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A deterministic analytical model which describes the time course of NMR signal relaxation in m
where the magnetic field is perturbed by stochastic low-density inclusions having one-dimension
tent is developed. Both static and diffusion dephasing mechanisms are included. The model is a
to a simulation of a living tissue where the inclusions are identified with blood microvessels.
application is a ground for quantitation of signal changes during brain activation measured by
tional magnetic resonance imaging. The results are consistent with previous Monte Carlo simul
[S0031-9007(98)07980-0]

PACS numbers: 87.59.Pw, 76.60.Jx, 76.60.Pc, 87.40.+w
be
an
el

eo
ed
tic
ag
his
rve

a
nt

s i
lic

ed

h
es

ra
R
so
on
tio
ra
th

eti
ts
as
o

ce
nd
sit
tio
e

an
on
ee

te
er-
io-
nal

f
s in
t

ith
sure

n
te
he
ive
of
rk

n-
ri-
An
as

er
-

al
sed
r

lize
e
el.

g
tion
n

The theory of NMR signal dephasing distinguishes
tween microscopic molecular relaxation mechanisms,
dephasing due to the susceptibility induced magnetic fi
inhomogeneities at mesoscopic scales. While the th
of molecular relaxation mechanisms is well establish
the mesocsopic effects have recently attracted par
lar interest due to rapid development of functional m
netic resonance imaging (fMRI) of human brain. In t
Letter, we find the complete NMR signal relaxation cu
in media where the magnetic field is perturbed by stoch
tic low-density inclusions having one-dimensional exte
Although our theory can be applied to related problem
material science, here we concentrate here on an app
tion to fMRI for which case the inclusions are identifi
with small blood vessels.

Functional fMRI is a powerful noninvasive tool whic
employs susceptibility sensitive NMR imaging techniqu
to study functional brain activationsin vivo with a typical
spatial resolution of a few millimeters and with a tempo
resolution of a few seconds. The signal changes in fM
are due to blood magnetic susceptibility variations as
ciated with brain activations. A local neuronal excitati
results in a regional increase in the oxygen consump
followed by a disproportionally large increase in cereb
blood flow. This vascular overcompensation increases
net oxygenation of venous blood, which is paramagn
in its deoxygenated state while other tissue componen
well as oxygenated blood are diamagnetic. The incre
in blood oxygenation reduces the magnetic field inhom
geneity from the vascular network which, in turn, redu
the susceptibility induced signal dephasing in surrou
ing tissue (brain parenchyma). Thus, the signal inten
in the activated region increases. This blood oxygena
level dependent contrast mechanism is called BOLD
fect [1]. In practice, one repeats measurement with
without the physiological stimulus (e.g., light switched
and off) and searches for temporal correlations betw
the stimulus and the brightness of image pixels [2].
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The first goal of a theory is to describe the comple
signal relaxation curve as a function of physical charact
istics of blood and tissues. The latter are subject to phys
logical changes which are slow as compared with the sig
relaxation (a few seconds v.s.ø 70 ms at 1.5 T). Such a
theory is highly desirable for quantitating fMRI in terms o
well-defined physiological parameters (e.g., the change
blood oxygenation level and flow) which is currently no
feasible. This theory is of particular importance, since w
recent technical advances such as [3,4], one can mea
the complete signal relaxation curve for each pixel.

The pioneering works in building a signal relaxatio
model in line with the above requirements were a Mon
Carlo simulation [5] and an analytical model based on t
Anderson mean field theory [6]. The most comprehens
existing model is based on a Monte Carlo simulation
the proton random walk in a stochastic vascular netwo
[7]. However, Monte Carlo simulations are computatio
ally intense and do not allow study of the relative cont
butions of various underlying dephasing mechanisms.
analytical approach to the stochastic microvasculature w
developed in [8]. However, that paper did not consid
the effect of diffusion which is important for the signal de
phasing around capillaries and venules.

Here we develop an analytical treatment of the sign
dephasing based on a tissue model similar to those u
in papers [7,8]. In common with [7], we account fo
the diffusion dephasing. For this purpose, we genera
the basic equation of [8] which derives the signal tim
course from the dephasing in the vicinity of a single vess
The explicit calculations are performed in two limitin
cases called the static dephasing regime (SDR, sec
II-A) and the diffusion narrowing regime (DNR, sectio
II-B). The parameters of our model are as follows:B0,
the main magnetic field;x, the magnetic susceptibility of
blood relative to that of parenchyma;D, the apparent water
diffusion coefficient;z sRd, the differential volume fraction
of blood vessels with radiusR; T2, the transverse relaxation
© 1998 The American Physical Society
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time which is due to the microscopic spin-spin interact
and is not affected by physiological changes. There ar
adjustable parameters in our model.

( I) Basic theory.—Each image voxel (volume elemen
contains many microvessels. This suggests an avera
over the microvessel distribution which is commonly
sumed. We consider only voxels which are macrosc
cally homogeneous. The signal from such a voxel ta
the following form when normalized to its initial value:

Sstd  exps2iv0td exp

µ
2

t
T2

∂
sstd . (1)

Here v0  gB0 is the Larmor frequency of spin prece
sion (g is the gyromagnetic ratio), andsstd describes the
signal dephasing in the magnetic field induced by the
crovascular network at the mesoscopic length scale (a
mm and larger). We callsstd the signal attenuation fac
tor. The task of our theory is to calculate this function

(A) The tissue model: We consider the bra
parenchyma as a homogeneous medium where the w
molecules diffuse freely and isotropically, but the diff
sion coefficient is reduced as compared to that of p
water. This is a good approximation for cortical bra
areas whereD  0.76 mm2yms [9].

The microvascular network consists of interconnect
segments which are nearly straight and much longer
their diameter. This is modeled as a set of statistic
independent cylinders with random positions$rn, orien-
tationsun, and radiiRn. The distributions of the cylin
der position and orientation are uniform. The cylind
radius distribution is characterized byz sRd which is the
differential volume fraction of cylinders with radiusR.
This function is normalized to the total blood volum
fractionz0: Z

z sRd dR  z0 . (2)

Our approach will be applicable only to smallz0 which is
the case for the brain tissues wherez0  3% 5%.

The vessel walls are partly permeable for wa
molecules. In our calculations, the effect of cylind
boundary permeability is subdominant for relatively lar
vessels described in the SDR. We thus assume im
meable vessel walls in this regime. For the capilla
described in the DNR, we assume freely permeable ve
walls. In both regimes, the effect of a finite vessel w
permeability is small [7].

Consider a spin packet placed at the origin o
coordinate system$r  0. The local frequency of spi
precession is

V  v0 1

NX
n1

vs $rn; Rn, und . (3)

HereN ¿ 1 is the number of cylinders andvs $rn; Rn, und
is the Larmor frequency offset caused by the magn
field from thenth cylinder:

vs $r; R, ud 

8<: dv
R2

r2 cos2w sin2 u for r . R ,

dvscos2 u 2
1
3 d for r , R ,

(4)
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where r  j $rj and w are the radius and the azimutha
angle in the plane orthogonal to the cylinder,u is the
angle between the cylinder and the direction of the ma
magnetic field, anddv  2pgxB0. The expression
for v inside the vessel is based on the Lorentz sph
construction for an estimate of the magnetic field affecti
the atomic nuclei [10]. We do not take into account th
additional correction term inv for r , R [10].

The magnetization densityh of the spin packet at a
space point$r at time t is the fundamental solution of the
Bloch-Torrey equation [11]

≠hs$r , td
≠t

 DDhs$r , td 2 iVs$rdhs$r , td ,

hs$r , 0d  ds$rd .
(5)

The total magnetization of the spin packet is

Cstd 
Z

hs$r , td d $r . (6)

For practical calculations, the path integral representat
for h can be useful.

(B) Averaging over the vessel distribution: The ob
served signal attenuation factor takes the form

sstd 
Z

Cstd
NY

n1

dGn , (7)

wheredG stands for the integrations necessary for avera
ing over the position and orientation of a given cylinde
The small blood volume fraction justifies a factorization

Cstd 
Y

n
cst, rn, und , (8)

wherec is the factor contributed by one cylinder. Th
correction terms to this formula are of the order o
z

2
0 in the exponent. Note thatsstd given by (7) is

equivalent to the statistical sum of cylinders in a potent
induced byCstd. From this point of view, the statistica
independence of cylinders and Eq. (8) are equivalent
neglecting the contact interaction between cylinders a
their indirect interaction induced by the spin packet. Bo
approximations are valid whenz0 ø 1. They result in the
following form of the signal attenuation factor:

sstd 
Y

n

"
1 2

Z
f1 2 cst, r, udg dG

#

 exp

"
2

Z
z sRdf dR

#
, (9)

where

f 
1

pR2

Z
f1 2 cst, r, udg dG (10)

is a function of two dimensionless parameterst  dvt
and l  DyR2dv. The valuepR2f can be thought of
as an effective area in the plane orthogonal to the ves
where the dephasing takes place.
5697



VOLUME 81, NUMBER 25 P H Y S I C A L R E V I E W L E T T E R S 21 DECEMBER 1998

fo
e
f

is
ch

rly
n
R

f a
is

th
on

els,
ely.
om-
lso
ich

caus-
pin
e
the

g-
be
n-

is
b-
Equations (9) and (10) form the general framework
calculation of the relaxation rate. In the rest of this pap
we find the explicit form of thef function for the cases o
SDR and DNR.

( II) Explicit expressions and results.—The starting
point of our calculations is to solve equation (5). Th
can be done in the two following approximations whi
we express in terms of the diffusion lengthlD 

p
Dt and

diffusion timetD  R2yD: (i) The SDR whenl2
DyR2 

lt ø 1. In the SDR, the spin packets evolve in a nea
uniform field. This is always valid for short measureme
times and for sufficiently large vessels; (ii) the DN
when tDdv  1yl ø 1. In the DNR, the diffusion is
so fast that the spins are resident in the vicinity o
vessel for a relatively short time. The applicability of th
approximation does not depend ont. Thus the validity
regions of DNR and SDR overlap fort ø 1ydv (where
they give the same predictions). For larger times,
two approximations deliver complementary informati
he
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about the signal dephasing by small and large vess
respectively. Below, we consider both of them separat

The signal decay measured after an excitation is c
monly referred to as the free induction decay (FID). A
commonly used is the spin-echo (SE) experiment wh
employs a refocusing radiofrequency pulse at timeTEy2.
This pulse reverses the spin precession phases, thus
ing the spin rephasing and creation of the so-called s
echo at the echo timeTE. We shall concentrate on th
treatment of the FID and present only the results for
SE experiment for which the correspondingf function
will be referred to asfE .

(A) Static dephasing regime: In the SDR, the ma
netic field across the size of the spin packet can
approximated by the first two terms of the Taylor expa
sion:vs$rd ø vs0d 1 $r=vs0d. This reduces the problem
to diffusion in a constant-gradient magnetic field which
exactly solvable. The detailed calculations will be pu
lished in [12]. The results take the following form:
fst; ld 
Z p

0

sinudu

2

(Z 1

0

"
1 2 exp

√
2

4
3

lt3u3 sin4 u

!
J0stu sin2 ud

#
du
u2 2 exp

"
2it

√
cos2 u 2

1
3

!#)
1 1 ,

(11)

fE

√
t; l,

tE

t

!


Z p

0

sinudu

2

Z 1

0

(
1 2 exp

"
2

4
3

lt3F

µ
tE

t

∂
u3 sin4 u

#
J0sjtE 2 tju sin2 ud

)
du
u2 , (12)
hich

n

t

where u  R2yr2, tE  dvTE, and Fszd  1 2

3z2y2 1 3z3y4. The first and the second terms in t
integral overu in (11) are the contributions of the proto
from outside and inside the vessels, respectively.
functions (11) and (12) are plotted in Fig. 1(a). For ma
practical applications, it is sufficient to use the long-ti
asymptotic forms of these functions fort ¿ 1 which are

fst; ld ø

√
2
3

1 C1l

!
t 1

r
p

4t
exp

√
2i

t

3
2 i

p

4

!
,

(13)

fEstE; l, 1d ø C2l1y3tE 2 1 , (14)

whereC1  1.659, C2  0.694 (the term2ty3 was first
found in [8]).

(B) Diffusion narrowing regime: In the DNR, the ma
netic field of the blood vessels has a relatively sm
effect on the spin precession phases and Eq. (5)
be solved perturbatively inv. We expandh in pow-
ers of v: h  hs0d 1 hs1d 1 hs2d 1 . . . . Other values
are expanded and labeled accordingly. The zeroth o
term hs0d is the conventional Green function for the fr
diffusion. In terms of the Fourier componentsh̃sn, kd
and ṽskd (n and k are the frequency and the wa
vector in the plane orthogonal to the cylinder, resp
tively), h̃s0dsn, kd  1ysDk2 2 ind, c  1, and thus
f s0d  0. In the next 2 orders of perturbation theory, t
f function takes the following form:
e

l
n

er

-

f s1d 
it

pR2

Z sinudu

2
ṽs0d , (15)

f s2d 
1

pR2

Z sinudu

2

Z d2k
s2pd2 g2st, Dk2dṽskdṽs2kd ,

(16)
whereg2st, zd  fexps2tzd 2 1 1 tzgyz2.

Finally, we find ṽ using (4). The first-order function
(15) vanishes due to the term cos2 u 2 1y3 in (4). Thef
functions are dominated by the second order terms w
take the form

fst, ld 
32

45l2

Z `

0
g2slt, zd

J2
1 szd
z

dz , (17)

fEst, ld 
32

45l2

Z `

0
f g2sa1, zd 1 g2sa2, zd

2 g1sa1, zdg1sa2, zdg
J2

1 szd
z

dz ,

(18)
where a1  ltEy2, a2  lt 2 tEy2, and g1st, zd 
fexps2tzd 2 1gyz [Fig. 1(b)]. Note that the combinatio
l2f depends on the only argumentlt  tytD .

For short measurement times,f takes its asymptotic
form f  8t2y15 1 4lt3y15 which coincides with tha
for the SDR as expected. For large timeslt ¿ 1,

fst, ld ø
4

45l2

"
t

tD

√
ln

t
tD

1 C3

!
1

1
4

ln
t

tD
1 C4

#
,

(19)
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FIG. 1. f function (10) for the FID (dashed lines) and th
SE experiments (solid lines) with a refocusing pulse applie
tytD  5. (a) f in SDR vsdvt for the indicated values ofl.
(b) l2f in DNR vs tytD .

where C3  0.309 and C4  0.619. The function fE

measured at larget  TE takes the same form with
prefactor of 8 instead of 4, andtytD andC3 replaced with
ty2tD andCE

3  20.384, respectively.
A comparison of our results with the predictions of t

Monte Carlo simulation [7] (Fig. 2) shows a very goo
agreement for both the DNR and SDR. The simplest w
to describe the crossover region is to write interpolat
formulas between the corresponding long-time asympt
forms. This can be sufficient for the practical applicatio
because the time scalet , 1 is rather short (for the
typical valuesB0  1.5 T andx  1027 it is 4 ms while
the measurement time is usuallyt  40 100 ms).

An interesting finding of our theory is the differenc
in the shape of the relaxation curves for small a
large vessels [Fig. 1, Eqs. (13), (14), and (19)] wh
may help to experimentally distinguish their relaxati
contributions.

It follows from comparison of Eqs. (13) and (14) (s
also Fig. 1a) that the conventionally used formula for
transverse relaxation rates of FID:1yTp

2  1yT2 1 1yT 0
2

fails whereT2 is separately measurable in the SE exp
ment and1yT 0

2 is the contributions of the reversible sta
dephasing. This is a result of the statistical depende
of diffusion and static dephasing mechanisms, beca
both of them are due to the same blood vessels. A m
detailed discussion of the SDR results will be presen
in [12].

The obtained results can be applied to NMR sig
relaxation in media other than living tissues where
magnetic field is perturbed by stochastic low-dens
inclusions having one-dimensional extent. The isotro
inclusion distributionssinudy2 can be easily modified in
our final expressions to account for possible anisotro
t
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ic
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FIG. 2. The signal attenuation factor as predicted by the p
sented theory (solid lines) in comparison with the correspond
results of the Monte Carlo simulation [7] for monosized vess
with radiusR for B  1.5 T, D  1mm2yms, x  1 3 1027,
z sRd  2%. The approximation of DNR (smallR) is com-
pared with the data for permeable vessels (crosses), the S
results (largeR) are compared with the data for impermeab
vessels (diamonds). The dashed lines show the correspon
asymptotic formulas (13), (14), and (19) and the modificati
for the SE signal described in the text thereafter (the das
and solid lines are indistinguishable for the FID in the DNR).

Applications toin vivo fMRI experiments require one to
feed the model with the real vascular size distributi
z sRd, D, andx. This work will be reported elsewhere.
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