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Analytical Theory of Susceptibility Induced NMR Signal Dephasing
in a Cerebrovascular Network
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A deterministic analytical model which describes the time course of NMR signal relaxation in media
where the magnetic field is perturbed by stochastic low-density inclusions having one-dimensional ex-
tent is developed. Both static and diffusion dephasing mechanisms are included. The model is applied
to a simulation of a living tissue where the inclusions are identified with blood microvessels. This
application is a ground for quantitation of signal changes during brain activation measured by func-
tional magnetic resonance imaging. The results are consistent with previous Monte Carlo simulations.
[S0031-9007(98)07980-0]

PACS numbers: 87.59.Pw, 76.60.Jx, 76.60.Pc, 87.40.+w

The theory of NMR signal dephasing distinguishes be- The first goal of a theory is to describe the complete
tween microscopic molecular relaxation mechanisms, andignal relaxation curve as a function of physical character-
dephasing due to the susceptibility induced magnetic fieldstics of blood and tissues. The latter are subject to physio-
inhomogeneities at mesoscopic scales. While the theorpgical changes which are slow as compared with the signal
of molecular relaxation mechanisms is well establishedrelaxation (a few seconds v.s: 70 ms at 1.5 T). Such a
the mesocsopic effects have recently attracted particitheory is highly desirable for quantitating fMRI in terms of
lar interest due to rapid development of functional mag-well-defined physiological parameters (e.g., the changes in
netic resonance imaging (fMRI) of human brain. In thisblood oxygenation level and flow) which is currently not
Letter, we find the complete NMR signal relaxation curvefeasible. This theory is of particular importance, since with
in media where the magnetic field is perturbed by stochasecent technical advances such as [3,4], one can measure
tic low-density inclusions having one-dimensional extentthe complete signal relaxation curve for each pixel.
Although our theory can be applied to related problems in The pioneering works in building a signal relaxation
material science, here we concentrate here on an applicarodel in line with the above requirements were a Monte
tion to fMRI for which case the inclusions are identified Carlo simulation [5] and an analytical model based on the
with small blood vessels. Anderson mean field theory [6]. The most comprehensive

Functional fMRI is a powerful noninvasive tool which existing model is based on a Monte Carlo simulation of
employs susceptibility sensitive NMR imaging techniquesthe proton random walk in a stochastic vascular network
to study functional brain activations vivo with a typical  [7]. However, Monte Carlo simulations are computation-
spatial resolution of a few millimeters and with a temporalally intense and do not allow study of the relative contri-
resolution of a few seconds. The signal changes in fMRbutions of various underlying dephasing mechanisms. An
are due to blood magnetic susceptibility variations assoanalytical approach to the stochastic microvasculature was
ciated with brain activations. A local neuronal excitationdeveloped in [8]. However, that paper did not consider
results in a regional increase in the oxygen consumptiorthe effect of diffusion which is important for the signal de-
followed by a disproportionally large increase in cerebralphasing around capillaries and venules.
blood flow. This vascular overcompensation increases the Here we develop an analytical treatment of the signal
net oxygenation of venous blood, which is paramagneticlephasing based on a tissue model similar to those used
in its deoxygenated state while other tissue components as papers [7,8]. In common with [7], we account for
well as oxygenated blood are diamagnetic. The increasene diffusion dephasing. For this purpose, we generalize
in blood oxygenation reduces the magnetic field inhomothe basic equation of [8] which derives the signal time
geneity from the vascular network which, in turn, reducescourse from the dephasing in the vicinity of a single vessel.
the susceptibility induced signal dephasing in surroundThe explicit calculations are performed in two limiting
ing tissue (brain parenchyma). Thus, the signal intensitgases called the static dephasing regime (SDR, section
in the activated region increases. This blood oxygenatiotl-A) and the diffusion narrowing regime (DNR, section
level dependent contrast mechanism is called BOLD efil-B). The parameters of our model are as follovs,
fect [1]. In practice, one repeats measurement with anthe main magnetic fieldy, the magnetic susceptibility of
without the physiological stimulus (e.g., light switched onblood relative to that of parenchym@;, the apparent water
and off) and searches for temporal correlations betweediffusion coefficient/ (R), the differential volume fraction
the stimulus and the brightness of image pixels [2]. of blood vessels with radiug; T,, the transverse relaxation
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time which is due to the microscopic spin-spin interactionwherep = |p| and ¢ are the radius and the azimuthal
and is not affected by physiological changes. There are nangle in the plane orthogonal to the cylindér,is the
adjustable parameters in our model. angle between the cylinder and the direction of the main

(1) Basic theory—Each image voxel (volume element) magnetic field, andéw = 27y yBy. The expression
contains many microvessels. This suggests an averagirfigr » inside the vessel is based on the Lorentz sphere
over the microvessel distribution which is commonly as-construction for an estimate of the magnetic field affecting
sumed. We consider only voxels which are macroscopithe atomic nuclei [10]. We do not take into account the
cally homogeneous. The signal from such a voxel takeadditional correction term im for p < R [10].

the following form when normalized to its initial value: The magnetization densityy of the spin packet at a
) t space poinf at timer is the fundamental solution of the
§(1) = exp—iwot) ex;(—T)s(t). (1) Bloch-Torrey equation [11]
Here wg = y By is the Larmor frequency of spin preces- an (1) R .
sion (y is the gyromagnetic ratio), andr) describes the T DAn(7, 1) — iQ(F)n(F,1),
signal dephasing in the magnetic field induced by the mi- (5)
crovascular network at the mesoscopic length scale (a few n(r,0) = 8(7).

pm and larger). We calk(r) the signal attenuation fac-
tor. The task of our theory is to calculate this function.
(A) The tissue model: We consider the brain . - -
parenchyma as a homogeneous medium where the water () = [ n(F, 1) dr. (6)
molecules diffuse freely and isotropically, but the diffu-
sion coefficient is reduced as compared to that of pur
water. This is a good approximation for cortical brain
areas wher® = 0.76 um?/ms [9].
The microvascular network consists of interconnectin
segments which are nearly straight and much longer than ul
s(r) = j V() [ [dT.,
n=1

The total magnetization of the spin packet is

%:or practical calculations, the path integral representation
or n can be useful.

(B) Averaging over the vessel distribution: The ob-
gserved signal attenuation factor takes the form

(7)

their diameter. This is modeled as a set of statistically
independent cylinders with random positiofs, orien-
tations 6,, and radiiR,. The distributions of the cylin- wheredI" stands for the integrations necessary for averag-
der position and orientation are uniform. The cylindering over the position and orientation of a given cylinder.
radius distribution is characterized ByR) which is the ~ The small blood volume fraction justifies a factorization
differential volume fraction of cylinders with radiug.

This function is normalized to the total blood volume P(r) = l_[z//(t,pn,H,,), (8)
fraction ¢y: n
where ¢ is the factor contributed by one cylinder. The
[f(R)dR = %o- (2)  correction terms to this formula are of the order of
Our approach will be applicable only to smalwhichis 4 in the exponent. Note that(s) given by (7) is
the case for the brain tissues whee= 3%—-5%. equivalent to the statistical sum of cylinders in a potential

The vessel walls are partly permeable for Water!nduced byW (z). From this point of view, the stqtistical
molecules. In our calculations, the effect of cylinderindependence of cylinders and Eg. (8) are equivalent to
boundary permeability is subdominant for relatively largeneglecting the contact interaction between cylinders and
vessels described in the SDR. We thus assume impef€ir indirect interaction induced by the spin packet. Both
meable vessel walls in this regime. For the capillarie®PProximations are valid whefy < 1. They resultin the
described in the DNR, we assume freely permeable vesstllowing form of the signal attenuation factor:

walls. In both regimes, the effect of a finite vessel wall
permeability is small [7]. sty =T]| 1 - f[l — ¢(t,p,0)]dl
Consider a spin packet placed at the origin of a n
coordinate systen¥ = 0. The local frequency of spin . _
precession is = ex {(R)f dR |, 9)
N
O = wo t Z w(ﬁn;Rna Hn)- (3) where
n=1
HereN > 1 is the number of cylinders and(p5,,; R, 0,,) f= L f[l — y(t, p,0)]dT (10)
is the Larmor frequency offset caused by the magnetic R?
field from thenth cylinder: is a function of two dimensionless parameters= dwt

andA = D/R?’Sw. The valuemR?f can be thought of
1 (4) as an effective area in the plane orthogonal to the vessel
Sw(cos o — 3) forp <R, where the dephasing takes place.

. Sw X cos2o s o for > R,
w(p;R,o>={“’ﬂ2 ¢ P
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Equations (9) and (10) form the general framework forabout the signal dephasing by small and large vessels,
calculation of the relaxation rate. In the rest of this paperrespectively. Below, we consider both of them separately.
we find the explicit form of thg’ function for the cases of ~ The signal decay measured after an excitation is com-
SDR and DNR. monly referred to as the free induction decay (FID). Also

(II) Explicit expressions and results:The starting commonly used is the spin-echo (SE) experiment which
point of our calculations is to solve equation (5). Thisemploys a refocusing radiofrequency pulse at tifize2.
can be done in the two following approximations which This pulse reverses the spin precession phases, thus caus-
we express in terms of the diffusion lengih= +/Dr and  ing the spin rephasing and creation of the so-called spin
diffusion timezp = R?/D: (i) The SDR when/3/R? =  echo at the echo tim&z;. We shall concentrate on the
A7 < 1. Inthe SDR, the spin packets evolve in a nearlytreatment of the FID and present only the results for the
uniform field. This is always valid for short measurementSE experiment for which the correspondigfgfunction
times and for sufficiently large vessels; (i) the DNR will be referred to ag.
whenpdw = 1/A < 1. In the DNR, the diffusion is (A) Static dephasing regime: In the SDR, the mag-
so fast that the spins are resident in the vicinity of anetic field across the size of the spin packet can be
vessel for a relatively short time. The applicability of this approximated by the first two terms of the Taylor expan-
approximation does not depend on Thus the validity sion:w(7) = w(0) + 7Vw(0). This reduces the problem
regions of DNR and SDR overlap for< 1/ (where to diffusion in a constant-gradient magnetic field which is
they give the same predictions). For larger times, theexactly solvable. The detailed calculations will be pub-
two approximations deliver complementary informati?nlished in [12]. The results take the following form:

T of 1
f(rA) = [O W[[O [1 - exp(—%/\r3u3sin40>Jo(msin2 0)} % - exp[—ir(cosza - %)“ +1,
(11)
o, T2\ _ [T singde [
fE(Ts /\9 T ) - /;) 2 j;)

4 . . d

1 — ex ——M3F<T—E>u3 sin* 0 |Jo(l7x — 7lusir 0)1 %> (12)
3 T u?
|

where u = R?/p?, 7p = S8wTr, and F(z) =1 — £ = it fsm&d@ @(0), (15)
3z2/2 + 3z3/4. The first and the second terms in the 7R? 2

integral overd in (11) are the contributions of the protons o 1 sin0do 4’k )

from outside and inside the vessels, respectively. The' —R2 > on) (1, Dk7)a (k)& (=k),

functions (11) and (12) are plotted in Fig. 1(a). For many
practical applications, it is sufficient to use the long-time

_ ) 2
asymptotic forms of these functions fors> 1 which are ~ Wheregx(1,z) = [exp(—rz) — 1 + rz]/z". _
Finally, we find @ using (4). The first-order function

2 P . - (15) vanishes due to the term é@s— 1/3in (4). Thef
flr3A) = (5 + CM)T + \/;exp(—i N i—), functions are dominated by the second order terms which
7 take the form
Ji(z) d

, o
ferps 1) = CoAVPrg — 1, g TN %M/‘&uﬂ@ © "

(16)

whereC; = 1.659, C, = 0.694 (the term27/3 was first fe(r,A) = 5 / [g2(ar,z) + g2(az,2)
found in [8]). 45A

(B) Diffusion narrowing regime: In the DNR, the mag- Jiz)
netic field of the blood vessels has a relatively small ~ silar.2)gi(a, s 4
effect on the spin precession phases and Eg. (5) can (18)
be solved perturbatively ino. We expandyn in pow-
ersofw: n =70 + M + »@ + .. Other values
are expanded and labeled accordingly. The zeroth ordé)(
term © is the conventional Green function for the free
diffusion. In terms of the Fourier componenigv, k)
and @#(k) (v and k are the frequency and the wave for the SDR as expected. For large times > 1,
vector in the plane orthogonal to the cylinder, respec-
tively), #%(v,k) =1/(Dk*> —iv), ¢ =1, and thus  ¢(; ) ~ 4 [ (Ini n C3) cAlnt s C‘i
f© = 0. Inthe next 2 orders of perturbatlon theory, the 4512 tp 4 1p '
f function takes the following form: (29)
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where a; = Atg/2, ar = At — 7¢/2, and g(¢t,z) =
xp(—tz) — 1]/z [Fig. 1(b)]. Note that the combination
’f depends on the only argumeht = t/1p.

For short measurement timeg, takes its asymptotic
orm f = 87%2/15 + 4A73/15 which coincides with that
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| b FIG. 2. The signal attenuation factor as predicted by the pre-
_ sented theory (solid lines) in comparison with the corresponding
_ results of the Monte Carlo simulation [7] for monosized vessels
| with radiusR for B=15T,D = lum?/ms, y = 1 X 1077,
_ {(R) = 2%. The approximation of DNR (smalR) is com-
_ pared with the data for permeable vessels (crosses), the SDR
results (largeR) are compared with the data for impermeable
] vessels (diamonds). The dashed lines show the corresponding
asymptotic formulas (13), (14), and (19) and the modification
0 5 10 15 t/tD for the SE signal described in the text thereafter (the dashed
FIG. 1. f function (10) for the FID (dashed lines) and the @nd solid lines are indistinguishable for the FID in the DNR).
SE experiments (solid lines) with a refocusing pulse applied at
t/tp = 5. (a) f in SDR vsdwt for the indicated values of.
(b) A%f in DNR vst/1p. Applications toin vivo fMRI experiments require one to
feed the model with the real vascular size distribution
{(R), D, andy. This work will be reported elsewhere.
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Monte Carlo simulation [7] (Fig. 2) shows a very good
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