0yDkBT , (1)

wherebsT d is the Bjerrum length defined, say, withq0 the
charge of a proton, while

z̄j 

∑X
s

zj
srsyr

∏1yj

(2)

defines thejth mean valence moment (with̄z1  0 by
electroneutrality) andD represents the “solvent dielectric
constant.”

However, screening can also be characterized by co
sidering the total (fluctuating) chargeQL contained in a
subdomainL of regular shape, with surface≠L, in a d-
dimensional electrolyte. Electroneutrality implieskQLl ;
0; but, in the absence of screening, one expects the cha
fluctuations,kQ2

Ll, to grow like the volumejLj asL ! `

(i.e., whenjLj diverges through a sequence of self-simila
shapes). However, when the system is a conductor a
the charge-charge correlation functions decay sufficien
rapidly, Martin and Yalcin [4–6] have proved, instead, tha
the charge fluctuations inL grow only like thearea j≠Lj.

Lebowitz [5] has interpreted this striking result by
picturing the various ions as combined intoneutralclusters
of densityn ~ r and linear dimensionsl. We will call l ;
jLsT , rd the “Lebowitz length” and have slightly extended
his picture. In this light, net charge fluctuations can aris
0031-9007y98y81(26)y5836(4)$15.00
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in L only if some of the neutral clusters are “cut” by th
boundary≠L. If the clusters have no long-range position
or orientational correlations one should thus expect

kQ2
Llyj≠Lj ø KdsT , rd  cdrz̄2

2q2
0jLsT , rd , (3)

where cd is a numerical constant. For a classical ele
trolyte, Lebowitz then argued thatjL should be identified
with the Debye length,jD defined in (1).

Here we test this conjecture ford  3, evaluating
jLsT , rd by regarding (3) as a definition in which, indee
we prove able to specifyc3 so that one hasjLyjD ! 1
when r ! 0 for all T . 0. However, we also presen
the leadingcorrectionsto this behavior for theextended
primitive model in which the Coulombic potentials
qsqtyDr, are supplemented by reducedhard-core poten-
tials ūy

stsrd  0, ` for r _ ast . The diametersast need
not be additive, or even nonzero except that the diame
a ; alm maximizing2zlzmyalm must not vanish so that
all charges of opposite sign are kept a minimum distan
apart.

In addition, we report exact calculations of th
associated low-density expansions for the charge-cha
and density-density second- and fourth-moment c
relation lengths [7–9], which are more susceptible
observation (and simulation) than the corresponding ex
nential screening lengths,jZ,` andjN ,`. The expressions
obtained demonstrate that the Lebowitz and all the ot
correlation lengths are quite distinct at finite densitie
see, e.g., Fig. 1.

Furthermore, our results confirm the universal low
density predictions of the recently proposed “generaliz
Debye-Hückel” (GDH) theory [7]: This approach, in
contrast to the original DH analysis [2], yieldsdensity-
density correlations that exhibit a divergent correlatio
length at criticality [7(a)], as well as charge-charge corre
tions that display oscillations at higher densities [7(b)] (s
Fig. 1)andsatisfy the Stillinger-Lovett sum rules [1(b),10
(at least when Bjerrum ion pairing is not imposed [7]
This validates GDH theory as, currently, an optimal to
for investigating the critical region [11] of therestricted
© 1998 The American Physical Society
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FIG. 1. Inverse charge correlation lengths (and oscillatio
wavelengthlZ) for the RPM according to pure GDH theory
[7]: xK andxX denote the Kirkwood and crystallization values
All plots become exact to orderx2 ~ r when x ! 0. Note
that j

4
Z,2, as defined in (10), is predicted to vanish linearly an

change sign atx . 1.749.

primitive model(RPM [2,3,12]) despite suggestions to th
contrary [13].

To proceed, letrssrd be the local density of ions of
speciess with pair correlation functions

Gstsrd  krss0drtsrdl 2 rsrt ,

 rsfdstdsrd 1 rthstsrdg , (4)

where translational invariance is assumed. Then, in ter
of the charge-charge correlation function

GQQsrd  q2
0

X
s,t

zsztGstsrd , (5)

the previous analysis [4,5] gives the area-law amplitud
as

KdsT , rd  2ad

Z
rGQQsrd dr , (6)

where ad  1
4 , p21, and 1

2 for d  3, 2, and 1,
respectively.

To evaluate this and, thence, findjL via (3), con-
sider first the linearized DH approximation for equisize
spheressast  ad, namely [2,7],

hstsrd . hDH
st srd ; 2

zsztbe2kDsr2ad

s1 1 kDadr
, r $ a ,

 21, r # a . (7)

It is convenient to use the dimensionless parameter

x  kDa ~ q0a
q

ryT , (8)

which isnonuniversal,i.e., depends explicitly on the hard-
core diameters, in contrast to theuniversal combination
n

.

d

e

ms

e

d

kDb ~
p

ryT3. Then, if we acceptc3  1
2 , the DH

approximation (7) yieldsjDH
L  jD f1 1

1
2 x2ys1 1 xdg.

We may believe the leading behavior, but the correcti
factor f1 1 OsryT dg is suspect and, in fact, incorrect.

To go further we focus on the general charge-char
structure factorSZZskd  ĜQQskdyrq2

0. One can then
rewrite [6] the Lebowitz length as

jLsT , rd 
2

p z̄2
2

Z `

0

dk
k2 SZZskd , (9)

where the convergence of the integral at the lower limit
ensured by electroneutrality [2,7].

Now GDH theory for the RPM [7] provides closed
expressions of the expected form [2], namely,

SZZskd  z̄2
2 fj2

Z,1k2 2 j4
Z,2k4 1 Osk6dg , (10)

with [1(b),10]jZ,1 ; jD (when Bjerrum ion pairing is not
explicitly included [7]), and afourth-moment correlation
length j

GDH
Z,2  jDf1 2

1
8 x2 1

1
18 x3 1 · · ·g; the expo-

nential decay ofGQQsrd is controlled byjZ,`  jD f1 2
1
4 x2 1

1
9 x3 1 · · ·g. For the GDH Lebowitz length we

find jD f1 1
1
4 x2 2

5
18 x3 1

31
96 x4 1 · · ·g: The leading

behavior is again as hoped for but the correction fact
differs from that based on (5).

More interesting, however, are the GDH plots ofayj

vs x presented in Fig. 1. The “true” correlation length
jZ,`, exhibits a bifurcation at a “Kirkwood value,”xK .
1.178, beyond which charge-chargeoscillations with a
wavelengthlZsT , rd are predicted [7(b)]. At a higher
value,xX . 6.652, the amplitude of oscillation no longer
vanishes whenr ! `; this may be interpreted loosely as
indicating crystallization. On the other hand, one find
that the Lebowitz lengthjL decreases smoothly to a
minimum of about0.485 89a at xm . 4.3166 but then
increases again, diverging as1ysxX 2 xd on approach to
“crystallization.” Although these GDH predictions canno
be trusted quantitatively forx * 1, the increase ofjL in a
dense electrolyte—physically a “molten salt”—could we
be qualitatively correct.

To check the validity of these and further GDH result
we have appealed to the diagrammatic resummations c
structed by Meeron [14] forhstsr; T , rd. At fixed r these
yield density expansions correct up to error terms of o
der r3y2sln rdj (wherej is a small integer) [8,9]; but on
integration to obtain Fourier transforms and correlatio
function moments, precision is normally lost by factor
of jD ~ r21y2 [9(b)]. Furthermore, in the absence o
charge symmetry, specifically whenz̄3 fi 0, it proves nec-
essary in order to maintain accuracy, even in reduced
der, to include two five-bond graphs dropped by Meero
the s2, 1, 2d chain and the leading bridge diagram [14,15
Care is needed in evaluating the many primary integra
a tedious technical task [9(b)] is bounding classes of in
grals that may be neglected.

Defining density correlation lengths via

SNN skdySNN s0d  1 2 j2
N ,1k2 1 j4

N ,2k4 2 · · · , (11)
5837
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we find [9] the universal results

jN ,1  z̄2sbjDy48d1y2 f1 1
1
8 h1kDb 1 · · ·g , (12)

jN ,2  sz̄2
2bj3

Dy320d1y4 f1 1
7
72 h2kDb 1 · · ·g ,

(13)

whereh1z̄4
2  2z̄2

2 z̄4
4 2 z̄6

2 2
116
9 z̄6

3 and

h2z̄4
2  23

14 z̄2
2 z̄4

4 2
9

14 z̄6
2 2

1 045 621
17 010 z̄6

3 , (14)

while the nonuniversal corrections are of orderk
2
Db2 ln x.

For 1:1 and 2:1 electrolytes one hash1, h2  1, 1, and
28 8

9 , 257.83, respectively.
None of these results match thecharge correlation

lengths even whenr ! 0; but for the RPM they precisely
reproduce the corresponding GDH predictions [7(a)]. Fo
nonsymmetricmodels, charge and density fluctuations mix
[9(c),16] so thatGNN srd should display the charge-charge
decay length.jZ,` (see below), whenr ! `. However,
the exponential decay length of the density correlation
in species symmetriccases obeysjN ,` ø 1

2 jD sr ! 0d
[7(a),9].

For SNN s0d we find the expression

1 1
1
4 z̄2

2kDb 1
1
16 k2

Db2

∑
h0 1

X
s,t

ysytL N
stskD , bd

∏
,

(15)

with corrections of orderr3y2 lnjr, while h0  z̄4
4 2

z̄6
3yz̄2

2 , ys ; rsyr, and the nonuniversal term varies as
ln r since

L X
st  8

3 sz3
sz3

tyz̄2
2d fln kDast 1 eX 2 Esustdg ,

(16)

where, with X  N , one haseN  gE 1 ln 3 1
3
4 .

2.426 and

ust  2zsztbyast ~ qsqtyastT . (17)

We also need the “second-virial function”

1
6 u3Esud 

0X
n0

unyn! sn 2 3d ;
Z y

1
euyrr2 dr ,

(18)

where the divergent term in the sum is excluded and th
integrated ionic Boltzmann factor is suitably subtracted
This yields the low-temperaturesu ! 1`d asymptotic
expansionEsud ø seuyu4d f3! 1 4!yu 1 · · ·g; the expo-
nential divergence whenT ! 0 directly reflects Bjerrum
s1, 2d ion pairing [3,6,11,14(b)].

Because nonadditivity is allowed (e.g.,a11 1 a22 fi

2a12d, effective short-range attractions between like an
unlike ions can be represented. At first sight, howeve
taking a “point-charge” limit in (16) (e.g.,a11 ! 0)
produces a logarithmic divergence, but sinceEsud ø
2 ln juj 1 E` when u ! 2` [14(b)], that cancels and
yields well defined results.
5838
r

s
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Now, the overall isothermal bulk compressibil
ity, KT , of a mulitcomponent fluid should satisfy
SNN s0d  rkBTKT , provided the interactions decay
sufficiently rapidly. However, for an ionic fluid this sum
rule is valid only for two-component systems [17]. In
that special caseh0 reduces toz̄4

2 in (15) which then
reproduces the general expression forrkBTKT following
from the virial expansions for the pressure [18,19]. Th
represents a stringent check which, in particular, nee
the five-bond “non-Meeron” graphs mentioned above.

It also transpires [9(b)] that Meeron’s approachfails to
generate the charge-charge structure factorSZZsk; T , rd
satisfactorily. To overcome this, we have used t
hypernetted-chain (HNC)resummation analysis [15].
This expresses thedirect correlation functions,cstsrd,
in terms of the interaction potentials and a function
expansion in powers ofhstsr; T , rd. One may thus use
Meeron’s analysis to calculatecstsrd, and thence, via the
matrix Ornstein-Zernike relations, obtainSZZskd [9(b)].

By this route (as known [20]) one reconfirms th
Stillinger-Lovett relations [10] withjZ,1  jD . Further-
more, for theunrestricted two-componentmodels, we ob-
tain [see (8)]

j4
Z,2yj4

D  1 1
1
4 h3kDb 1

1
16 k2

Db2

3

∑
h3h4 1

8
3 h5 2

X
s,t

s ysdst 2 ysytdL Z
st

∏
1 Osr3y2 lnjrd , (19)

with valence coefficients given byh3z̄2
2  z̄4

2 2 z̄4
4 and

h4z̄4
2  z̄6

2 2
2
3 z̄6

3 , h5z̄4
2  z̄6

3 z̄2
2 2 z̄5

5 z̄3
3 , (20)

while L Z
st follows from (16) with eZ  gE 1 ln 3 .

1.676. For the RPM one hash3  h5  0 so that
GDH theory is verified toOsr1y2d, but, of course, the
nonuniversalr ln r term isnot predicted.

We can also calculate the Lebowitz length at lo
densities forcharge-symmetrictwo-component models by
using the HNC1 Meeron form forSNN skd in (9): this
yields [9(b)]

jLyjD ø 1 1
1
32 k2

Db2
X
s,t

s ysdst 2 ysytd L L
st ,

(21)

where, in (16),eL  gE 1 ln 4 . 1.963. In summary,
one sees that our original claim thatjLyjD ! 1 when
r ! 0 is fully justified, but, equally, atnonzerodensities
jL does not match any of the other charge or densi
correlation lengths that we have evaluated.

Finally, we remark that our results to orderr ln r (but
not order r) can be generated by dropping the bridg
function in the HNC resummation and using the leadin
Meeron-based [14] approximation

hstsrd . hD
stsrd  expf2ūy

stsrd 1 wstsrdg , (22)
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where the reduced screened Coulomb interaction is

wstsrd  2zsztb expf2kDrgyr . (23)

On this basis, the nearest pole ofSZZskd on the imaginary
axis leads to [9(b)]

jZ,`yjD  1 2
1
12 z̄4

2k2
Db2 ln x 1 Osk2

Db2d , (24)

for the RPM. Remarkably, although derived by a trun
cation not designed to ensure precision in determinin
the correlation decay whenr ! `, this agrees precisely
(for the RPM) with the long-distance analysis of Kjel
lander and Mitchell [20(b)] (which required a study o
the bridge function forr ! `). Of course, it is not sur-
prising that the leading correction term in (24), of orde
sryT3d ln r, is not found by GDH theory [7]; but, as
shown, the GDH approximation does predict preciselyall
the universal forms to relative orderr1y2.
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