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Receiver-Operating-Characteristic Analysis Reveals Superiority of Scale-Dependent Wavelet
and Spectral Measures for Assessing Cardiac Dysfunction
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Receiver-operating-characteristic analysis was used to assess the suitability of various heart-rate
variability (HRV) measures for correctly classifying electrocardiogram records of varying lengths as
normal or revealing the presence of heart failure. Scale-dependent HRV measures were found to be
substantially superior to scale-independent measures (scaling exponents) for discriminating the two
classes of data over a broad range of record lengths (hours to minutes). A jittered integrate-and-fire
model built around a fractal Gaussian-noise kernel provides a realistic, though not perfect, simulation
of heartbeat sequences. [S0031-9007(98)08087-9]

PACS numbers: 87.10.+¢, 87.80.+s, 87.90.+y

Although the notion of using heart-rate variability oped clinical signs of cardiovascular disease [16]. These
(HRV) analysis to assess the condition of the cardiovastwo studies [6,16], in conjunction with our earlier in-
cular system stretches back some 40 years, its use asvastigations which revealed a similar critical scale win-
noninvasive clinical tool has only recently come to thedow in thecountingstatistics of the heartbeat [4,5,17] (as
fore [1]. A whole host of measures, both scale dependerdpposed to the timeiterval statistics considered here),
and scale independent, have been added to the HRV dead to the recognition that scales in the vicinity of
mamentarium over the years. m = 32 enjoy a special status. This conclusion has been

One of the more venerable among the many scaleborne out for a broad range of analyzing wavelets, from
dependent measures in the literature is the interbeabBaubechies 2-tap (Haar) to Daubechies 20-tap [10,18]
interval (R-R) standard deviationoy,, [2]. The  (higher order analyzing wavelets are suitable for remov-
canonical example of a scale-independent measuri@g polynomial nonstationarities [11]). It has become
is the scaling exponenig of the interbeat-interval power clear that scale-dependent measures [suclras(32)]
spectrum, associated with the decreasing power-lawubstantially outperform scale-independent ones (such as
form of the spectrum at sufficiently low frequencigs ags and ay) in their ability to discriminate patients with
S(f) « f~* [1,3]. Other scale-independent measurescertain cardiac dysfunctions from normal subjects (see
have been examined by us [4-6] and by others [7—9]also [18,19]).

One of the principal goals of this Letter is to establish The reduction in the value of the wavelet-coefficient
the relative merits of these two classes of measurestandard deviationr,,,(32) that leads to the scale win-
scale-dependent and scale-independent, for assessidgw occurs not only for heart-failure patients [6], but
cardiac dysfunction. also for heart-failure patients with atrial fibrillation [18],

One factor that can confound the reliability of a measureliabetic patients [16], heart-transplant patients [16,19],
is the nonstationarity of the R-R time series. Multireso-and in records preceding sudden cardiac death [6,19].
lution wavelet analysis provides a suitable means of deThe depression of.,(32) at these scales is likely asso-
composing a signal into its components at different scalesiated with the impairment of autonomic nervous system
[10-12], and at the same time has the salutary effect dunction. Baroreflex modulations of the sympathetic
eliminating nonstationarities [13,14]. It is therefore idealor parasympathetic tone typically lie in the range
for examining both scale-dependent and scale-independe®i04—-0.09 Hz (11-25 sec), which corresponds to the
measures; it is in this latter capacity that it provides anscale wherery,,(m) is reduced.
estimate of the wavelet scaling exponen [6]. The perfect separation achieved in our study of 20-h

We recently carried out a study [6] in which wavelets Holter-monitor recordings [6] endorses the choice of
were used to analyze the R-R interval sequence from ay,,(32) as a useful diagnostic measure. The results
standard electrocardiogram (ECG) database [15]. Usingf most studies are seldom so clear-cut, however. When
the wavelet-coefficient standard deviatiey,,(m), where there is incomplete separation between two classes of sub-
m = 2" is the scale and is the scale index, we dis- jects, as observed for other less discriminating measures
covered a critical scale window near = 32 interbeat using these identical long data sets [7,8], or when our
intervals over which it was possible to perfectly discrimi- measure is applied to large collections of out-of-sample
nate heart-failure patients from normal subjects. Theor reduced-length data sets [19], an objective means for
presence of this scale window was confirmed in an Israelidetermining the relative diagnostic capabilities of differ-
Danish study of diabetic patients who had not yet develent measures is required.
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ROC analysis—Receiver-operating-characteristic as M* or log(M). In contrast, the values af’, and its
(ROC) analysis [20] is an objective and highly effective closely related cousins, change under such transforma-
technique for assessing the performance of a measut®ns. Unfortunately, this is not always recognized which
when it is used in binary hypothesis testing. This formathas led some authors to specious conclusions [21].
provides that a data sample be assigned to one of two Scale-dependent vs scale-independent measures.
hypotheses or classes (e.g., normal or pathologic) déA/avelet analysis provides a ready comparison for
pending on the value of some measured statistic relativecale-dependent and scale-independent measures since
to a threshold value. The efficacy of a measure is theiit reveals both. ROC curves constructed using 75821
judged on the basis of its sensitivity (the proportion ofR-R intervals from each of the 24 data sets (12 heart
pathologic patients correctly identified) and its specificityfailure, 12 normal) [15] are presented in Fig. 1 (left)
(the proportion of control subjects correctly identified). for the wavelet measurer,,,(32) (using the Haar
The ROC curve is a graphical presentation of sensitivitywavelet) as well as for the wavelet measurg,. It
versusl-specificity as a threshold parameter is swept (seés clear from Fig. 1 that the area under the,,(32)

Fig. 1). ROC curve is unity, indicating perfect discriminability.
The area under the ROC curve serves as a well-
established index of diagnostic accuracy [20]; a value DATA SIMULATION

of 0.5 arises from assignment to a class by pure chance
whereas the maximum value of 1.0 corresponds to perfect
assignment (unity sensitivity for all values of specificity).

a function of record length (see Fig. 2). A minimum
record length can then be specified to achieve acceptable T T
classification accuracy. Because ROC analysis relies on ®
no implicit assumptions about the statistical nature of the = S(1/32)
data set [18,20], it is more reliable and appropriate for
analyzing non-Gaussian time series than are measures cg 0.8
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e FIG. 2. Diagnostic accuracy (area under ROC curve) vs
record length (number of R-R intervals) for three scale-
0 1 1 dependent and three scale-independent measures (théan
0 0.5 1 0 0.5 1 standard deviation). An area of unity corresponds to the correct
1— SPECIFICITY 1— SPECIFICITY assignment of each patient to the appropriate class. Left:

oway(32) and S(1/32) provide excellent performance, attaining

FIG. 1. ROC curves (sensitivity vd-specificity) for two  unity area (perfect separation) for 32768 (or more) R-R
wavelet-based measures,,,(32) which is scale dependent and intervals. These measures continue to perform well even as the
aw Wwhich is scale independent. Left: ROC curves obtainednumber of R-R intervals decreases below 100, corresponding to
using all 24 data records, each comprising 75821 interbeatcord lengths just a few minutes long. The performance of
intervals [15]. The scale-dependent measure outperforms the;, is seen to be slightly inferior. In contrast, all three scale-
scale-independent one since its ROC area is greater. Righindependent measures perform poorly. Right: Similar results
Comparable result obtained using simulations for the fractalare obtained using 24 simulations of the FGNJIF model, with
Gaussian-noise jittered integrate-and-fire model. the exception oy, (See text).
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This scale-dependent measure clearly outperforms the It will be highly useful to evaluate the relative per-
scale-independent measuxg, which has a significantly formance of these measures for other records, both nor-
smaller area. These results are found to be essentiallpal and pathologic. In particular, the correlation of
independent of the analyzing wavelet [6]. ROC area with severity of cardiac dysfunction should be
We now use ROC analysis to quantitatively comparanvestigated.
the tradeoff between record length and misidentifica- An issue of importance is whether the R-R sequences,
tions for this standard set of heart-failure patients andind therefore the ROC curves, arise from deterministic
normal subjects using three scale-dependent and threbaos [9]. We have carried out a phase-space analysis
scale-independent measures. In the first category are tlee which differencesbetween adjacent R-R intervals are
wavelet-coefficient standard deviatien,.,(32), its spec- embedded. This minimizes correlation in the time series
tral counterpars(1/32) [18,22], and the interbeat-interval which can interfere with the detection of deterministic
standard deviatiow;,,. In the second category, we con- dynamics. The results indicate that the behavior of the
sider the wavelet scaling exponemjy, the spectral scal- underlying R-R sequences, both normal and pathologi-
ing exponentas, and a scaling exponenip calculated cal, appear to have stochastic rather than deterministic
according to detrended fluctuation analysis (DFA) [8].  origins [18], confirming our earlier conclusion [5].
In Fig. 2 (left) we present ROC area, as a function Generating a realistic heartbeat sequeneelhe gen-
of R-R interval record length, using these six measureseration of a mathematical point process that faithfully
The areas under the ROC curves for the full-length dat@mulates the human heartbeat could be of importance
records (lengthL,,,x) form the rightmost points in the in a number of venues, including pacemaker excitation.
ROC area curves. The records are then divided intdntegrate-and-fire (IF) models, which are physiologically
smaller segments of length. The area under the ROC plausible, have been developed for use in cardiology.
curve is computed for the first such segment for all 6Bergeret al. [24], for example, constructed an integrate-
measures, and then for the second segment, and so on famd-fire model in which an underlying rate function was
all segments of length. From theL.x/L values of the integrated until it reached a fixed threshold, whereupon
ROC area, the mean and standard deviation are computeal point event was triggered and the integrator reset. Im-
The lengthsL plotted in Fig. 2 range fronk. = 2° = 64  proved agreement with experiment was obtained by mod-
to L = 2'® = 65536 in powers of 2. eling the stochastic component of the rate function as
The best performance is achieved by,,,(32) and band-limited fractal Gaussian noise (FGN), which intro-
S(1/32), both of which attain unity area (perfect sepa-duces scaling behavior into the heart rate, and by setting
ration) for sufficiently long R-R sequences. Even forthe threshold equal to unity [5]. This fractal-Gaussian-
fewer than 100 heartbeat intervals, correspondingusd  noise integrate-and-fire (FGNIF) model has been quite
a few minutes of datahese measures provide excellentsuccessful in fitting a whole host of interval- and count-
results (in spite of the fact that both diurnal and nocturnabased measures of the heartbeat sequence for both heart-
records are included o, does not perform quite as well. failure patients and normal subjects [5]. However, it is
The worst performance is provided by the three scalingiot able to accommodate the differences observed in the
exponentsay, as, and ap, confirming our previous behavior ofoy,,(m) for the two classes of data.
findings [4—-6,17,19]. There are also vast differences in To remedy this defect, we have constructed a jittered
the time required to compute these measures: For 75 82%&rsion of this model which we dub the fractal-Gaussian-
interbeat intervals,oy,y(32) requires the shortest time noise jittered integrate-and-fire (FGNJIF) model [23].
(20 msec), whereas DHRA2) requires the longest time The occurrence time of each point of the FGNIF is
(650090 msec). jittered by a Gaussian distribution of standard deviation
Moreover, results obtained from the different scaling-J. Increasing the jitter parameter imparts additional
exponent estimators differ widely [23], suggesting thatrandomness to the R-R time series at small scales, thereby
there is little merit in the concept of a single exponent, nancreasingoy,, at small values ofn and, concomitantly,
less a “universal” one [21], for characterizing the humanthe power spectral density at large values of the frequency
heartbeat sequence. In a recent paper Nunes Amardl The FGNJIF simulation does a rather good job of
et al. [21] conclude exactly the opposite, that the scalingmimicking patient and control data for a number of
exponents provide the best performance. This is becaus®y measures used in heart-rate-variability analysis. The
they improperly make use of the Gaussian-based measuramdel is least successful in fitting the interbeat-interval
d* and n, which are closely related td’, rather than histogram p.(7), particularly for heart-failure patients.
ROC analysis. These same authors [21] also purport tdhis indicates that a mechanism other than jitter for
glean information from higher moments of the waveletincreasingo ..y at low scales should be sought [18].
coefficients, but such information is not reliable because It is of interest to examine the global performance of
estimator variance increases with moment order [23]. Théhe FGNJIF model using the collection of 24 data sets.
results presented here accord with those obtained in Bo achieve this we carried out FGNJIF simulations using
detailed study of 16 different measures of HRV [18]. parameters comparable with the actual full-length data
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records and constructed simulated ROC curves for thfi2]
measureso.v(32) and ay as shown in Fig. 1 (right).
Similar simulations for ROC area versus record length are
displayed in Fig. 2 (right) for the six measures considered[13
Overall, the global simulations (right-hand sides of Figs.
and 2) follow the trends of the data (left-hand sides o
Figs. 1 and 2) reasonably well, with the exception of
oine- This failure is linked to the inability of the simu- 15]
lated results to emulate the observed interbeat-interval
histograms. It will be of interest to consider modifications

of the FGNIF model that might bring the simulated ROC
curves into better accord with the data-based curves.
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