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In standard quantum computation, the initial state is pure and the answer is determined by making a
measurement of some of the bits in the computational basis. What can be accomplished if the initial
state is a highly mixed state and the answer is determined by measuring the expectatiororof
the first bit with bounded sensitivity? This is the situation in high temperature ensemble quantum
computation. We show that in this model it is possible to perform interesting physics simulations that
have no known efficient classical algorithms, even though the model is less powerful than standard
quantum computation in the presence of oracles. [S0031-9007(98)07808-9]

PACS numbers: 03.67.Lx, 89.70.+c

Recent discoveries show that quantum computers can There are many kinds of problems that one might like
solve problems of practical interest much faster tharto solve using a computational device. In this Letter we
known algorithms for classical computers [1,2]. This hasfocus on deterministic function evaluation, which reduces
lead to widespread recognition of the potential benefits ofo the problem of evaluating the bits of the output string
guantum computation. Where does the apparent poweme at a time.
of quantum computers come from? This power is fre- The most important resources used in computation are
quently attributed to “quantum parallelism,” interferencetime and space. How much of either is required depends
phenomena derived from the superposition principle, andn the model of computation. For a given problem, one
the ability to prepare and control pure states according tasually tries to determine the resources required as a
the Schrddinger equation. Real quantum computers atfeinction of theproblem sizewhich for one-bit functions
rarely in pure states and interact with their environmentsis the number of bits in the input string. An algorithm is
which leads to nonunitary evolution. Furthermore, recentonsidered to befficientif the resource requirements are
proposals for using NMR at high temperature to studypolynomial in the problem size. The powers of two models
quantum computation involve manipulations of extremelyare considered to be the same if for any algorithm in one
mixed states [3,4]. Recent research in error-correctiomodel, there is an equivalent algorithm in the other model
and fault-tolerant computation has shown that nonunitarghat uses at most a polynomial multiple of the resources.
evolution due to weak interactions with the environment~or a comprehensive treatment of classical computational
results in no loss of computational power, if sufficiently complexity theory, see [9]. A good reference for quantum
pure states can be prepared [5—8]. Here we consider trmomplexity theory is [10].
situation where there are no errors or interactions with The available computational devices are assumed to
the environment, but the initial state is highly mixed. Weinclude a classical probabilistic computer conforming to
investigate the power afne bit of quantum information the model of an abstract random access machine with
available for computing, by which we mean that the in-access to random bits, and a quantum system consisting
put state is equivalent to having one bit in a pure stat®f as many (quantum) bits as needed. We assume that
and arbitrarily many additional bits in a completely ran-the procedure used to evaluate the functjoron input
dom state. The model of computation that consists of & consists of the generation of a sequence of unitary
classical computer with access to a state of this form i@perations using a classical computer and the application
calleddeterministic quantum computation with one quan-of these operations to the quantum system in a specified
tum bit(DQC1). We demonstrate that in the presence ofnitial state. A measurement of the quantum system
oracles, such a computer is less powerful than one witlthen yields the answer. Answers from one repetition
access to pure state bits. However, it can solve problemmay be used to make decisions in the next ones. The
related to physics simulations (e.g., spectral density esnodels studied here differ in what are the permitted
timation) for which no efficient classical algorithms are initial states and measurements. Function evaluation is
known. We also show that both DQC1 and determinisperformed probabilistically and we are satisfied with a high
tic quantum computation with pure states (DQCp) can b&nough probability of success.
defined in terms of estimation problems for coefficients The state space of the quantum systen difits is the
of unitary operators and give a simple method for mak-complex Hilbert spac®” generated by the computational
ing pseudopure states in DQC1. Our work suggests thdtasis. This basis is labeled by binary strings of length
DQC1 is a nontrivial model of computation that is be-the basis element corresponding to strings denoted by
tween classical and standard quantum computation. |b). Q" is then-fold tensor product o®'. To describe
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unitary operators and states, it is convenient to use the using O(log(1/p)/€?) repetitions of the computation
operator basis consisting of tensor products of the Pau[iL4]. DQCp is realized by an idealized bulk NMR quan-

operators [11] tum computer, where all molecules are initially perfectly
) T1 o0 . To 1 polarized, with no decoherence or operational errors.
I =o0p= [0 1 }; Oy = 001 = [ 1 0] (1) If U is a unitary operator with a network implementa-

tion, then DQCp yields an estimate ofdt"U]0)(0|U ).
[0 —i . .[1 0 The values of ffo, U|c){c|UT) can be obtained by pre-
710 = [ i 0 } Tz = o= [0 ~1 } and postprocessing the state using individual bit rotations.
Since the resources required for pre- and postprocessing
2) . . : ant 1
_ _ o ® are linear in _the numb_gr of blts,_we can identify (the power
A Pauli operator acting on theth bit is denoted byr, . of) DQCp with the ability to estimate these expressions.
A general tensor product of Pauli operators is denoted by Deterministic quantum computation with one bit
o, Whereby,—1 by is the index of the operator acting on (DQC1)—The deviation of the initial state of the quan-
the kth bit. tum system isa{). The final answer is obtained as in
A pure stateof a quantum system consisting efbits  DQCp by a bounded variance process yieldi<nxz>él>>.
is a unit vector inQ". In general, the quantum system The initial state corresponds to having one bit in a pure
can be correlated with other systems that we do not havetate and the rest completely random.
access to. As aresult, the general state of the system canDQC1 is realized by an idealized high temperature NMR
be described by a density operator. When using highlyjuantum computer where there is no decoherence and no
mixed (far from pure) states, it is convenient to describegperational error. This is the regime where the initial
a state by means of deviations from the identity expressegeviation state can be approximatededy?” /Z ~ 2%(1 —
as sums of Pauli operators. In general, a sfatean be gy e;o) (noninteracting bits), with negligible higher

oy =

written in the form order terms. The one-bit initial state can be obtained
1 by eliminating polarization in bits other than the first.
P = 5 I+ b;)“b‘fb ’ (3) Exploiting the additional polarization can reduce the time

resource required by at most a factor lgfz, so that no
where theq, are real and) is the bit string of all0’s.  additional power can be gained. Constraints on the amount
The deviation ofp is the nonidentity component of the of polarization extractable from arbitrary initial states have
sum given byd> .y ay0;,. For example, the deviation of been investigated by Sorensen [15]. DQC1 is not robust
the state where the first bit 8 and the other bits are against many error models because fresh ground-state bits
completely random is given by!(!. cannot be introduced during the computation [16].

The effect of an operation on the quantum system can Let U be a unitary operator with a network imple-
be described by a unitary operattrthat maps an input mentation. Using DQC1 and pre- and postprocessing
state|) to the output staté/|). In terms of operators, similar to that introduced with DQCp, we can estimate
U takes the statp to UpU'. tr(30,Uc, UT) for anya andb. We can therefore iden-

In both of the models of quantum computation to be dis+ify DQC1 with the ability to obtain these estimates.

cussed in this Letter, the elementary operations (quantum Theorem 1—DQCp is at least as powerful as DQC1.
gates) that can be applied are a complete set of one- and prgof — Since

two-bit unitary operators [12,13]. A network implemen-

tation of a unitary operatol/ is a decomposition o/ as 1 1 ,

a product of elerr{engary gates. P tr(; Uil)UUil)UT) T o g(_ D e PUle) eluh),
Deterministic quantum computation with pure states 4

(DQCp)—The initial state of the quantum system|@.

In the standard model of quantum computation, the finathe estimate obtained with DQC1 can be obtained

(one-bit) answer is obtained by a measurement of the firsvith  DQCp by randomly sampling a few of the

bit. In DQCp, this measurement is replaced by a process— 1) tr(c"U|c)(c|U*) and estimating the average.

that yields the noisy expectation of" for the final state. If Eq. (4) is inverted one finds that the estimates avail-

There is no loss of power by making this restriction onable in DQCp are expressed asamrather than as an

the final measurement. To be specific, if the state of th@verageof DQC1 estimates. As a result, the proof cannot

guantum system ip, the measurement process returnsbe used to obtain the converse of Theorem 1.

a number that is sampled from a distribution with mean DQCp and DQC1 can be used to estimate any coefficient

<U§l)> = tr(ggl)p) and variance, wheres is independent of certain operator expansions of. For DQC1, write

of the number of bits used. We call such a measuremert = >, a, 0, with a;, = %tr(ab U). This is thePauli

anestimateof the quantity measured. Repeating the com-operator expansion ofU. To determine«,, use the

putation and measurement is assumed to yield indepemetwork for U to construct a network for the operat@r

dent instances of this distribution. Thus, the mean caithat mapg0) b)Y — |0)U|b) and|1) |b) — |1)|b). Thisis

be estimated to withire with probability of error at most a “conditional” U operator and can be implemented with
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a linear amount of additional resources [13]. Then For any Hamiltonian, one of its physical properties of
interest is the energy spectrum. In DQCL1 it is possible
ot (e + ic\")Vollo,vi] = to directly observe the spectrum with a resolution in-

versely related to the effort used. No efficient classical
1 + algorithms that accomplish this are known, and neither is
ot [tr(Uop) + tr(ep,UT)] = a».  (5)  there a known DQCp method that can improve on this.
There are experimental methods for observing energy tran-
Since Uo, U is a unitary operator easily implemented sitions of effective Hamiltonians [19]. Here is a method
given networks forU, we have proved the following for observing spectra (rather than transitions) of Hamilto-
result. nians or unitary operators with network implementations.

Theorem 2—The ability to efficiently estimate the Let U(r) = ¢~"#" and assume that an efficient quantum
coefficients of the Pauli operator expansion of the operatatietwork for applyingU(¢) with arbitrarily small error is
implemented by a quantum network is equal in poweravailable. Note that the quantum network may increase in
to DQC1. complexity if less error is needed. Given the quantum net-

If the trick of the previous paragraph is used with DQCp,work for U(z), we can derive networks for applyirig(z)
where U is replaced byo.Uc,, with ¢ andd chosen or Ut(r) to bits2,...,n + 1, conditionally on the state of
so thato.|0) = |b) and o4|0) = |a), then we can obtain the first bit. LetV(r) be the unitary operator that maps
tr(Ula)(bl). Therefore any of the transition amplitudes |1)|») — [DUT(¢/2)|b) and |0)|b) — |0)U(¢/2) |b). If
of U can be determined to get coefficients of thatrix U  we first apply a gate to transform the input staté’
in the computational basis. Becausert!'Ul0)(0lUT) = 15 (U ang then applyv(7), the deviation of the state
(Ut {VU10)(0]), we have established the following.  pecomes ’

Theorem 3—The ability to efficiently estimate the
transition amplitudes of an operator implemented by a 1 , D11 /o
quantum network is equal in power to DQCp. ps Z[COS()‘”)")(C) + sin(;0)ar {1 10) Gl

Let the evolution of a quantum mechanical system
be described by a (possibly time varying) Hamiltonian
H on a Hilbert spaceH . To efficiently simulate this
evolution using a quantum computer with bits, it is
sufficient to have a unitary embedding 6 into Q"  where the); and |i) are a complete set of eigenvalues
and an extensior!’ of the embedded Hamiltonian for and corresponding eigenvectors (with repetition) Fbf
which there are efficient quantum networks approximatingrhe second identity gives the expansionmf in terms
e~ H'03 (taking i = 1) for small & to within 0(62). A of o}’s, with terms not of interest suppressed (rest).
class of such Hamiltonians consists of those that are &he coefficients ofo, and o, can be measured and the
polynomially bounded sum of two bit Hamiltonians [17]. results combined into a single complex number with value
Whether it is useful to implement this simulation dependsf(r) = %Z}. e 'Ai', This can be sampled at as many
on what information one wants to obtain. If one simplytime points as desired, using repetition to decrease noise,
wants to predict the outcome of a measurement in aand Fourier transformed to obtain a broadened energy
experiment involving this system, it is possible to dospectrum. The same technique can be used to measure the
that by simulation, provided that the initial state can bespectrum of a unitary operator by restrictingo integer
computed and the final measurement can be representedrasltiples (corresponding to powers of the operator). If
a measurement in the computational basis or expectationse evolutionV(z) is implemented as a power 6f(At),
of operators that can be approximated as a sum of and the measurement in DQCL1 is nondestructive, then the
reasonable number of computable conjugates spectrum can in principle be observed directly as is done

Even if the initial state is restricted to the deviationin Fourier transform NMR spectroscopy.
oV, there are no known classical algorithms for simulat- DQC1 is strictly less powerful than DQCp in the pres-
ing an arbitrary sum of two-bit Hamiltonians as describedence of oracles (aka black boxes). Suppose that we
above. Since many real-world situations involve highlyare given a black box implementing a unitary operator
mixed initial states (e.g., most NMR experiments), such on our quantum system and we wish to determine
an algorithm is very interesting. In fact, there are ongoing0|U oV U10), whose sign is the one-tihswercomputed
experiments exploiting the fact that maéyinteractions by U on input|0). One method for obtaining this answer
can be simulated in solid state systems such as calciunusing DQCL1 involves preparing @seudopurestate from
fluoride by modifying the dipolar interaction but are dif- the deviatiomg” [3,4]. One kind of pseudopure state has
ficult to simulate using classical computation [18]. Thedeviation proportional to that df)(0]. In this case mea-
observation that one can efficiently implement such simusurement ofag” after applyingU is proportional to the
lations in DQC1 makes this model useful and the quesdesired answer.
tion of the relationship between the powers of DQC1 and Here is a simple method for making a pseudopure state
DQCp or classical computation nontrivial. from agU using an ancilla bit, labeled. This method
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compares favorably with those previously described forand calls toU and an inference function that attempts to
ensemble quantum computation [3,4,20]. gtbe the determinea from thek measurements. Consider the first
unitary operator mappindbo0) — |(by + 1)0) and for of these measurements. The expectation of the result of
b # 0, |bob) — |byb) (addition of bits is modulo two). If the measurement can be written in the form
we first swap bit$) and1, then applyr,,, and finally flip bit 1
0, the deviation is given by (2/0) (0] — I). If we apply v(U) = (V.U UVorviut - utviel),
U to bits 1 throughn, then the coefficient of ¢ o) in o
the state’s deviation is the answer we want. As discussed . . :

here r is the number of invocations ot/ and the

above, this coefficient can be obtained using DQC1, wit are th ntum . network din th mputation
an intensity ofa/2"*!. Because of the exponential loss ulsir?ge; bﬁsq(l(J)?WlI’J]iChme _on e?reu?;cillas) eS(i:r?c ;l;sa 0
of intensity, it can be difficult to deteet above the noise. deterministic,U[0) [0) = |b) [¢). If U is composed with

Unfortunately, without the ability to analyze a specifi- L )
cation of U (for example, an implementation by a quan—the operatorT that, conditionally on the state of biks

. ) . . p

tum network), we cannot do much better, even if we knov\ﬁ ’f[ 'bellng |g>j[ f||p_s f[ht(? ft')rst r?'t' )[/;/]e get antoperatmr W

that the answer o/ is deterministic, thatisy € {—1, 1}. a ;sba soble ternal_n{_s Ic 'uh baStW € O[Z:EOStIV\?ﬁanSWGbI‘. €
Theorem 4—To determine the answer of quantum must be able to distinguish between the -can be

black boxes, exponentially more resources are needed ritten in the lformT 1= I = 2P, whereP is the pure
DQC1 than in DQCp state given by;(I — o) ® [¢)(¥| (them — n ancillas

Proof —The most general form of a DQC1 algorithm have been suppressed in this expression). For unitary

for determining the answer can be described liydepen- operatorsW, and W, acting onm = n bits, we have

1 1 . .
dent DQC1 computations consisting of quantum netwo"k%ritg(vg;gg?glnfovz_zl']/?y :)ég?]”d'rng]l =U—=2PUIn
X i Wi wri

1
v(U') = — {tV.(-2P)UV,_ U ..] + tr(V,UV,_U"...)}
2m
1
= 2—m{tr[V,(—2P)UV,_1U’...] + [V, UV,_((=2P)UV,_,U"..] + t((V,UV,_ UV,_,U"..)}

a zim{tr[vr(—zp)uvrflu/...] + [V, UV, 1(=2P)UV,,U" .. ] + - + v(U)}. ®)
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