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We use a phenomenological field theory, reflecting the symmetries and conservation laws of
sandpiles, to compare the driven dissipative sandpile, widely studied in the context of self-organized
criticality, with the corresponding fixed-energy model. The latter displays an absorbing-state phase
transition with upper critical dimensioni. = 4. We show that the driven model exhibits a
fundamentally different approach to the critical point, and compute a subset of critical exponents.
We present numerical simulations in support of our theoretical predictions. [S0031-9007(98)07996-4]

PACS numbers: 64.60.Lx, 05.40.+j, 05.70.Ln, 46.10.+z

A wide variety of nonequilibrium systems display tran- When a site reaches or exceeds a threshplid topples:
sitions between “active” and “absorbing” states: examples; — z; — z., andz; — z; + 1 at each of theg near-
are epidemic processes [1], catalysis [2], directed percolaest neighbors ofi. Energy is fed into the system at
tion (DP) [3], and the depinning of interfaces in quenchedate 4, and is dissipated at rate during toppling [7].
disorder [4]. When driven continuously, such systemsAt each time step, each site has a probability to re-
may exhibit stick-slip instabilities, or broadly distributed ceive an energy grain; in each toppling, a grain is lost
avalanches, commonly associated with self-organizedith probability «e. These rules generalize the original
criticality (SOC) [5,6]. Bak, Tang, and Wiesenfeld (BTW) sandpile automaton

SOC sandpiles [5] possess an infinite number of abf5], which is recovered in the limit — 0 ande — 0
sorbing configurations (i.e., from which the system can{7,8]. While the BTW model restricts dissipation to the
not escape), and are placed, by definition, at the criticdboundaries, we focus on (conceptually simpler) bulk dis-
point in a two-dimensional parameter space [7,8] resemsipation; most conclusions apply to the boundary dissipa-
bling that of directed percolation (DP) [3] or contact pro-tion case as well. We also consider the Manna sandpile
cesses [9-11]. [17], in which z, = 2 and two neighboring sites are cho-

Under an external drive (i.e., input of particles at ratesen at random to receive energy.

h), the system jumps among absorbing configurations via In the slow-driving limit (» — 0%) each energy
avalanchelike rearrangements. Close to the absorbingddition is followed by an avalanche of topplings;
state phase transition, a slow drive induces avalanchdabe avalanche distribution has the scaling foft(s) =
whose size distribution decays as a power law—the "G(s/s.), where the cutoff scales as ~ ¢°. The
hallmark of SOC. What distinguishes the sandpile fromcorrelation lengthé scales with dissipation aé ~ €7,
other models with absorbing states iscanservation and is related to the characteristic avalanche duration
law: avalanche dynamics conserves the number of grains ~ £°.

of “sand,” and the order parameter is coupled to this The order parameter is,, the density of active sites
conserved field [8]. (i.e., whose height = z.) [7,8]; if p, = 0 the system

In this Letter we use a phenomenological field theoryhas reached an absorbing configuration. In a coarse-
of sandpiles to show how conservation alters the phasgrained description, we study the dynamics of a local
transition. The critical behavior foh — 0 (the SOC order-parameter fielgh,(x, ¢), bearing in mind that the
limit) differs from that for » = 0. In particular, when energy density/(x,¢) is (for e = h = 0), a conserved
driving and dissipation are absent, the sandpile shows dield. Variations of the local energy density are due to:
absorbing-state phase transition (with = 4). Our ap- (i) the external fieldf; (i) dissipation attending toppling:
proach clarifies the effect of driving on dynamic phase—ep,; (iii) a diffusionlike contribution: (1 — €)V?p,.
transitions, and resolves several long-standing issues r&he latter arises because a gradientpn leads to a
garding sandpiles, such as the upper critical dimensiorgurrent: the excess in the mean number of particles
the effect of conservation on critical exponents, and uniarriving at x from the left, over those arriving from
versality classes [12—-16]. We perform extensive simuthe right, isj.(x,r) = —(1 — €)d,p,. The net inflow
lations to check our theoretical predictions. of particles atx is therefore —V - j = (1 — €)V?p,.

In sandpiles [5], each siteof a d-dimensional lattice Defining an energy diffusion constaiit; = 1 — €, we
bears an integer variablge = 0, which we callenergy  write the continuity equation for the energy density,
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ag(x,t) 0.20
o = DeVipalx,1) = epa(x,1)
+ h(x, 1) + ny(x,1), (1) o
where the driving fieldh(x,t) = h + n,(x, 1), with i ? (=212
a nonfluctuating term andy, zero-mean, uncorrelated 0101 005 |
Gaussian noise. The last term is dynamically generated &°
Reggeon-field-theory-likdRFT) noise [18] n(x,t) ~ S
pa(x,1)n(x,1), with n uncorrelated Gaussian noise. *
This term vanishes, as it must, in the absorbing state, 0.00 |
pa = 0.
The equation for the order-parameter field is readily
obtained [8] by extending the mean-field theory (MFT)
of Ref. [7]. With p.(x,t) the local density of “critical” ) ‘ ‘ ‘ ‘ ‘
sites (i.e., with height. — 1), we have %% 15 010  -005 000 0.05 0.10 0.15
dpa(x.1) ) L
- .. = DaV ,Da(X,l) - pa(X, t) . .. . . .
at FIG. 1. Fraction of critical nonactive siteg, (shifted by p.)
+ (g — €)pax,)p(x,1) + hp(x,1) versus — /. for the BTW ind = 2. Inset: Conditional
probability density at’ = 2.12 for the same case.
+ na(xs t) B (2)

where 7,(x,t) is a RFT-like noise whose amplitude is

proportional toy/p,(x,7). The first two terms represent consider separately the cases of slow driving-- 07),
toppling [19]; the terms«p. represent critical sites corresponding to the SOC sandpile, and of fixed energy:
becoming active upon receiving energy, whether from thér = 0 ande = 0.

external drive, or from toppling neighbors. (i) Driven sandpile—The system attains its stationary

In the stationary state, we can avoid ensnaremerstate by the very slow addition of energy. In this limit
in an infinite hierarchy of equations [8], by eliminat- (1 — 07), a complete time scale separation, between
ing p. in favor of ¢ and p,. In the Manna model, toppling, on one hand, and addition and dissipation, on the
we simply invoke normalizationp. = { — z.p., Where  other, sets in [6—8]. In the stationary state, energy balance
zo = 2 is the mean height of active sites. For BTW forces a subset of the critical exponents to take their
we use the phenomenological ansatz:(x,) =[1 —  mean-field (MF) values in any spatial dimensignas we
pa(x, )] f[£(x,1)]. That is, the fractionf of nonac- now show. Integrating Eq. (1) over space and averaging
tive sites that are critical can be expressed as a singl@ver the noise yieldsp,) = V! [d?x(p.(x,1)) = h/e
valued function of the local energy density. In the slowly[7], which implies that the zero-field susceptibilify =
driven stationary state/ = {; and f = p., where {; dp./0h, diverges ase~? with y = 1. Taking the
and p are the stationary average values of the energfunctional derivative of Eq. (1) with respect tdx’), and
and the critical-site density. We exparfd{) = p> +  averaging over the noise, we obtain an equation for the
AA? + ..., whereAl = {(x,1) — {, andA > 0. We static response functioge(x — x’) = (8 p.(x)/5h(x')):
test the validity of these assumptions by simulating the 2 o W) — _
two-dimensional BTW model on a lattice &0 X 80 DeVixelx = x) + exe(x = x) = o(x = x7), (3)
sites, at = {, = 2.125. To determinef({), we mea- which yields, for large ry.(r) = r2=4e~"/¢ where the
sure the average energy, and active- and critical-site demorrelation lengthé ~ €%, with v = 1/2. These results
sities in cells ofl0 X 10 sites. The conditional probabil- depend solely upon stationarity and translation invariance
ity density P( f|¢) is unimodal and peaked (see Fig. 1); [20]. Although the exponent values coincide with the MF
the mean increases linearly with indicating thatp. is  ones, they have not been obtained by MF arguments, and
well-approximated byl — p,)f({), with f linear in the are valid beyond MFT, as confirmed by simulations in
neighborhood of. 2 =d=6[14].

Equations (1) and (2), describing the coarse-grained While the remaining exponents are in principle also
dynamics of sandpiles, resemble the field theory for theletermined by Eqgs. (1) and (2), a full analysis, involving
pair contact process (PCP) [11], another model witithe double limitt — «, h — 0" (the order cannot be
infinitely many absorbing states. As in the PCP, wherninterchanged), promises to be a knotty problem. The
h = 0 all configurations{(x) consistent withp, = 0  critical properties emerge &— 0, which must be taken
are absorbing, and the order parameter is coupled to subsequent to the above limits, since a stationary state
non-order-parameter field playing the role of an effectivedemands > h. The upper critical dimension, however,
creation rate. The essential difference in the sandpilean be found by power-counting analysis. The evolution
is that the field{ is conserved. In the following, we of a localized perturbatiop, around the slowly driven
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stationary state/{/e = 0) is given by As in other models with infinitely many absorbing con-
dpal(x,1) ) figurations, the avalanche behavior depends intimately on
TR DoVopu(x,1) — rpa(x,1) the initial configuration. It is also worth remarking that in

_ 2 the stationary driven case, the dynamics can explore only a
T AL Dpal ) — upy( ) + ma(x 1), set of recurrent configurations [22]. The FES may instead
(4)  explore transient configurations that could account for the
wherer ~ e and u and u are coupling terms generated different critical behavior. _ _
by the elimination ofp. in favor of /. We can consider ~ T0 better understand its scaling, we simulated the FES
in Egs. (1) and (4) the usual rescaling— bx/, t —  With statistically homogeneous initial conditions. We con-
b*t', and p, — b%p!, and the rescaling of the energy Sidered the BTW model with periodic boundary conditions
field { — b%¢’. The rescaled coupling constants showat (€ = 0,2 = 0). Initial configurations are generated by
a MF fixed point forr = e =0 and z = 2. In this distributing at random a fixed numb&rof particles among
b*=4. Thus, nonlinear terms are irrelevant whén> 4,  density/ = N/L. Once allV particles have been placed,
defining an upper critical dimensiaf), = 4 [21]. Since active sites topple at a unit rate with a sequential updat-
r =€ = 0 is the fixed point, the dissipation rate is the ing rule. We studied the transition from the active to the
(temperaturelike) control parameter, with critical value@Psorbing states as we vari¢d In d = 2, using system
e. = 0, emphasizing the role of conservation in slowly Sizes extending up tb = 1280, we find{, = 2.125, 8 =
driven sandpiles. By studying Eq. (4) in the slowly 0-59(1), » = 0.79(4), andz = 1.74(4) [23]. (Figures in
driven MF stationary stateA¢ = p, = 0, p> = 1/g, ~ Parentheses denote uncertainties.) The corresponding DP
and neglecting noise terms), we also obtain the MFTEXPonents aré).583(4), 0.73(2), and 1.76(3). Simula-
exponents for avalanche spreadifiy= 4, r = 3/2, and  tions of the four-dimensional model yield. = 4.11(1)
z = 2, in agreement with earlier analysis [7]. and 8 = 1.00(1), in good agreement with theoretical re-

(ii) Fixed-energy sandpile (FES}-Whenh = € = 0, sglts, which predict MF values id = d. = 4 (see also
the total energy/ d“x{(x, 1) is conserved and plays the Fig: 2). _ _ _ _
role of a control parameter. In this case, Eq. (1) reduces These results are compatible with the DP universality
t0 9¢(x,1)/3t = V2pa(x.1) + m¢(x.1), wheren,(x,7)is  Class, suggesting that the non-Markovian term is irrele-
aconservedoise. Substituting the formal solution of this Vant, at least for homogeneous initial conditions. ~ Pre-
equation into Eq. (2) yields liminary results of direct integration of Eq. (5) indicate

DP-compatible behavior for homogeneous initial condi-
9pa(%,1) = D, V’pu(x,1) — r(x)pa(x,1) — b(x)p2(x,t) tions; the non-Markovian term does appear to alter the
at ; ¢ spreading exponents, as in other multiple-absorbing state
+ wpalx, ,)] V2pa(x,t)dt’ + na(x,1), models [10,11]. On the other hand, we find analytically
0 that the non-Markovian term is relevant at the RFT fixed
point belowd = 4, and it has to be taken into account to
where we neglect higher-order terms, irrelevant by naiveletermine the asymptotic scaling properties. This implies
power-counting analysis. The coefficientsand b de-
pend on position through on the initial value ¢fx).
Equation (5) is the Langevin equation of RFT, save the
non-Markovian term and the spatial variationoénd b;
d. = 4,asin RFT. In MFT, replacing (x, 0) by the spa-
tially uniform ¢, we havedp,/dt = —¥p, — bp2, i.e.,
the MFT of directed percolation (DP), with critical point at
r = 0, fixing, in turn, the critical energy density,. Close
to the critical point[AZ]/¢. < 1), r ~ A, Ford < d., Q
the critical fixed point will be renormalized te = r*,
defining a renormalized.. Above /., we have an active
stationary state withp, ~ (A)?; for { < £, the system
falls into an absorbing configuration in whigh, = 0.

Thus the FES approach to criticalief — ¢.) is fun-
damentally different from the driven case € — 0, fol- 0.000 ‘
lowed byh/e — 0). Note that/ islostas an independent ~0.00 0.05 0.10
parameter oncé ande are nonzero. (Slow drivingins (- ¢

[ atits critical_va.lue:'if it exceeds,, ac_tivity is 'g.enerat.ed, FIG. 2. Stationary active-site density as a function/of- £,
and thereby dissipation.) The behavatthe critical point  for the fixed-energy BTW model i@ = 4. The inset shows
is described by our theory with = ¢ = 0 and{ = {..  p, in alarger range of — ¢. and for different lattice sizes.

0.020 r
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