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Dynamics of Two-Phase Fluid Interfaces in Random Porous Media
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Explicit account is given of the nonlocal dynamics (in a quasistatic approximation) involved in
two-phase fluid dynamics quantifying flow through porous media. The results are used to derive
the dynamical equation of motion of a Darcy-scale interfacial fluid front. We consider the cases of
invasion and imbibition separately, and point out the features responsible for the different depinning
exponents observed in the two cases. A Flory-type scaling analysis is also performed on this model,
yielding a roughness exponeat= 3/4 in a range of intermediate length scales—in good agreement
with experimental observations. Possible reasons are outlined for the different universality classes of
exponents observed during imbibition experiments. [S0031-9007(98)06533-8]

PACS numbers: 47.55.Mh, 05.40.+j, 64.60.Ak, 68.35.Fx

A recent surge of interest has arisen on the effect of disdom field disorder the noise term is assumed to be short-
order on the morphology of moving interfaces, especiallyrange correlated in both theandy directions with a zero
in the context of théluid flow through porous medigFor mean value.
other examples see [1].) The displacement of one fluid Studies of Eq. (1) have yielded inconclusive results re-
by another in a porous medium displays a rich variety ofgarding the scaling exponenss andz. At present, two
behaviors, depending upon the respective viscosities amdistinct universality classes are believed to exist: (a) The
wetting properties of the two fluids [2]. In such systemsfirst is forced fluid invasion (FFI), involving the displace-
random pinning forces compete with the applied drivingment of one fluid by another due to an applied pressure
force, resulting in a critical threshold force at which agradient. In such cases renormalization group arguments
nonequilibrium phase transition occurs from the trappedased on Eq. (1) prediet = 1 [5], whereas numerical al-
metastable state (pinned interface) to a depinned mowgorithms based on the above model yield= 1.25 [6,7].
ing interface. When the displacing fluid is more viscousln contrast, experiments performed for such a scenario re-
and wets the bed particles more effectively than the dissult in a range of exponents, = 0.5-0.8 [8], depend-
placed fluid, pinning by capillary forces leads to a roughing upon the magnitude of the capillary number. Zhang
interfacial displacement front. The morphology of the[9] proposed (corroborated by experiments of Horvath
resulting self-affine rough interfaces is described by theet al. [10] and computer simulations by Nol&t al. [11])
Family-Viscek dynamical scaling hypothesis [3] relatingthat a power law distribution of noise amplitudes could
the widthW (L, r) of an initially flat interface to the lateral rationalize the roughness exponents observed in experi-
size L and timer though a scaling relationshi@/ (L, ) = ments. Since power law statistics manifest difficulties
L%g(t/L*), wherea and z are called the roughness and in interpreting the exponent [9] we content ourselves
dynamical exponents, respectively. The scaling functiorhere with representing the porous medium as a quenched
g exhibits asymptotic behavior such that(L,r) ~ %/  random field disorder. (b) The second universality class
forr < L andW(L,t) ~ L fort > L*. corresponds to the imbibition invasion (IMI) of one fluid

Analogies between the behavior exemplified by two-into another by capillary forces. In this case, the experi-
phase fluid and condensed matter systems suggest thatntally observed depinning exponent @f= 0.63 is
the same phenomenological model might be used tqstified by a phenomenological mapping onto directed
characterize the interfacial dynamics in both cases. Thpercolation depinning (DPD) [12,13]. The continuum
model most widely proffered for the depinning transition model believed to be appropriate for this scenario is ob-
case is the dynamical version of random field Ising modetained by incorporating a nonlinear Kardar-Parisi-Zhang

(RFIM) [4], namely, (KPZ)-type term into Eq. (1) [14]:
dh 9%h ah\?
ah 9%h — =F + —+/\<—>+ h). 2
o —Ftyog takn, 1) ot Y ax2 ox) Tnh @)

The basis for the difference in universality classes of FFI
whereink denotes the interfacial position of the front in and IMI phenomena, as well as the observed discrepancies
the longitudinaly direction andx the transverse coordi- between theoretical and experimental valuestdh FFI,
nate. y represents the so-called macroscopic interfaciatemain unresolved. Features distinguishing the FFI and
tension andF the applied force. n(x, ) constitutes a IMI cases are (a) the absence of an external driving force
quenched random noise, representing the affinity of thén IMI, and (b) the weak strength of the disorder in FFI,
disordered medium for one of the two phases. For raneontrasted with the strong disorder characterizing IMI.
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However, based on these two features it has not yet been Vip =0. 3
possible to justify the continuum Eq. (2).

This Letter examines an oft-neglected issue (although
see Heet al. [8] and Krug and Meakin [15]), one which L 1 kl5 ik
distinguishes two-phase fluid flows from random magnets. p=-pry+ 21 dk ™™ k), )

This relates to theonlocalnature of the flow field char- \yherep, represents the applied average pressure gradient,
acterizing two-phase flows. While models involving local g 5 the deviation from a flat interface situated at
dynamics can be obtained from symmetry consideration§ne mean position. The Fourier componeniék) need
nonlocal models necessitate a more detailed microscalg pe determined from the boundary condition at the
analysis. In our case, such a description of the dynampterface. The latter is derived starting from the Grinstein-
ics is obtained from Darcy’s law, which governs thep g expression for the energyf of the RFIM [17]:

fluid motion. The latter relates the velocity field to the ) N

pressuregradient rather than to the driving pressure it- 7 — f dx{l(%) _ j dy[ p(x,y) — n(x,h)]}.

self. We consider an experimental scenario in which 2 \ox —o0

water constitutes the displacing fluid, and air the dis- ©)

placed fluid and wherein the assumption of a quasistatigne appropriate boundary condition is obtained by assum-
response of the pressure field to the instantaneous intelig quasistatic dynamics, thereby requiring that
facial configuration is valid. Such an approximation is

reasonable near the depinning transition, where the mean 3 —0= p(x,h) = —y iz + n(x,h). (6)
velocity V of the interface approaches zero. For sim- oh ax

plicity, we confine ourselves to the experimentally rele-The field ¢ (k) is now obtained by first Fourier transform-
vant case of one-dimensional interfaces, for which weng Eq. (6) and subsequently invoking Eq. (4). For small
derive a new model of interfacial dynamics by adapt-deviations from a flat interfacfk|h < 1), the leading-
ing the RFIM. Based on the equation we derive fromorder term in the expansion adopts the form

microscopic considerations we outline the expected form

of the ge%eral equations for FFI and IMI regpimes. For ¢ (k) = pih(k) + yk>h(k) + (k) 7
the FFI regime a dynamical Flory-type scaling analysis is

carried out on the model, carefully delineating the lengthi(k) = f dx e ®h(x); k) = ] dx e *q[x, h(x)].
scales of its validity, thereby enabling us to speculate on

the magnitude of the roughness exponent This yields (8)

a = 3/4 which accords well with experimental results. The latter denote the respective Fourier transformis(of
Furthermore, we also heuristically justify the differenceand n[x, h(x)]. (For notational conciseness, the explicit
in universality classes between FFI and IMI based on théime dependence df has been suppressed.)

absence of an applied pressure gradient and the strengthThe dynamical evolution of the interface is described

Equation (3) possesses the general solution

of the disorder. by the normal component of Darcy’s law,
Two-phase flows in porous media are governed by
, : . oh ap oh dp
Darcy’'s law,v = —kVp, relating the pressure gradient — = —Kk| — - —— ) (9)
Vp to the velocity fieldv. « represents the permeability ot dy ~ 0x 9x ly=p

of the porous medium, which in our work will be taken Substitution of (7) into (9), withp given by (4), leads to
to be spatially uniform. Fluid incompressibility requires the Fourier representation of the dynamical equation of

thatV - v = 0 (cf. Delkeret al. [16]); thereby we obtain | motion:

ah(k)
ot

= [kp1 — VI8(k) — xpilklh(k) — wyk?lklR(k) + v(k) — xp f dk'[k — K'1[K'Th(k — K')h(k')

- Ky f dk'lk — K'T[k'Ph(k — K)h(K'), (10)

with h(k) the Fourier transform ofi(x)—the deviation | L(x,y) = 1 fdk eikxelkb’f dx' e % plx h(e)],
from a flat interface moving at a velocity. The v(k) 2@
term represents the noise obtained from effecting the (11)
substitutions above. Before discussing the individuaL
cases of FFI and IMI in the context of Eq. (10), we
consider the noise(k).

The expression fop obtained by substituting (7) into ;o y +y
(4) contains the term (0, )y ~ (x — ¥ + (y + y)2°

epresenting the manifestation of the noise teymFrom
(112), the resulting two-point correlation d¢fis

(12)
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As is intuitive, translational symmetry in thedirection is  expect a general equation of the form,
lost. We observe that the noise tefftx, y) exhibits long- ah(k)

range correlations in both andy space. This results —,, — Pilkla(k) + Pa2k*h(k) + v (k)
from the quasistatic assumption used to project out the , e o
fast relaxing variables, together with the special form of + Py [ dk'Tk — K'J[K']h(k — k")h(K), (13)

the driving field p, which necessarily needs to satisfy ywherein the other terms in Eq. (10) have been discarded
the Laplace equation (3). Noise terms with long-rangeyn the basis of power counting arguments. Algebraic sign
correlations have been studied in the past, albeit in &syes for the above coefficients necessarily play a crucial
different context [18]. Chow [19] has proposed that>  (ole in interfacial stability, requiring a more sophisticated
1/2 would require the presence of long-range correlationgreatment than that attempted here.
in the noisg. Our_ analysis is the first to postglate noise (i) The |k|h(k) term dominates in the hydrodynamic
accompanying fluid flow through porous media. Long-(jarge wavelength) limit. However, flow experiments in
range correlated noise of the type (12) modifies the scalingorous media have persistently shown that the observed
of the noise, whence scales asi”'/>. The inverse oughness exponents constitute an intermediate length
Fourier transform ob(k), viz. »(x), involves a dominant  scale phenomenon, rather than being a manifestation of
term of the forma(x, h)/dh, which can be expected to asymptotic behavior [8]. Thus, we employ a dynamical
scale ash~'/~'/2. This behavior contrasts with random Fiory-type scaling [21] to analyze the intermediate length
field noise, which scales as '/2/~'/2. scales representative of experimental conditions. For
In contrasting Egs. (10) and (1), note that the last tWQnstance, the small capillary number regime suggests a
terms of (10) are nonlinear ih. One might expect, and scenario whereitP; is small compared with the capillary
indeed confirm, that similar nonlinear terms arise from thgerms (represented bip).
next-order term in the expansion gf(k). For example,  Respective scalings of various terms on the right-
a nonlinear term of the formV2# (in physical space) is hand side of Eq. (13) are as followsk|h(k) ~ h/I;
generated by such a procedure. However, for the eventuglzh(k) ~ h/1% [dk'(k — kK')K'h(k — K)h(K') ~ K212

scaling analysis we have performed, the results are not,,\ _ A 1/2,, ;12 ;
modified by the presence of these additional terms (i.ey(k) Ag"/hl 7 (wherein 4o represents the strength

the leadi i ¢ les/gg-2). A dinal of the disorder). These scaling relations permit us to
€ leading noniinear term scaies )- ceordingly, — calculate the roughness exponents by matching the scal-
we do not dwell upon them here. More importantly,

.27 ings of the individual terms with those of the noise. At
one should note the structure of the terms appearing 'n)ng length scales the noise can be expected to occur
Egﬁlglc(gl. ngﬁgc'g?/'nfge d;l:]s;nm(s) }sr?](sa iﬁ?mg:'fgrmﬁgas white noise (cf. Narayan and Fisher [5] and Horvath
force. Thelk| term has been predicted in the contextet al.[8]). However, here we consider only the regime

. . L . ) wherein the noise manifests as a quenched noise. The
of capillary line depinning, which also involves nonlocal

dynamics [20]. Thus, from our microscale analysis of thereSUItS of such an analysis are as follows: (a) Match-

; . ; . ing the second term with the noise yields~ 3/
equations of motion, we discern at least two main featurefs Min(p2 /A3 p*/3 Th i
distinguishing two-phase flows from RFIM dynamics: 107 { << Min(P3/Ag"Py'", P2/P). The scaling expo-
(a) the structure of the noise term, and (b) the nonlocal

ent obtained in this regime agrees well with the ex-
nature of the terms present in the dynamical equations. perimentally observed value & = 0.8. The_ length

FFI depinning—In this casep; is finite even though S(_:gles also appear to correspond to the exper!mental con-
the mean velocity’ may approach zero. Hence, the third ditions as a consequence of the small capillary num-
term in (10), representing a KPZ type of nonlinearity, P€TS characterizing such experiments. (b) A similar
is nonzero despite the proximity of the system to theexermjze In ma2tch|1r}§q t?g nonllnearlp//3W|t£1/§he noise yields
depinning transition. Several mechanisms have beefi ~ ['/* for P3/A¢"Py" < I < Ay""/Pi"". The self-
proposed to justify the presence of such a nonlinear terrfionsistency condition for the existence of such a regime
in the dynamics [13]. One possible source arises from theequires thaﬂ(z)/3Pf/3/P§ > 1, whence the regime prob-
anisotropy of the driving force, coupled with the fact thatably does not exist in the FFI case at low capillary num-
the driving force at every interfacial point acts normal tobers due to the weak strength of the disorder. However,
the interface at that point. However, as we subsequentlgnanifestations of this regime are likely to appear at higher
find, such a nonlinear term is irrelevant in the dynamicalcapillary numbers. Thus, we propose thz long-range
description of FFI depinning. correlated nature of the noise, unique to two-phase fluid

What is the nature of the roughness exponent thafiows, is responsible for the anomalous exponents ob-
would be expected to arise from Eq. (10)? Two importansserved in experiments. The observed range of exponents
features arise in this context. is a manifestation of crossover behavior at higher cap-

() In addition to those terms explicitly indicated in illary numbers. Furthermore, the nonlinear terms which
the equations, the capillary terrryk?|k|2 might, in the are generated prove to be irrelevant at low capillary num-
presence of a nonlinear term, generate a Darcy-scale bers due to the weak nature of the disorder and the pres-
“surface tension-like term. In such circumstances, weence of long length scale viscous smoothing effects.
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IMI Depinning—Here, we propose an explanation for provide a lower bound for RG calculations. We also stud-
the different behaviors exemplified by the FFI and IMIl ied the IMI regime, pointing out the distinctions between
regimes, hitherto unresolved. In the case of IMI, due ta=FI and IMI, and justifying anisotropic depinning in the
the strong disorder forces, the motion of the interface atMI case. Our analysis emphasizes the marked contrast
any point depends only on the local disorder forces. Irbetween two-phase fluid dynamics in random media and
two dimensions the depinning transition was argued [12fandom magnets, thereby rationalizing existing discrep-
to be a DPD transition with the interface being pinnedancies between experimental measurements of two-phase
when strong impurities that stop its motion span theflows and analytical calculations thereof based on RFIM.
system. The main feature of IMI is the lack of an external We are indebted to Professor P.-Z. Wong and Professor
driving force, in lieu of which capillary forces drive the M. Kardar for a number of stimulating discussions and
flow. ConsequentlyP; = 0 in the above equations. In to the latter for also suggesting a scaling analysis.
such circumstances we expect a general equation of thiEheir comments on this manuscript as well as those
form of Dr. D. Ertas are much appreciated. This work was
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+ Ps f dk'lk — K'1[K'Phk — kKh(K) . (14)
The latter equation reveals that rotational symmetry about
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