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Phase Separation of Bose-Einstein Condensates
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We distinguish two types of spatial separation exhibited by atomic trap Bose-Einstein conden
potential separation, in which case the condensates diffuse into each other as the trap is o
adiabatically, and phase separation, in which case the separation persists in the absence of e
potentials. We discuss relevant features of the dynamics and statics of the phase separation o
condensates. [S0031-9007(98)07928-9]
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As dilute gases, the atomic trap Bose-Einstein conde
sates [1] occupy a unique position among the superflu
systems. In this context, the study of multiple atom
condensates is particularly interesting, as they repres
the first laboratory mixtures of distinguishable boson s
perfluids [2–6]. At the present time, two experimenta
groups have observed trapped multiple condensates
9]. In both experiments, condensates have been obser
to partially separate in space.

In addition to the insights gained from other theo
retical work [10–12], we point out that it is useful to
distinguish two types of spatial separation: (1) potenti
separation, caused by the external trapping potentials
much the same way that gravity can separate fluids of d
ferent specific weight. If the trap is opened adiabaticall
potential separated condensates diffuse into each ot
(2) Phase separation, which persists in the absence of ex
nal potentials. In the fluid analogy, phase separated c
densates can be compared to a system of two immisci
fluids, such as oil and water.

This analogy also suggests an important qualitative d
ference in the dynamics of both types of separated co
densates: “stirring” phase separated systems, such as
and water, can produce more droplets but doesnotmix the
fluids homogeneously, unlike stirring potential separat
fluids. In discussing the phase separation dynamics qu
titatively, we consider a mixture of two condensates that
initially homogeneous [13]. The wave functions,f1 and
f2, of two interacting condensates evolve according to

ih̄ Ùf1 ­

"
2

h̄2=2

2m1
2 m1 1 l1jf1j

2

#
f1 1 ljf2j

2f1 ,

ih̄ Ùf2 ­

"
2

h̄2=2

2m2
2 m2 1 l2jf2j

2

#
f2 1 ljf1j

2f2 ,
(1)

where mj s j ­ 1, 2d represents the chemical potentia
of the j bosons. The interaction strengths,lj and
l, are determined by the scattering lengths for bina
collisions of like and unlike bosons:lj ­ 4p h̄2ajymj

and l ­ 2p h̄2aymred, wherem21
red ­ m21

1 1 m21
2 . The

excitations of the static homogeneous condensat
fjsr, td ­ f

s0d
j , are described by fluctuations of the
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fields;fjsr, td ­ f
s0d
j 1 dfj, which evolve according to

the Gross-Pitaevski equations (1), linearized indf and
dfp. Decomposing the field fluctuations into Fourie
components,dfj ­

P
k cj,k expsik ? rd, we obtain the

equations of motion for thec amplitudes [14],
ih̄ Ùc1,k ­ fh̄2k2y2m1 1 l1n1gc1,k 1 l1ffs0d

1 g2cp
1,2k

1 lf
s0d
1 ffs0dp

2 c2,k 1 f
s0d
2 cp

2,2kg , (2)

wherenj ­ jf
s0d
j j2 and where we have used thatÙf0

j ­
0. A similar equation forih̄ Ùc2 is obtained by exchang-
ing the 1 and 2 subscripts. Alternatively, we can intr
duce the phase and density of the condensate field,f ­
p

r expsiud, the fluctuations of which,r ­ n 1 dr and
u ­ us0d 1 du, account for the field fluctuations,df ­
fs0dfdry2n 1 idug. The last term of Eq. (2) then rep
resents a density fluctuation,drk ­ ffs0dpck 1 fs0dcp

2kg
whereas the difference,dPk ­ ffs0dpck 2 fs0dcp

2kgy2i,
represents a phase fluctuation. With Eq. (2), we find

h̄d Ùr1,k ­ 2fh̄2k2y2m1gdP1,k ,

h̄d ÙP1,k ­ 2
1
2

fh̄2k2y2m1 1 2l1n1gdr1,k (3)

2 ln1dr2,k .
The substitution ofdrj,kstd ­ drj,k cossVktd into the
time derivative of thed Ùr equations of Eq. (3) leads
to the normal mode equations for the coupled dens
fluctuations,

2V2
kdr1,k ­ 2v2

1,kdr1,k 2 ln1
k2

m1
dr2,k ,

2V2
kdr2,k ­ 2v2

2,kdr2,k 2 ln2
k2

m2
dr1,k ,

(4)

where h̄vj,k ­
p

sh̄2k2y2mjd2 1 sh̄2k2ymjdnjlj (we
assumelj . 0) denotes the usual single condensa
Bogoliubov dispersion. The requirement that Eq. (4) h
nontrivial solutions gives the dispersions of the doub
condensate excitations,

V2
6,k ­

fv2
1,k 1 v

2
2,kg

2

6

q
fv2

1,k 2 v
2
2,kg2 1 4sl2yl1l2dc2

1c2
2k4

2
, (5)
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wherecj is the sound velocity of thej condensate,cj ­p
njljymj.
In the long wavelength limit, we find withvj,q ø

cjq that the double condensate dispersions of Eq.
are also phononlike,V6,k ø c6k sk ! 0d, with “sound
velocities”c1 andc2 equal to

c2
6 ­

fc2
1 1 c2

2g 6

q
fc2

1 2 c2
2g2 1 4sl2yl1l2dc2

1c2
2

2
.

(6)

If l2 . l1l2, the intercondensate interaction repels th
energy levels so strongly thatc2

2 becomes negative,
giving long wavelength modes that grow exponentiall
the homogeneous system is unstable [15]. Interesting
if the masses of the distinguishable bosons are equal,
double condensate dispersions are Bogoliubov-like,

V2
6,k ­ c2

6k2 1 sh̄k2y2md2. (7)

In the case of instability,c2
2 , 0, thek modes ofV2

2,k ,

0 grow initially at a ratejV2,kj. The fastest growing
modes have wave numberkf ­

p
2 mjc2jyh̄ and grow

initially at a ratemjc2j2yh̄. We expect that these mode
set the length scale of the pattern that is formed, so t
repelling condensatessl . 0d would separate into single
condensate regions a distance2pykf ­ hys

p
2 mjc2jd

apart (on average). By the same token, we can roug
estimate the relevant time scaletD for the formation
process of droplets of single condensate regions:tD ,
jV2,kf j

21 ­ h̄ysmjc2j2d.
Eventually, the droplets “gather,” forming an equilib

rium system with two single condensate regions [16]. W
describe the resulting static situation by minimizing th
free energy. If the spatial variations of the condensa
are slow and the kinetic energy contributions may be n
glected, the (zero-temperature) free energy is the integ
over the free energy densityFsrd,

Fsrd ­
l1

2
n2

1srd 1
l2

2
n2

2srd 1 ln1srdn2srd

2 m1srdn1srd 2 m2srdn2srd , (8)

where the effective chemical potentialsmjsrd can in-
clude the external trap potentialsyjsrd experienced by
the j bosons,mjsrd ­ mj 2 yjsrd [17]. Minimizing F
with respect to the densities,dFydnjsrd ­ 0, gives the
Thomas-Fermi equations

m1srd ­ l1n1srd 1 ln2srd ,

m2srd ­ l2n2srd 1 ln1srd .
(9)

Whenyjsrd ­ 0, the Thomas-Fermi condensate densiti
of Eq. (9) are homogeneous. However, equating fir
order derivatives to zero gives only a minimum provide
the second-order derivatives satisfys≠2Fy≠n2

j d . 0 and
s≠2Fy≠n2

1d s≠2Fy≠n2
2d 2 s≠2Fy≠n1≠n2d2 . 0. The latter

condition implies that the Thomas-Fermi equations (
give only a minimum provided the stability criterial1 .

0, l2 . 0, andl2 , l1l2 are satisfied.
(5)
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To see that “strongly” repulsive condensates (l . 0,
l2 . l1l2) lower their free energy by distributing the
condensates inhomogeneously, we write the free ene
density of Eq. (8) in the absence of external potentia
yjsrd ­ 0 as

Fsrd ­
l1

2
fn1srd 1 n2srd

p
l2yl1 g2

1 fl 2
p

l1l2 gn1srdn2srd

2 m1n1srd 2 m2n2srd . (10)

Starting from the homogeneous overlapping condens
system, redistributing bosons 1 and 2 spatially wh
keepingfn1srd 1 n2srd

p
l2yl1 g constant over space can

lower the energy by decreasing the overlap integR
d3r n1srdn2srd. The lowest value is reached by spa

tially separating the two condensates. Although t
Hamiltonian is translationally invariantfyjsrd ­ 0g, the
resulting double condensate system is not: the syst
spontaneously breaks translational symmetry. Stron
attracting condensates (l , 0, l2 . l1l2) can decrease
the free energy by increasing their mutual overlap: co
lapse. The similarity to the behavior of a single conde
sate of negative scattering length suggests that a trapp
potential can still create small systems of strongly attra
ing condensates that are stable or metastable.

The free energy of the phase separated conden
system in a macroscopic volumeV is the sum of the
single condensate free energies, condensate 1 confi
to a volumeV1, and condensate 2 confined toV 2 V1.
Minimizing the total free energy with respect toV1
gives the equilibrium condition of equal pressures exert
by both condensates. With the pressurePj ­ ljn2

j,sy2,
where nj,s denotes the density of the single condensa
regions, we are led to the equivalent condition for th
condensate densitiesn1,s ­ n2,s

p
l2yl1.

We note that the assumption of slowly varying conde
sate wave functions, necessary to justify neglecting the
netic energy in the free energy of Eq. (8), is violated at t
boundary of the two condensates. The kinetic energy c
tribution gives a boundary region of finite sizeb, in which
the wave functions smoothly tend to zero as the cond
sates cross the boundary. We assume that the conden
are so large that the boundary region which separates th
can be approximated locally as a planar region with de
sities that vary spatially as functions of the coordinatez
with the z axis perpendicular to the boundary surface
areaA. The kinetic energy contribution,Ekinsbd, is then
approximately equal toEkinsbd ø sAh̄2y2bd fn1ym1 1

n2ym2g ­ 4APfl2
1 1 l2

2gyb, wherelj represents the single
condensate coherence lengthslj ­ h̄y

p
4mjnj,slj and

where we have used thatP1 ø P2 ­ P. The overlap
of the condensates in the boundary region increases
interaction energy by an amountEintsbd, which we esti-
mate by modeling the condensate densities in the bou
ary region,z [ s0, bd, crudely asn1szd ø n1,ssb 2 zdyb
5719
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and n2szd ø n2,szyb. We find that Eintsbd ø Asl 2p
l1l2 dn1,sn2,sby6 ­ APsl 2

p
l1l2 dby3. To estimate

the actual boundary sizeb, we minimize the bound-
ary energyEbsbd ­ Ekinsbd 1 Eintsbd with respect tob
and find

b ­ 2
p

3

s
fl2

1 1 l2
2g

fly
p

l1l2 2 1g
. (11)

The boundary contribution to the energy is a surfa
energy Ebsbd ­ sA, where the surface tensions is
equal to s ­ s2y3dPbfly

p
l1l2 2 1g ­ s4y

p
3 d 3q

fl2
1 1 l2

2g fly
p

l1l2 2 1g P.
In the absence of external potentials, a “droplet” o

condensate 1 immersed in a much larger condensate 2
density n2 minimizes Eb by taking on the shape of a
sphere of radiusR, V1 ­ s4py3dR3. We can now imagine
creating the double condensate system starting from
single condensate of type 2 and replacing condensat
bosons in the droplet volumeV1 by condensate 1 bosons
The energyDE required in the replacement is equal t
DE ­ fl1n2

1,sy2 2 l2n2
2,sy2gV1 1 Eb . Minimizing the

“replacement energy”DE with respect toV1 and realizing
thatEb ~ V

2y3
1 , we find

l1n2
1,s

2
­

l2n2
2,s

2
1

2
3

Eb

V1
. (12)

The previous result, l1n2
1,sy2 ­ l2n2

2,sy2, obtained
by ignoring the boundary energy, is therefore acc
rate provided the size of the droplet exceedsRs ­

2syP ­ s8y
p

3 d
q

fl2
1 1 l2

2g fly
p

l1l2 2 1g. The en-
ergy per droplet particle,DEyN1, with Eq. (12) is equal to
DEyN1 ­ 5Ebyf3n1,sV1g ­ 5syfRn1,sg, a function that
decreases monotonically asN1 increases. Consequently
it is energetically favorable for condensate 1 to gather
a single region of space, in accordance with the picture
single condensate droplets gathering in the second st
of the phase separation dynamics described above.

To describe separated double condensates in tra
we subtract the overlap termln1n2 and include the
boundary surface energy in the expression of the fr
energy [Eq. (8)]. The validity of this description rest
on two conditions: (i) The local coherence length withi
each condensate is much less than the length scale
which the condensates vary spatially. (ii) The change
the potential energy across the intercondensate bound
jfjjb, where fj ­ 2=yj represents the external force
experienced by bosonsj near the boundary, is much
less than the local chemical potential,jfjjb ø ljnj,s
s j ­ 1, 2d. If these conditions are satisfied, the physic
of the phase separation is similar to the aboveyjsrd ­
0 case, and we can immediately address interest
issues regarding trapped phase separated condensates
instance, if we add a droplet of condensate 1 to a trapp
condensate 2, does it “sink” to the middle of the trap,
does it remain “floating” on the surface of condensate
5720
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To find the answer, we apply a reasoning that is ve
similar to that underlying Archimedes law for ordinar
fluids. We assume that the size of the droplet is lar
enough to neglect the boundary surface energy and sm
enough to neglect the spatial variation of the dens
inside the droplet. The previously defined replaceme
energy DE depends on the center of mass positionR
of the droplet through the external potentialsy1srd ­
ysrd andy2srd ­ aysrd. Since the pressures inside an
outside the droplet are equal,l1n2

1,2y2 2 l2n2
2,sy2 ø 0,

we find that

DEsRd ­
Z

V1

fn1srdy1srd 2 n2srdy2srdg d3r

ø N1ysRd f1 2 a
p

l1yl2 g . (13)
Thus, even though both bosons experience a trapp
potential, if a

p
l1yl2 . 1, the force on the droplet,

2N1f1 2 a
p

l1yl2 g=y, is directed outwards; the drople
floats.

The thinner the layer of the floating condensate, t
more important are the effects of the boundary surfa
energy. Indeed, with only a few condensate 1 particle
the energy will be minimized by covering a fraction o
the surface of condensate 2 (thereby reducing the surf
boundary energy). Here we focus on the case wh
enough bosons have been added for condensate 1
“wrap” around condensate 2, and we can ignore bound
surface energy effects. Within the single condensa
regions, the condensates are described in the Thom
Fermi approximation of Eq. (9) (puttingl ­ 0), n1srd ­
fm1 2 ysrdgyl1 and n2srd ­ afm2 2 ysrdgyl2, where
m1 andam2 are the chemical potentials. In that case, t
boundary surface is the equipotential surfaceysRd ­ mb

where the pressures of both condensates,ljn2
j srdy2, are

equal. This leads to

mb ­ m2 2
fm1 2 m2g

fa
p

l1yl2 2 1g
. (14)

In Fig. 1, we show a typical density profile for two sepa
rated condensates in a spherically symmetric trap. W
ljnjsRbd ­ mj 2 yjsRbd, we find for the case shown
in Fig. 1 that m1 2 m2 ­ l1n1sRbd 2 l2n2sRbdya .

0. Using fn1sRbdyn2sRbdg ­
p

l2yl1 we then find that
a

p
l1yl2 . 1, so that condensate 1 should indeed flo

on top of condensate 2. Of course, the experimenta
relevant quantities are the number of boson particles,N1
andN2, rather thanm1 andm2. The chemical potentials
can be determined by invertingN1 ­

R
V1

d3r n1srd and
N2 ­

R
V2

d3r n2srd, where the boundary betweenV1 and
V2 is defined by Eq. (14), to giveNjsm1, m2d.

In summary, we distinguish two types of spatial sep
ration that can be exhibited by multiple condensates.
these, we have discussed phase separation, the spatial
ration that occurs even in the absence of external pot
tials. The small amplitude analysis of the homogeneo
systems shows that an initially homogeneous multip
condensate, which satisfies the phase separation criter
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FIG. 1. Plot of a typical phase separated double condensa
in a spherically symmetric trap. In reality, the boundary o
condensates 1 and 2 [atR ­ Rb , where ysRbd ­ mb ] is not
infinitely sharp and the condensates overlap over a region
sizeb that is estimated in the text.

separates out by forming single condensate droplets whi
gather to form a stable separated condensate system w
two single condensate regions of equal pressure. The sa
analysis gives the relevant time and length scales for t
initial droplet formation process. In the resulting equilib-
rium system, the condensates are separated by a region
partial overlap, the size and surface tension of which w
estimated analytically. Finally, we described phase sep
ration of large condensates in atomic traps and discuss
relevant features, such as a version of Archimedes law f
condensates.
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