
VOLUME 81, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 20 JULY 1998

39-4307

578
Dynamics of Two-Phase Fluid Interfaces in Random Porous Media
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Explicit account is given of the nonlocal dynamics (in a quasistatic approximation) involved in
two-phase fluid dynamics quantifying flow through porous media. The results are used to derive
the dynamical equation of motion of a Darcy-scale interfacial fluid front. We consider the cases of
invasion and imbibition separately, and point out the features responsible for the different depinning
exponents observed in the two cases. A Flory-type scaling analysis is also performed on this model,
yielding a roughness exponenta ­ 3y4 in a range of intermediate length scales—in good agreement
with experimental observations. Possible reasons are outlined for the different universality classes of
exponents observed during imbibition experiments. [S0031-9007(98)06533-8]

PACS numbers: 47.55.Mh, 05.40.+ j, 64.60.Ak, 68.35.Fx
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A recent surge of interest has arisen on the effect of d
order on the morphology of moving interfaces, especia
in the context of thefluid flow through porous media. (For
other examples see [1].) The displacement of one flu
by another in a porous medium displays a rich variety
behaviors, depending upon the respective viscosities a
wetting properties of the two fluids [2]. In such system
random pinning forces compete with the applied drivin
force, resulting in a critical threshold force at which
nonequilibrium phase transition occurs from the trapp
metastable state (pinned interface) to a depinned m
ing interface. When the displacing fluid is more viscou
and wets the bed particles more effectively than the d
placed fluid, pinning by capillary forces leads to a roug
interfacial displacement front. The morphology of th
resulting self-affine rough interfaces is described by t
Family-Viscek dynamical scaling hypothesis [3] relatin
the widthWsL, td of an initially flat interface to the lateral
sizeL and timet though a scaling relationship,W sL, td ­
LagstyLzd, wherea and z are called the roughness an
dynamical exponents, respectively. The scaling functi
g exhibits asymptotic behavior such thatWsL, td , tayz

for t ø Lz andW sL, td , La for t ¿ Lz .
Analogies between the behavior exemplified by two

phase fluid and condensed matter systems suggest
the same phenomenological model might be used
characterize the interfacial dynamics in both cases. T
model most widely proffered for the depinning transitio
case is the dynamical version of random field Ising mod
(RFIM) [4], namely,

≠h
≠t

­ F 1 g
≠2h
≠x2

1 hsx, hd , (1)

whereinh denotes the interfacial position of the front in
the longitudinaly direction andx the transverse coordi-
nate. g represents the so-called macroscopic interfac
tension andF the applied force. hsx, hd constitutes a
quenched random noise, representing the affinity of t
disordered medium for one of the two phases. For ra
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dom field disorder the noise term is assumed to be sho
range correlated in both thex andy directions with a zero
mean value.

Studies of Eq. (1) have yielded inconclusive results r
garding the scaling exponentsa and z. At present, two
distinct universality classes are believed to exist: (a) T
first is forced fluid invasion (FFI), involving the displace
ment of one fluid by another due to an applied pressu
gradient. In such cases renormalization group argume
based on Eq. (1) predicta ­ 1 [5], whereas numerical al-
gorithms based on the above model yielda ­ 1.25 [6,7].
In contrast, experiments performed for such a scenario
sult in a range of exponents,a ­ 0.5 0.8 [8], depend-
ing upon the magnitude of the capillary number. Zhan
[9] proposed (corroborated by experiments of Horva
et al. [10] and computer simulations by Nolleet al. [11])
that a power law distribution of noise amplitudes cou
rationalize the roughness exponents observed in exp
ments. Since power law statistics manifest difficultie
in interpreting the exponentm [9] we content ourselves
here with representing the porous medium as a quenc
random field disorder. (b) The second universality cla
corresponds to the imbibition invasion (IMI) of one fluid
into another by capillary forces. In this case, the expe
mentally observed depinning exponent ofa ­ 0.63 is
justified by a phenomenological mapping onto directe
percolation depinning (DPD) [12,13]. The continuum
model believed to be appropriate for this scenario is o
tained by incorporating a nonlinear Kardar-Parisi-Zhan
(KPZ)-type term into Eq. (1) [14]:

≠h
≠t

­ F 1 g
≠2h
≠x2

1 l

µ
≠h
≠x

∂2

1 hsx, hd . (2)

The basis for the difference in universality classes of F
and IMI phenomena, as well as the observed discrepanc
between theoretical and experimental values ofa in FFI,
remain unresolved. Features distinguishing the FFI a
IMI cases are (a) the absence of an external driving for
in IMI, and (b) the weak strength of the disorder in FF
contrasted with the strong disorder characterizing IM
© 1998 The American Physical Society
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However, based on these two features it has not yet b
possible to justify the continuum Eq. (2).

This Letter examines an oft-neglected issue (althou
see Heet al. [8] and Krug and Meakin [15]), one which
distinguishes two-phase fluid flows from random magne
This relates to thenonlocalnature of the flow field char-
acterizing two-phase flows. While models involving loca
dynamics can be obtained from symmetry consideratio
nonlocal models necessitate a more detailed microsc
analysis. In our case, such a description of the dyna
ics is obtained from Darcy’s law, which governs th
fluid motion. The latter relates the velocity field to th
pressuregradient rather than to the driving pressure it
self. We consider an experimental scenario in whi
water constitutes the displacing fluid, and air the di
placed fluid and wherein the assumption of a quasista
response of the pressure field to the instantaneous in
facial configuration is valid. Such an approximation
reasonable near the depinning transition, where the m
velocity V of the interface approaches zero. For sim
plicity, we confine ourselves to the experimentally rel
vant case of one-dimensional interfaces, for which w
derive a new model of interfacial dynamics by adap
ing the RFIM. Based on the equation we derive fro
microscopic considerations we outline the expected fo
of the general equations for FFI and IMI regimes. F
the FFI regime a dynamical Flory-type scaling analysis
carried out on the model, carefully delineating the leng
scales of its validity, thereby enabling us to speculate
the magnitude of the roughness exponenta. This yields
a ­ 3y4 which accords well with experimental results
Furthermore, we also heuristically justify the differenc
in universality classes between FFI and IMI based on t
absence of an applied pressure gradient and the stre
of the disorder.

Two-phase flows in porous media are governed
Darcy’s law, v ­ 2k=p, relating the pressure gradien
=p to the velocity fieldv. k represents the permeability
of the porous medium, which in our work will be take
to be spatially uniform. Fluid incompressibility require
that= ? v ­ 0 (cf. Delkeret al. [16]); thereby we obtain
een
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=2p ­ 0 . (3)

Equation (3) possesses the general solution

p ­ 2p1y 1
1

2p

Z
dk ejkjỹeikxfskd , (4)

wherep1 represents the applied average pressure gradie
and ỹ the deviation from a flat interface situated a
the mean position. The Fourier componentsfskd need
to be determined from the boundary condition at th
interface. The latter is derived starting from the Grinstein
Ma expression for the energyH of the RFIM [17]:

H ­
Z

dx

Ω
g

2

µ
≠h
≠x

∂2

2
Z h

2`
dy f psx, yd 2 hsx, hdg

æ
.

(5)

The appropriate boundary condition is obtained by assu
ing quasistatic dynamics, thereby requiring that

dH

dh
­ 0 ) psx, hd ­ 2g

≠2h
≠x2 1 hsx, hd . (6)

The fieldfskd is now obtained by first Fourier transform-
ing Eq. (6) and subsequently invoking Eq. (4). For sma
deviations from a flat interfacesjkjh ø 1d, the leading-
order term in the expansion adopts the form

fskd ­ p1hskd 1 gk2hskd 1 hskd ; (7)

hskd ­
Z

dx e2ikxhsxd; hskd ­
Z

dx e2ikxhfx, hsxdg .

(8)

The latter denote the respective Fourier transforms ofhsxd
and hfx, hsxdg. (For notational conciseness, the explici
time dependence ofh has been suppressed.)

The dynamical evolution of the interface is describe
by the normal component of Darcy’s law,

≠h
≠t

­ 2k

∑
≠p
≠y

2
≠h
≠x

≠p
≠x

∏
y­h

. (9)

Substitution of (7) into (9), withp given by (4), leads to
the Fourier representation of the dynamical equation
motion:
≠h̃skd
≠t

­ fkp1 2 V gdskd 2 kp1jkjh̃skd 2 kgk2jkjh̃skd 1 nskd 2 kp1

Z
dk0fk 2 k0g fk0gh̃sk 2 k0dh̃sk0d

2 kg
Z

dk0fk 2 k0g fk0g3h̃sk 2 k0dh̃sk0d , (10)
t

with h̃skd the Fourier transform of̃hsxd—the deviation
from a flat interface moving at a velocityV . The nskd
term represents the noise obtained from effecting
substitutions above. Before discussing the individu
cases of FFI and IMI in the context of Eq. (10), w
consider the noisenskd.

The expression forp obtained by substituting (7) into
(4) contains the term
he
al
e

z sx, yd ­
1

2p

Z
dk eikxejkjy

Z
dx0 e2ikx0

hfx0, hsx0dg ,

(11)

representing the manifestation of the noise termh. From
(11), the resulting two-point correlation ofz is

kz sx, ydz sx0, y0dl ,
y 1 y0

sx 2 x0d2 1 s y 1 y0d2
. (12)
579
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As is intuitive, translational symmetry in they direction is
lost. We observe that the noise termz sx, yd exhibits long-
range correlations in bothx and y space. This results
from the quasistatic assumption used to project out t
fast relaxing variables, together with the special form
the driving field p, which necessarily needs to satisf
the Laplace equation (3). Noise terms with long-rang
correlations have been studied in the past, albeit in
different context [18]. Chow [19] has proposed thata .

1y2 would require the presence of long-range correlatio
in the noise. Our analysis is the first to postulate noi
accompanying fluid flow through porous media. Long
range correlated noise of the type (12) modifies the scal
of the noise, whencez scales asl21y2. The inverse
Fourier transform ofnskd, viz. nsxd, involves a dominant
term of the form≠z sx, hdy≠h, which can be expected to
scale ash21l21y2. This behavior contrasts with random
field noise, which scales ash21y2l21y2.

In contrasting Eqs. (10) and (1), note that the last tw
terms of (10) are nonlinear inh. One might expect, and
indeed confirm, that similar nonlinear terms arise from th
next-order term in the expansion offskd. For example,
a nonlinear term of the formh=2h (in physical space) is
generated by such a procedure. However, for the event
scaling analysis we have performed, the results are
modified by the presence of these additional terms (i.
the leading nonlinear term scales ash2l22). Accordingly,
we do not dwell upon them here. More importantly
one should note the structure of the terms appearing
Eq. (10). Explicitly, the first two terms exemplify the
nonlocal nature of the dynamics in the normal drivin
force. The jkj term has been predicted in the contex
of capillary line depinning, which also involves nonloca
dynamics [20]. Thus, from our microscale analysis of th
equations of motion, we discern at least two main featur
distinguishing two-phase flows from RFIM dynamics
(a) the structure of the noise term, and (b) the nonloc
nature of the terms present in the dynamical equations.

FFI depinning.—In this case,p1 is finite even though
the mean velocityV may approach zero. Hence, the thir
term in (10), representing a KPZ type of nonlinearity
is nonzero despite the proximity of the system to th
depinning transition. Several mechanisms have be
proposed to justify the presence of such a nonlinear te
in the dynamics [13]. One possible source arises from t
anisotropy of the driving force, coupled with the fact tha
the driving force at every interfacial point acts normal t
the interface at that point. However, as we subsequen
find, such a nonlinear term is irrelevant in the dynamic
description of FFI depinning.

What is the nature of the roughness exponent th
would be expected to arise from Eq. (10)? Two importa
features arise in this context.

(i) In addition to those terms explicitly indicated in
the equations, the capillary termkgk2jkjh̃ might, in the
presence of a nonlinear termn, generate a Darcy-scale
“surface tension”-like term. In such circumstances, w
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expect a general equation of the form,
≠hskd

≠t
­ P1jkjhskd 1 P2k2hskd 1 nskd

1 P1

Z
dk0fk 2 k0g fk0ghsk 2 k0dhsk0d , (13)

wherein the other terms in Eq. (10) have been discar
on the basis of power counting arguments. Algebraic s
issues for the above coefficients necessarily play a cru
role in interfacial stability, requiring a more sophisticate
treatment than that attempted here.

(ii) The jkjhskd term dominates in the hydrodynami
(large wavelength) limit. However, flow experiments
porous media have persistently shown that the obser
roughness exponents constitute an intermediate len
scale phenomenon, rather than being a manifestation
asymptotic behavior [8]. Thus, we employ a dynamic
Flory-type scaling [21] to analyze the intermediate leng
scales representative of experimental conditions.
instance, the small capillary number regime suggest
scenario whereinP1 is small compared with the capillary
terms (represented byP2).

Respective scalings of various terms on the rig
hand side of Eq. (13) are as follows:jkjhskd , hyl;
k2hskd , hyl2;

R
dk0sk 2 k0dk0hsk 2 k0dhsk0d , h2yl2;

nskd , D
1y2
0 yhl1y2 (wherein D0 represents the strengt

of the disorder). These scaling relations permit us
calculate the roughness exponents by matching the s
ings of the individual terms with those of the noise. A
long length scales the noise can be expected to oc
as white noise (cf. Narayan and Fisher [5] and Horva
et al. [8]). However, here we consider only the regim
wherein the noise manifests as a quenched noise.
results of such an analysis are as follows: (a) Matc
ing the second term with the noise yieldsh , l3y4

for l ø MinsP2
2yD

1y3
0 P

4y3
1 , P2yP1d. The scaling expo-

nent obtained in this regime agrees well with the e
perimentally observed value ofa ­ 0.8. The length
scales also appear to correspond to the experimental
ditions as a consequence of the small capillary nu
bers characterizing such experiments. (b) A simi
exercise in matching the nonlinearity with the noise yiel
h , l1y2 for P2

2yD
1y3
0 P

4y3
1 ø l ø D

1y3
0 yP

2y3
1 . The self-

consistency condition for the existence of such a regi
requires thatD

2y3
0 P

2y3
1 yP2

2 ¿ 1, whence the regime prob
ably does not exist in the FFI case at low capillary nu
bers due to the weak strength of the disorder. Howev
manifestations of this regime are likely to appear at high
capillary numbers. Thus, we propose thatthe long-range
correlated nature of the noise, unique to two-phase fl
flows, is responsible for the anomalous exponents
served in experiments. The observed range of expon
is a manifestation of crossover behavior at higher ca
illary numbers. Furthermore, the nonlinear terms whic
are generated prove to be irrelevant at low capillary num
bers due to the weak nature of the disorder and the pr
ence of long length scale viscous smoothing effects.
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IMI Depinning.—Here, we propose an explanation fo
the different behaviors exemplified by the FFI and IM
regimes, hitherto unresolved. In the case of IMI, due
the strong disorder forces, the motion of the interface
any point depends only on the local disorder forces.
two dimensions the depinning transition was argued [1
to be a DPD transition with the interface being pinne
when strong impurities that stop its motion span th
system. The main feature of IMI is the lack of an extern
driving force, in lieu of which capillary forces drive the
flow. Consequently,P1 ­ 0 in the above equations. In
such circumstances we expect a general equation of
form
≠hskd

≠t
­ P2k2hskd 1 P3jkjk2hskd 1 nskd

1 P5

Z
dk0fk 2 k0g fk0g3hsk 2 k0dhsk0d . (14)

The latter equation reveals that rotational symmetry ab
the surface normal is broken due to the presence
the nonlinear term=h ? =s=2hd [22]. Thus, even in
a geometrically isotropic porous media, anisotropy
generated by the dynamics. Reasons for the prese
of such a term can be attributed to a combination
two factors: (a) The driving force for the dynamic
is the gradient of the pressure field, rather than t
pressure itself. (b) The fact that the pressure fieldp
satisfies the Laplace equation leads to an exponen
decay of the pressure field in the direction normal to t
interface. As postulated by Tanget al. [13], the presence
of anisotropy in the dynamics can lead to the generat
of a KPZ nonlinearity. Such terms, which were shown
be irrelevant in the FFI case, can be shown to be relev
in this case, the reasons for which can be attributed to
strength of the disorder and the absence of thejkj term.
The presence of anisotropy presumably puts this mode
the same universality class as DPD, which also constitu
an example of anisotropic depinning, thereby explaini
the observed roughness exponent ofa ­ 0.63. Thus, we
propose thatthe anisotropy generated in the descriptio
of dynamics is responsible for the universality class
imbibition, corresponding toa ­ 0.63. We believe that
our arguments provide the first theoretical rationale for t
distinction between FFI and IMI.

In summary, we have derived a new model for two
phase frontal displacement flows in random porous med
The underlying analysis utilizes a quasistatic appro
mation for the pressure field, along with Darcy’s law
governing the dynamical evolution of the interface. Th
resulting evolution equation contains nonlocal terms
well as a noise term, the latter exhibiting long-rang
correlations. For FFI, a Flory-type scaling analysis w
performed and the possible scaling regimes carefully d
lineated. Such an analysis yielded results in good agr
ment with experimental observations. Despite the succ
of our scaling analysis it is to be cautioned here that d
namical Flory-type analysis does not enjoy the same s
cess as equilibrium Flory scaling [18]. It does, howeve
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provide a lower bound for RG calculations. We also stud-
ied the IMI regime, pointing out the distinctions between
FFI and IMI, and justifying anisotropic depinning in the
IMI case. Our analysis emphasizes the marked contras
between two-phase fluid dynamics in random media and
random magnets, thereby rationalizing existing discrep-
ancies between experimental measurements of two-phas
flows and analytical calculations thereof based on RFIM.
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