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Phase Separation of Bose-Einstein Condensates
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We distinguish two types of spatial separation exhibited by atomic trap Bose-Einstein condensates:
potential separation, in which case the condensates diffuse into each other as the trap is opened
adiabatically, and phase separation, in which case the separation persists in the absence of external
potentials. We discuss relevant features of the dynamics and statics of the phase separation of dilute
condensates. [S0031-9007(98)07928-9]
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As dilute gases, the atomic trap Bose-Einstein conderfields; ¢;(r, ) = ¢fo) + 6 ¢}, which evolve according to

sates [1] occupy a unique position among the superfluithe Gross-Pitaevski equations (1), linearizedsigp and
systems. In this context, the study of multiple atomicé¢*. Decomposing the field fluctuations into Fourier
condensates is particularly interesting, as they represesbmponentsd¢; = > ¢;jx explik - r), we obtain the
the first laboratory mixtures of distinguishable boson su-equations of motion for the amplitudes [143,
perfluids [2—6]. At the present time, two experimental jfi¢;) = [A*k*/2m; + AinJerx + )\l[dylo)]%i,k
groups have observed trapped multiple condensates [7— O) , (0)% 0 «
9]. In both experiments, condensates have been observed + ’})d" [¢27 conc + 2], . (2)
to partially separate in space. wheren; = |¢>](- )|2 and where we have used th¢f =

In addition to the insights gained from other theo-0. A similar equation forific, is obtained by exchang-
retical work [10—-12], we point out that it is useful to ing the 1 and 2 subscripts. Alternatively, we can intro-
distinguish two types of spatial separation: (1) potentiaduce the phase and density of the condensate fiele;
separation, caused by the external trapping potentials ig/p exp(i6), the fluctuations of whichp = n + 6p and
much the same way that gravity can separate fluids of dif¢ = 9© + 56, account for the field fluctuation$,¢p =
ferent specific weight. If the trap is opened adiabatically,¢?[8p/2n + i86]. The last term of Eq. (2) then rep-
potential separated condensates diffuse into each otheesents a density fluctuatiofpx = [¢@*cx + ¢ Q¢ ]
(2) Phase separation, which persists in the absence of extavhereas the differenc& Il = [¢ V" cx — ¢ Ol ]/2i,
nal potentials. In the fluid analogy, phase separated comepresents a phase fluctuation. With Eqg. (2), we find

densates can be compared to a system of two immiscible Edéprx = 2[R*k*/2m 1611,
fluids, such as oil and water. ) |
This analogy also suggests an important qualitative dif- R8Iy = ——[A*k*/2my + 20m18p1x (3)
ference in the dynamics of both types of separated con- 2
densates: “stirring” phase separated systems, such as oil — A 8parx.

and water, can produce more droplets but duisnix the  The substitution of6p;x (1) = 8p;k cogQx?) into the
fluids homogeneously, unlike stirring potential separatedime derivative of thesp equations of Eq. (3) leads

fluids. In discussing the phase separation dynamics quafp the normal mode equations for the coupled density
titatively, we consider a mixture of two condensates that igjyctuations,
initially homogeneous [13]. The wave functions; and k2

. \ . 2 _ .2
&>, of two interacting condensates evolve according to —Qibpik = —widpik — An m 8pak,
ili(2>= _ﬁ2V2_ AP b+ AlgalPo ) R 2 ()]
! 2my M1 Het ! SR —Qéprk = —wix6prk — Amp m—2 O0p1k>

h*V?

b = [ i where hwjx = /(R2k*/2m;)* + (B2k*/mj)n;A;  (we
nmy

assumeA; > 0) denotes the usual single condensate
Bogoliubov dispersion. The requirement that Eq. (4) has

\(/)\;he:;]e Ki é] = 1.2) Trﬁgre_s?:t: tt_r(w)e CTim"f[‘;L poatlﬁgtlal nontrivial solutions gives the dispersions of the double
€ j bosons. Interaction strengtna, condensate excitatéons,

A, are determined by the scattering lengths for binary 2
o : . = 9 ,  loik + 0ik]
collisions of like and unlike bosons\; = 4wh*a;/m; Qi = ———F—"—

1)
— pm2 t )\2|¢2|2:|¢2 + M1l s,

and A = 27724/ myeq, Wheremed = m; ' + m;'. The 2
excitations of the static homogeneous condensates, \/[wik - w%k]z + 4(A2/ A Ay) e cakt
¢r,1) = ¢j(~0), are described by fluctuations of the = ) ., (9)
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wherec; is the sound velocity of th¢ condensates; = To see that “strongly” repulsive condensatas>f 0,
,/nj)lj/mj, A% > A1Ay) lower their free energy by distributing the
In the long wavelength limit, we find witho;, =  condensates inhomogeneously, we write the free energy

cjq that the double condensate dispersions of Eq. (5§lensity of Eq. (8) in the absence of external potentials
are also phononlikeQ)+y =~ c+k (k — 0), with “sound  v;(r) = 0 as

velocities” ¢4+ andc- equal to A
F(r)= — r) + r)vVAy /A P
[ + 3] = [ — I + 408/ M)l (r) = 2 Im(®) + m()VAz/A1]

2

Cx 2 + [A — VA1A2 Jng (r)na(r)
(6) — mini(r) — uana(r). (10)

If A2 > A;),, the intercondensate interaction repels theStartin from the homodeneous overlaoping condensate
energy levels so strongly that> becomes negative, 9 9 pping

o ._1..system, redistributing bosons 1 and 2 spatially while
giving long wavelength modes that grow exponentially: .
the homogeneous system is unstable [15]. Interestingl{eemn%[]”l(r) + "2(18 \ )(;2/’\‘ ] gonstg]nt over Ispac_etcan |
if the masses of the distinguishable bosons are equal, t Fwer € energy Dy decreasing the overiap integra

3 .
double condensate dispersions are Bogoliubov-like, | d’r m(r)ny(r). The lowest value is reached by spa-
5 5.2 ) 5 tially separating the two condensates. Although the
Q% = c2k® + (hk*/2m)”. @)

Hamiltonian is translationally invariarjtv;(r) = 0], the

In the case of instabilitys> < 0, thek modes on%,k < resulting double condensate system is not: the system
0 grow initially at a rate|Q)_x|. The fastest growing spontaneously breaks translational symmetry. Strongly
modes have wave numbér = +/2m|c_|/i and grow attracting condensatea K 0, A> > A;);) can decrease
initially at a ratem|c_|?/h. We expect that these modes the free energy by increasing their mutual overlap: col-
set the length scale of the pattern that is formed, so thdapse. The similarity to the behavior of a single conden-
repelling condensategss > 0) would separate into single sate of negative scattering length suggests that a trapping
condensate regions a distanger/k; = h/(\2ml|c_])  potential can still create small systems of strongly attract-
apart (on average). By the same token, we can roughling condensates that are stable or metastable.

estimate the relevant time scalg, for the formation The free energy of the phase separated condensate
process of droplets of single condensate regions~  System in a macroscopic volunié is the sum of the
Qs |7t = h/(mlc—|?). single condensate free energies, condensate 1 confined

Eventually, the droplets “gather,” forming an equilib- to a volumeV;, and condensate 2 confined Yo — V.
rium system with two single condensate regions [16]. WeMinimizing the total free energy with respect tg,
describe the resulting static situation by minimizing thegives the equilibrium condition of equal pressures exerted
free energy. If the spatial variations of the condensateby both condensates. With the pressie= )LA,-nf»,S/z,
are slow and the kinetic energy contributions may be newheren;, denotes the density of the single condensate
glected, the (zero-temperature) free energy is the integrakgions, we are led to the equivalent condition for the

over the free energy densify(r), condensate densities ; = ny v/ A2/A;.
Al s Ay, We note that the assumption of slowly varying conden-
F(r) = = ni®) + == ny(r) + Any(r)na(r) sate wave functions, necessary to justify neglecting the ki-
netic energy in the free energy of Eq. (8), is violated at the
= pi(0)ni(r) — pa(r)na(r), (8)  boundary of the two condensates. The kinetic energy con-

where the effective chemical potentiajs;(r) can in- tribution gives a boundary region of finite sizein which

clude the external trap potentiaisi(r) experienced by the wave functions smoothly tend to zero as the conden-
the j bosons,u;(r) = u; — v;(r) [L7]. Minimizing F  sates cross the boundary. We assume that the condensates
with respect to the densitie$,F/én;(r) = 0, gives the are so large that the boundary region which separates them

Thomas-Fermi equations can be approximated locally as a planar region with den-
wi(r) = Ang(r) + Ana(r), sities that vary spatially as functions of the coordinate
(9 with the z axis perpendicular to the boundary surface of
ma(r) = Aana(r) + Any(r). areaA. The kinetic energy contributiorEy;, (b), is then

Whenw;(r) = 0, the Thomas-Fermi condensate densitiesapproximately equal toEyi,(b) = (Ah%/2b)[ni/m; +

of Eq. (9) are homogeneous. However, equating firstn, /m,] = 4AP[I} + I3]/b, wherel; represents the single
order derivatives to zero gives only a minimum providedcondensate coherence lengths= W\/W and

the second-order derivatives satiif@/zF/anf) >0 and where we have used tha@, =~ P, = P. The dverlap
(02F/an?) (02F/an3) — (02F/dn;ony)* > 0. The latter  of the condensates in the boundary region increases the
condition implies that the Thomas-Fermi equations (9)interaction energy by an amous,(b), which we esti-
give only a minimum provided the stability criterig >  mate by modeling the condensate densities in the bound-
0, A, > 0, and\? < A; ), are satisfied. ary region,z € (0,b), crudely asni(z) = n1 (b — z)/b
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and ny(z) = na,z/b. We find that Eiy(b) = A(A — To find the answer, we apply a reasoning that is very
VA A )nysna b /6 = AP(A — JA1A2)b/3. Toestimate similar to that underlying Archimedes law for ordinary

the actual boundary sizé, we minimize the bound- fluids. We assume that the size of the droplet is large
ary energyE,(b) = Exin(b) + En(b) with respect tob enough to neglect the boundary surface energy and small

and find enough to neglect the spatial variation of the density
3 5 inside the droplet. The previously defined replacement
b =23 I Ut -1 energy AE depends on the center of mass positiRn
b =2V3 : (11) >
[A/VAiAy — 1] of the droplet through the external potentials(r) =

The boundary contribution to the energy is a surface’(r) andva(r) = aw(r). Since the pressures inside and
energy E,(b) = oA, where the surface tension is  outside the droplet are equaliniz/2 — Aynas/2 = 0,
equal to o = (2/3)Pb[A/JA1A; — 1] = (4/+/3) x  we find that

JiE + BVan, - 1p. AE®) = [ In(wi(e) = natouatel a's
In the absence of external potentials, a “droplet” of Vi
condensate 1 immersed in a much larger condensate 2 of =~ Niv(R)[1 — avA1/A2]. (13)

density n, minimizes E;, by taking on the shape of a Thus, even though both bosons experience a trapping
sphere of radiug, V; = (47 /3)R>. We can now imagine potential, if a4/A;/A, > 1, the force on the droplet,
creating the double condensate system starting from anN,[1 — a+/A;/A> Vv, is directed outwards; the droplet
single condensate of type 2 and replacing condensatefats.
bosons in the droplet volumg, by condensate 1 bosons.  The thinner the layer of the floating condensate, the
The energyAE required in the replacement is equal to more important are the effects of the boundary surface
AE = [)\]nfs/z - Aznis/z]vl + E,. Minimizing the  energy. Indeed, with only a few condensate 1 particles,
“replacement energyA E with respect td/; and realizing the energy will be minimized by covering a fraction of
thatE;, « Vf/3, we find the surface of condensate 2 (thereby reducing the surface
boundary energy). Here we focus on the case where
) (12)  enough bosons have been added for condensate 1 to
“wrap” around condensate 2, and we can ignore boundary
The previous result,)nnfs/z = Aznis/z, obtained surface energy effects. Within the single condensate
by ignoring the boundary energy, is therefore accutegions, the condensates are described in the Thomas-
rate provided the size of the droplet exceels =  Fermi approximation of Eq. (9) (putting = 0), n((r) =

20 /P = (g/ﬁ)\/[lf + B[A/VEA — 1. The en- L1 — v(®]/A and ny(r) = afus — v(r)]/Az, where

: : ; da u, are the chemical potentials. In that case, the
ergy per droplet particle\E/N;, with Eq. (12) is equalto 41 @ndaus ; ; . ’
AE/N, = 5E,/[3n,,V,] = 5¢/[Rn,,], a function that boundary surface is the equipotential surfa¢®) = u,

2
decreases monotonically a5 increases. Consequently, Where the pressures of both condensatgs,(r)/2, are

Mnis  dangg L 2E
3 Vi

it is energetically favorable for condensate 1 to gather irfdual- This leads to s — o]

a single region of space, in accordance with the picture of wp = py — —L K21 (14)
single condensate droplets gathering in the second stage [ayAi/a = 1]

of the phase separation dynamics described above. In Fig. 1, we show a typical density profile for two sepa-

To describe separated double condensates in trap@ted condensates in a spherically symmetric trap. With
we subtract the overlap termn;n, and include the A;jn;(Rp) = u; — v;(Ry), we find for the case shown
boundary surface energy in the expression of the freé Fig. 1 that w1 — pa = Aimi(Ry) — Aana(Rp)/a >
energy [Eq. (8)]. The validity of this description rests 0. Using [n;(R;)/n2(R,)] = +/A2/A; we then find that
on two conditions: (i) The local coherence length within a+/A;/A; > 1, so that condensate 1 should indeed float
each condensate is much less than the length scale om top of condensate 2. Of course, the experimentally
which the condensates vary spatially. (ii) The change ofelevant quantities are the number of boson partid\gs,
the potential energy across the intercondensate boundaand N>, rather thanu; and u,. The chemical potentials
It;|b, where f; = —Vu; represents the external force can be determined by inverting; = [, d*rn(r) and
experienced by bosong near the boundary, is much N, = [V2 d’r ny(r), where the boundary betweéh and
less than the local chemical potentidf;|b < A;jn;,  V,is defined by Eq. (14), to giva¥; (w1, w2).

(j = 1,2). If these conditions are satisfied, the physics In summary, we distinguish two types of spatial sepa-

of the phase separation is similar to the abayér) =  ration that can be exhibited by multiple condensates. Of

0 case, and we can immediately address interestinthese, we have discussed phase separation, the spatial sepa-
issues regarding trapped phase separated condensates. fabion that occurs even in the absence of external poten-
instance, if we add a droplet of condensate 1 to a trappetials. The small amplitude analysis of the homogeneous
condensate 2, does it “sink” to the middle of the trap, orsystems shows that an initially homogeneous multiple
does it remain “floating” on the surface of condensate 22ondensate, which satisfies the phase separation criterion,
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FIG. 1. Plot of a typical phase separated double condensate
In reality, the boundary of

in a spherically symmetric trap.
condensates 1 and 2 [& = R,, wherev(R,) = u;] IS not
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