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In this paper theangle-angular momentum entropic lower boundis proved by using Tsallis-like
entropies and Riesz theorem for the quantum scattering of the spinless particles. Numerical estimat
of the scattering entropies, as well as an experimental test of thestate-independententropic lower bound,
are obtained by using the amplitude reconstruction from the available phase shift analyses for the pi
nucleus scatterings. A standard interpretation of these results in terms of the optimal state domina
is presented. Then, it is shown that experimental pion-nucleus entropies are well described by optim
entropies and that the experimental data are consistent with theprinciple of minimum distance in the
space of scattering states.[S0031-9007(98)08033-8]

PACS numbers: 03.65.Ca, 25.80.Dj
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Over the past two decades there has been increasing
terest [1] in the investigation of theentropic uncertainty
relationsintroduced in Ref. [2]. In this paper the entropic
lower bound for the quantum scattering [3] is invest
gated in a more general form by introducingTsallis-like
entropies(see Refs. [4,5]). Hence, by usingRiesz theo-
rem [6], the state-independent angle-angular momentu
entropic lower boundis proved for the scattering of spin-
less particles. The results on the first experimental te
of this state independent entropic boundin pion-nucleus
scattering are obtained by calculations of the scatteri
entropies from the experimental availablephase shifts[7–
11]. Moreover, comparisons of these results with the o
timal state [12] prediction are presented.

Angular entropySu .—The informational angular en-
tropy Su of any quantum scattering states is defined as
Ref. [3] by

Su ­ 2
Z 1

21
dx Psxd ln Psxd , (1)

wherePsxd is the angular distribution defined in terms o
the differential cross section by

Psxd ­
2p

sel

ds

dV
sxd,

Z 1

21
Psxd dx ­ 1 . (2)

More general, we can define theTsallis-like angular
entropies[4,5]

Susqd ­
1

q 2 1

(
1 2

Z 1

21
dxfPsxdgq

)
, q [ R (3)

with the property
lim
q!1

Susqd ­ Sus1d ­ Su . (4)

The angular momentum entropySL.—Now, let us
consider the case when the scattering amplitudefsxd of
the spinless particles is developed in partial amplitudes
follows:

fsxd ­
LX

l­0

s2l 1 1dflPlsxd, x [ f21, 1g, fl [ C ,

(5)
where L 1 1 is the number of partial amplitudesfl ,
Plsxd, l ­ 0, 1, . . . , L, are Legendre polynomials. Then
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the Fourier coefficientsor the partial amplitudesfl are
expressed as

fl ­
1
2

Z 11

21
fsxdPlsxd dx, fl [ C . (6)

Hence, we define theangular momentum entropySL by

SL ­ 2

LX
l­0

s2l 1 1d ? pl ? ln pl , (7)

where the partial probabilitiespl are defined by

pl ­ 4p
jflj

2

sel
,

LX
l­0

s2l 1 1dpl ­ 1 . (8)

Of course, in this case, theTsallis-like angular momentum
entropies for the scattering process can be defined a
follows:

SLsqd ­
1

q 2 1

(
1 2

LX
l­0

s2l 1 1d fplgq

)
, q [ R

(9)

with the property

lim
q!1

SLsqd ­ SLs1d ­ SL . (10)

The angle-angular momentum entropySuL.—The en-
tropies (1) and (7) are defined as natural measures of t
uncertainties corresponding to the distributions of proba
bilities Psxd and pl , respectively. If we are interested
to obtain a measure of uncertainty of the simultaneou
realization of the probability distributionsPsxd and pl ,
then we must calculate the entropy corresponding to th
product of these distributions:Psx, ld ­ Psxd ? pl . It is
easy to verify that theangle-angular momentum entropy
is given by

SuL ­ 2

LX
l­0

s2l 1 1d
Z 1

21
dx Psx, ld lnfPsx, ldg

­ Su 1 SL . (11)
© 1998 The American Physical Society
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In this case the Tsallis-like entropies for the scatteri
of spinless particles is given by

SuLsqd ­
1

q 2 1

(
1 2

LX
l­0

p
q
l

Z 1

21
dxfPsxdgq

)
­ Susqd 1 SLsqd 1 sq 2 1dSusqdSLsqd ,

q [ R (12)

with the property

lim
q!1

SuLsqd ­ SuLs1d ­ SuL ­ Su 1 SL . (13)

Therefore, the indexq fi 1 controls the degree of entropy
nonextensivity reflected in the pseudoadditivity entrop
rule (12).

Entropic inequalities.—It is interesting to present here
the following generalized entropic inequalities for th
Tsallis-like entropies.

1
q 2 1

f1 2 Kq21s1, 1dg # Susqd #
1

q 2 1
f1 2 212qg ,

(14)

for q . 0, and

SLsqd #
1

q 2 1
h1 2 f2Ks1, 1dg12qj , (15)

q . 0.
The proof of the lower bound (14) is provided b

considering the condition thatPsxd has, everywhere, a
finite magnitude, i.e.,

Psxd # Ps1d ­ Ks1, 1d ­
1
2

sL0 1 1d2 ­
2p

sel

ds

dV
s1d .

(16)

Next, the upper bounds (14) and (15) are optimal boun
which can be obtained via Lagrange multipliers by e
tremizing the Tsallis-like entropies subject to the norma
ization constraints (2) and (8), respectively.

State independent angle-angular momentum entro
lower bound.—Here we present the following entropic
inequalities, namely,state-independent entropic lowe
bound

ln 2 # Su 1 SL . (17)

A general proof of (7) can be obtained by applying th
following Riesz theorem(see Theorem 2.8 from Ref. [6],
p. 102).

Indeed, by using the relations"Z
Pmsxd dx

#1y2m

­ f1 1 s1 2 mdSusmdg1y2m,"X
s2l 1 1dpm

l

#1y2m

­ f1 1 s1 2 mdSLsmdg1y2m, (18)

m ­ p, q ,

from theRiesz Theorem 2.8(Ref. [6], p. 102) (withp !
2p and p0 ! 2q, so thatp21 1 q21 ­ 2) we get the
following general result.

sp, qd-Entropic bound: (i) Letf [ Lps21, 11d, 1
2 ,

p # 1 be the scattering amplitude satisfying (5) with th
ng

y

e

y

ds
x-
l-

pic

r

e

e

Fourier coefficients given by (6). If the scattering Tsallis
like entropies are defined by Eqs. (3) and (9), respective
then the following entropic inequalities hold:

f1 1 s1 2 qdSLsqdg1y2q # exp

("
p 2 1

2p

#
ln 2

)
3 f1 1 s1 2 pdSuspdg1y2p

(19)

for anyq defined by the relation1
2p 1 1

2q ­ 1.
(ii) For any finite sequencefl with finite f1 1 s1 2

pdSLspdg1y2p there is anf [ Lqs21, 11d satisfying(5)
for which

f1 1 s1 2 qdSusqdg1y2q # exp

("
p 2 1

2p

#
ln 2

)
3 f1 1 s1 2 pdSLspdg1y2p

(20)

where 1
2p 1 1

2q ­ 1.
Hence, in the limit p ! 1 and q ! 1, from (19)

[or from (20)], by developing in powers ofDp sDq ­
2q2Dpyp2d and considering only the first terms, we ge
the lower bound (17).

Experimental tests.—The results presented in this pape
are valid for the strong hadron-hadron, hadron-nucleus
nucleus-nucleus scatterings for the spinless hadrons
only when the electromagnetic scattering contributions a
subtracted from the experimental data. Hence, in the c
of the hadron-nucleus (with atomic numberZ and mass
numberA) scattering and nucleus-nucleus scattering aZ
dependence of the experimental entropies (1) and (7)
expected to be observed only as a consequence of a
lation of the charge independence of the nuclear forc
while theA dependence of these entropies can be obser
explicitly or is implicitly included via the optimal cutoff
parameterL0 [see Eq. (16)]. Here, for numerical inves
tigation of our results it is interesting to calculate th
entropies (1) and (7) by reconstruction of the hadro
nucleus scattering amplitudes using the available exp
mental phase shifts [7–10] for thep0-4He, p0-12C and
p0-16O, p0-40Ca scatterings. The results obtained in th
way are presented in Figs. 1 and 2 as functions of theop-
timal angular momentumL0 which is obtained from the
same phase shifts [7–11] by formula [see Eq. (16)]

L0 ­

(
4p

sel

ds

dV
s1d

)1y2

2 1 . (21)

Therefore, in Fig. 1 we presented the results of the fi
experimental test of thestate independent entropic lowe
bound (17)in the pion-nucleus scattering. From Fig.
we see that thisentropic lower boundis clearly experi-
mentally verified with high accuracy. From Fig. 2 we se
that the experimental scattering entropiessSu , SLd for the
p0-4He,p0-12C andp0-16O, p0-40Ca scatterings are well
5715
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FIG. 1. The experimental tests of thestate independent
entropic lower bound:Su 1 SJ $ ln 2, for thep0-4He, p0-12C
and p0-16O, p0-40Ca scatterings, calculated by using Eqs. (
and (7) and the experimental pion-nucleus phase shifts fr
Refs. [7–11], as functions ofL0.

described (the full and dotted curves) by the followingop-
timal entropies(22) and (23):

So1
u ­ 2

Z 1

21
dx

fKsx, 1g2

Ks1, 1d
ln

"
fKsx, 1g2

Ks1, 1d

#
, (22)

So1
L ­ lnhfL0 1 1g2j . (23)

These entropies correspond to the optimal scattering s
(26) from Ref. [12] where thereproducing kernel func-
tions Ksx, yd are given in Eqs. (22) and (23) of Ref. [12]
The values of optimalsSo1

u , So1
L d, entropies for the scatter-

ing of spinless particles, are obtained by numerical integ
tion and direct, respectively, and are presented in Tab
only for 0 # L0 # 12. Clearly, the fact that the experi-
mental entropies do not depend significantly on the atom
number A is a direct consequence of theoptimal state
dominancesince in this case the entropies of all hadron n
clei as a function of the variableL0 must be concentrated
around the optimal values (22),(23) given in Table I.

Now, in order to see why the experimental entropi
are well described by the optimal entropiessSo1

u , So1
L d,

entropies (22) and (23), we observe that the entropySL

(7) is similar to the Boltzmann entropy with a maximum
value given by the logarithm ofnumber of the optimal
states. Indeed, from (15) we have

SL # So1
L ­ lnf2Ks1, 1dg , (24)

where2Ks1, 1d ­
P

s2l 1 1d ­ sL0 1 1d2 is thenumber
of optimal scattering statesparticipating at the scattering
process. This result allows us to conclude that theopti-
5716
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FIG. 2. The experimental entropiesSu and SL, obtained by
using Eqs. (1) and (7) and the experimental phase shifts fr
Refs. [7–11] for thep0-4He, p0-12C and p0-16O, p0-40Ca
scatterings, are compared with the theoretical optimal st
predictions (22) (dotted curve) and (23) (full curve).

mal state(26) from Ref. [12] is the state ofequilibrium
of the angular momenta channels considered as aquan-
tum statistical ensemble.Hence, theoptimal angular dis-
tribution Po1sxd ­ fKsx, 1dg2yKs1, 1d can be considered
as a signature of thisequilibrium distribution of the L
channels.

From Fig. 2, we see that the experimental valu
of sSu , SLd entropies for the pion-nucleus scatterings
are systematically described by theoptimal entropies
sSo1

u , So1
u d at all available pion kinetic energies. In thi

sense the results obtained here can also be consid
as new experimental signatures for the validity of th
principle of minimum distance in space of scatterin
stateseven in the crude form [12].

The extension of theoptimal state analysis to the
generalized nonextensive statistics casesq fi 1d [13],
as well as a test of the entropic inequalities (19),(2
for q fi 1, can be obtained in a similar way by usin
the following nonextensive optimal entropies:So1

u sqd ­
1

q21 h1 2
R11

21 dxfsssKsx, 1dddd2yKs1, 1dgqj and So1
L sqd ­

1
q21 h1 2 f2Ks1, 1dg12qj. Since this kind of analysis is
more involved the numerical examples forq fi 1 will be
given in a more extended paper.

Finally, we believe that the results obtained here a
encouraging for further investigations of the entrop
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TABLE I. The optimal entropiesSo1
L , So1

u , So1
L 1 So1

u , corresponding to different optimal
angular momentumL0, calculated by using Eqs. (22), (23), and Ref. [12].

L0 So1
u So1

L So1
L 1 So1

u L0 So1
u So1

L So1
L 1 So1

u

0 0.693 0 0.693 13 22.970 5.278 2.308
1 0.128 1.386 1.514 14 23.098 5.416 2.318
2 20.385 2.197 1.812 15 23.219 5.545 2.326
3 20.806 2.773 1.966 16 23.334 5.666 2.333
4 21.158 3.219 2.061 17 23.442 5.781 2.339
5 21.460 3.584 2.124 18 23.544 5.889 2.345
6 21.722 3.892 2.170 19 23.641 5.992 2.351
7 21.955 4.159 2.204 20 23.734 6.089 2.355
8 22.164 4.394 2.231 21 23.823 6.182 2.360
9 22.353 4.605 2.253 22 23.908 6.271 2.363

10 22.526 4.796 2.270 23 23.989 6.356 2.367
11 22.685 4.970 2.285 24 24.068 6.438 2.370
12 22.832 5.130 2.298 25 24.143 6.516 2.373
.

es
uncertainty relations as well as of the principle of mini
mum distance in space of states not only in the elementa
particle physics but also in other domains of science su
as in genetics, biology (see, e.g., Ref. [14]), etc.
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