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Entropic Lower Bound for the Quantum Scattering of Spinless Particles
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In this paper theangle-angular momentum entropic lower bouisdproved by using Tsallis-like
entropies and Riesz theorem for the quantum scattering of the spinless particles. Numerical estimations
of the scattering entropies, as well as an experimental test ctate independemntropic lower bound,
are obtained by using the amplitude reconstruction from the available phase shift analyses for the pion-
nucleus scatterings. A standard interpretation of these results in terms of the optimal state dominance
is presented. Then, it is shown that experimental pion-nucleus entropies are well described by optimal
entropies and that the experimental data are consistent witprtheiple of minimum distance in the
space of scattering states[S0031-9007(98)08033-8]

PACS numbers: 03.65.Ca, 25.80.Dj

Over the past two decades there has been increasing ithhe Fourier coefficientsor the partial amplitudesyf; are
terest [1] in the investigation of thentropic uncertainty expressed as
relationsintroduced in Ref. [2]. In this paper the entropic ! +1
lower bound for the quantum scattering [3] is investi- f1=—= F(x)P;(x)dx, fiecC. (6)
gated in a more general form by introducifigallis-like 2 )
entropies(see Refs. [4,5]). Hence, by usiRjesz theo- Hence, we define thengular momentum entropsy. by
rem [6], the state-independent angle-angular momentum
entropic lower bounds proved for the scattering of spin-
less particles. The results on the first experimental test
of this state independent entropic bouird pion-nucleus
scattering are obtained by calculations of the scatteringvhere the partial probabilities; are defined by
entropies from the experimental availaplease shift$7— 5 L
11]. Moreover, comparisons of these results with the op- pr = 4w il , Z(zl + Dp =1. (8)
timal state [12] prediction are presented. Oel 1=0

Angular entropySy.— The informational angular en-
tropy Sy of any quantum scattering states is defined as i

L
Se=—>Q@l+ 1) p;-Inpy, (7)
=0

rpf course, in this case, thiesallis-like angular momentum
entropiesfor the scattering process can be defined as

Ref. [3] by | follows:
So = —f dx P(x) In P(x), @ 1 L
—1 — _ q
whereP(x) is the angular distribution defined in terms of S1(q) g—1 ! IZO(ZZ T DLpdy 9 €R
the differential cross section by (9)
27 do !
P(x) = ETo) (x), . P(x)dx =1. (2)  withthe property
More general, we can define thesallis-like angular lim S.(q) = S.(1) = Sy . (10)
entropies/4,5] g—1
1
Se(q) = b 1 - f dx[P(x)])1, gER 3) The angle-angular momentum entrofy;.—The en-
g —1 -1 tropies (1) and (7) are defined as natural measures of the
with the property uncertainties corresponding to the distributions of proba-
lim So(q) = Sy(1) = Sy . (4) bilities P(x) and p;, respectively. If we are interested
g1 to obtain a measure of uncertainty of the simultaneous

The angular momentum entropy,.—Now, et us  (egjization of the probability distributiong(x) and p;,

consider the case when the scattering amplitfil® of  hen we must calculate the entropy corresponding to the
the spinless particles is developed in partial amplitudes aSroduct of these distribution®(x, /) = P(x) - p;. Itis

follows: . easy to verify that thengle-angular momentum entropy
f@) =@+ DfiP),  x€e[-11], ec, Isgvenby

=0 L 1
(5) Sor = — > (21 + 1)[ dx P(x,1) In[P(x,1)]
where L + 1 is the number of partial amplitudeg;, =0 -1
Pi(x), 1 =0,1,...,L, are Legendre polynomials. Then, =S¢ + S5.. (12)
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In this case the Tsallis-like entropies for the scattering-ourier coefficients given by (6). If the scattering Tsallis-
of spinless patrticles is given by like entropies are defined by Egs. (3) and (9), respectively,

1 L 1 then the following entropic inequalities hold:
Sor(q) = —{1 - > ! f 1 dx[P(x)]q}
=0 -

q -1 _ 1/2¢ < |:p—_1j|
So(a) + S1(9) + (4 — DSo(@)S1(), L+ (= 9su(g™ = exp‘ 2w |2

gER (12) X [1+ (1= p)Ss(p)]?
with the property (29)
m Sor(q) = Sor(D) = Sor = Sp + S0 (A ¢ anyq defined by the relatiog}; + 5 = 1.

Therefore, the indey # 1 controls the degree of entropy (i) For any finite sequencg; with finite [1 + (1 —
nonextensivity reflected in the pseudoadditivity entropyp)S;(p)]'/? there is anf € L4(—1, +1) satisfying(5)

rule (12). for which
Entropic inequalities—It is interesting to present here _
the following generalized entropic inequalities for the [1 + (1 — q)s(,(q)]l/%i = exp{{P }m 2]
Tsallis-like entropies.
_ 1/2p
#[1 _ Kq*l(l’l)] = S()(q) = ;[1 _ zl*q]’ X [1 + (1 p)SL(p)]
g —1 g —1 (20)
(14)

where;; + 5. = 1.
: Hence, in the limitp — 1 and ¢ — 1, from (19)
Si(q) = ——{1 — [2K(1,1)]'79}, (15) [or from (20)], by developing in powers ohp (Ag =
g —1 —q*Ap/p?) and considering only the first terms, we get
q > 0. . _ the lower bound (17).

The proof of the lower bound (14) is provided by  Experimental tests—The results presented in this paper
considering the condition thab(x) has, everywhere, a are valid for the strong hadron-hadron, hadron-nucleus, or
finite magnitude, i.e., rr do nucleus-nucleus scatterings for the spinless hadrons and
P(x) = P(1)=K(,1) = — (Lo + 1)> = == =——(1). only when the electromagnetic scattering contributions are

2 et d) subtracted from the experimental data. Hence, in the case

(16)  of the hadron-nucleus (with atomic numhg&rand mass

Next, the upper bounds (14) and (15) are optimal boundaumberA) scattering and nucleus-nucleus scattering a
which can be obtained via Lagrange multipliers by ex-dependence of the experimental entropies (1) and (7) are
tremizing the Tsallis-like entropies subject to the normal-expected to be observed only as a consequence of a vio-
ization constraints (2) and (8), respectively. lation of the charge independence of the nuclear forces

State independent angle-angular momentum entropiwhile theA dependence of these entropies can be observed
lower bound—Here we present the following entropic explicitly or is implicitly included via the optimal cutoff
inequalities, namely,state-independent entropic lower parameterl, [see Eq. (16)]. Here, for numerical inves-
bound tigation of our results it is interesting to calculate the

nN2=358, +5.. (17) entropies (1) and (7) by reconstruction of the hadron-
nucleus scattering amplitudes using the available experi-
mental phase shifts [7—10] for the®-*He, #°-1>2C and
m0-100, 70-4Ca scatterings. The results obtained in this
way are presented in Figs. 1 and 2 as functions obire
timal angular momentuni, which is obtained from the

forg > 0, and

A general proof of (7) can be obtained by applying the
following Riesz theorenfsee Theorem 2.8 from Ref. [6],
p. 102).

Indeed, by using the relations

{[ P"(x) dx:|l/2m =1+ (1 — m)Sy(m)]"/>", same phase shifts [7—11] by formula [see Eq. (16)]
1/2m Ly = [4—7T d—g (1)]1/2 - 1. (21)
[Z(zz + 1)p,'"} =1+ (1 = m)Sc(m)]?", (18) 7er d

Therefore, in Fig. 1 we presented the results of the first

m=p.q, experimental test of thetate independent entropic lower
from theRiesz Theorem 2.@Ref. [6], p. 102) (withp —  bound (17)in the pion-nucleus scattering. From Fig. 1
2p and p’ — 2q, so thatp~! + ¢! =2) we get the we see that thientropic lower bounds clearly experi-
following general result. mentally verified with high accuracy. From Fig. 2 we see

(p. q)-Entropic bound: (i) Letf € LP(—1,+1), 3 <  that the experimental scattering entropi§s, S;.) for the
p = 1 be the scattering amplitude satisfying (5) with the 7°-*He, #°-12C and#°-1°0, #°-4Ca scatterings are well
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FIG. 1. The experimental tests of thstate independent
entropic lower bounds, + S; = In 2, for the #°-*He, #°-12C
and 7°-1°0, 7%-%°Ca scatterings, calculated by using Egs. (1)

and (7) and the experimental pion-nucleus phase shifts from

Refs. [7—11], as functions df,.

described (the full and dotted curves) by the followoyg
timal entropieq22) and (23):
[K (x, 17
In[ XL | (22)

St = —fl iy G 1T
Sl = In{[Ly + 17%}. (23)

1 K(1,1)

n0X — w0X

-

]
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FIG. 2. The experimental entropie% and S;, obtained by
using Egs. (1) and (7) and the experimental phase shifts from
Refs. [7-11] for thew-*He, #°->C and #°-'°0, #°-%Ca
scatterings, are compared with the theoretical optimal state
predictions (22) (dotted curve) and (23) (full curve).

mal state(26) from Ref. [12] is the state agquilibrium
of the angular momenta channels considered gsiam-
tum statistical ensembleHence, theoptimal angular dis-

These entropies correspond to the optimal scattering staggpution P°!(x) = [K(x, 1)]*/K(1,1) can be considered

(26) from Ref. [12] where theeproducing kernel func-
tions K (x, y) are given in Eqgs. (22) and (23) of Ref. [12].
The values of optimals;', S¢'), entropies for the scatter-

as a signature of thiequilibrium distributionof the L
channels.
From Fig. 2, we see that the experimental values

ing of spinless particles, are obtained by numerical integraof (5,,S,) entropies for the pion-nucleus scatterings

tion and direct, respectively, and are presented in Table

only for0 = Ly = 12. Clearly, the fact that the experi-

dre systematically described by thaptimal entropies
(S9!, 85" at all available pion kinetic energies. In this

mental entropies do not depend significantly on the atomigense the results obtained here can also be considered

numberA is a direct consequence of tleptimal state

as new experimental signatures for the validity of the

dominancesince in this case the entropies of all hadron nuprinciple of minimum distance in space of scattering
clei as a function of the variabley must be concentrated stateseven in the crude form [12].

around the optimal values (22),(23) given in Table I.

The extension of theoptimal stateanalysis to the

Now, in order to see why the experimental entropiesyeneralized nonextensive statistics cage# 1) [13],

are well described by the optimal entropi€sy’, s7'),
entropies (22) and (23), we observe that the entrpy
(7) is similar to the Boltzmann entropy with a maximum
value given by the logarithm ofiumber of the optimal
states. Indeed, from (15) we have

Sy =8¢ =1In[2K(1,1)], (24)

where2K(1,1) = >.(21 + 1) = (Ly + 1)? is thenumber
of optimal scattering stategarticipating at the scattering
process. This result allows us to conclude that dbé-
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as well as a test of the entropic inequalities (19),(20)
for ¢ # 1, can be obtained in a similar way by using
the following nonextensive optimal entropies$'(g) =
Lt = [T dx[(K( DX/K(L D] and S7(g) =
~7{l — [2K(1,1)]'"9}. Since this kind of analysis is
more involved the numerical examples fpr# 1 will be
given in a more extended paper.

Finally, we believe that the results obtained here are
encouraging for further investigations of the entropic
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TABLE I. The optimal entropiessy’, S5', S7' + S3', corresponding to different optimal
angular momentuni,, calculated by using Egs. (22), (23), and Ref. [12].

Lo S Sp! Sgt+850 Lo S sy sp' + 53!
0 0.693 0 0.693 13 —-2.970 5.278 2.308
1 0.128 1.386 1.514 14  —3.098 5.416 2.318
2 —0.385 2.197 1.812 15  —3.219 5.545 2.326
3 —0.806 2.773 1.966 16 —3.334 5.666 2.333
4 —1.158 3.219 2.061 17 —3.442 5.781 2.339
5 —1.460 3.584 2.124 18  —3.544 5.889 2.345
6 —1.722 3.892 2.170 19 —3.641 5.992 2.351
7 —1.955 4.159 2.204 20 —3.734 6.089 2.355
8 —2.164 4.394 2.231 21 —3.823 6.182 2.360
9 —2.353 4.605 2.253 22 —3.908 6.271 2.363

10 —2.526 4.796 2.270 23 —3.989 6.356 2.367

11 —2.685 4.970 2.285 24 —4.068 6.438 2.370

12 —2.832 5.130 2.298 25 —4.143 6.516 2.373
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