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Density of Zeros on the Lee-Yang Circle Obtained from Magnetization Data
of a Two-Dimensional Ising Ferromagnet

Ch. Binek
Angewandte Physik, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany

(Received 7 August 1998)

In order to provide experimental access to the statistical theory of Lee and Yang [Phys. Rev.87, 410
(1952)] the density functiongsud of zeros on the Lee-Yang circle has been determined for the fi
time by analyzing isothermal magnetization datamsHd of the Ising ferromagnet FeCl2 in axial magnetic
fields H at temperatures34 # T # 99 K. The validity of our approach is demonstrated by the perfe
agreement of magnetic specific heat data as calculated fromgsud and msHd via Maxwell’s relation.
Moreover, the correct in-plane exchange constant of FeCl2 emerges from the series expansion ofmsHd
involved in the analysis. [S0031-9007(98)08010-7]

PACS numbers: 75.10.Hk, 05.50.+q, 75.40.Cx
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In 1952 Lee and Yang (LY) [1] pointed out that th
distribution of the zeros of the partition functionZ of an
Ising ferromagnet reveals a remarkable symmetry in
complex fugacity plane. By virtue of their famous theore
they proved that in the case of an Ising ferromagnet,
zeros ofZ are distributed on the unit circlez  expsiud in
the complexz  exps22gSmBm0HykBT d plane, where
gSmB is the magnetic moment with Bohr’s magnetonmB,
the spin quantum numberS, and the Landé factorg, while
H is the complex magnetic field, andT is the temperature
They conjectured that this symmetry has a simple and
reaching basis, which, however, still has to be discove

Up to now, little progress has been made within th
fundamental field of statistical physics. Although it h
been shown that the LY theorem is applicable to mu
wider classes of model systems [2,3], little is known ab
the distribution functiongsud itself, which completely de-
termines the thermodynamic behavior of the system.
particular,gsud has always been thought to be a pure
theoretical quantity which is not accessible by expe
mental investigations. However, it is the aim of th
Letter to demonstrate for the first time thatgsud can be ex-
tracted from isothermal magnetization curvesm vs H of
Ising ferromagnets, provided that they are measured w
high enough accuracy using, e.g., modern superconduc
quantum interference device (SQUID) techniques.

From the theoretical point of view, there are two a
proaches to investigategsud. On the one hand, ther
are straightforward solutions ofZszd  0 for dimensions
D $ 2 which are, however, restricted to systems of a f
interacting spins only [4–7]. On the other hand, the ba
relation [1],

Iszd  1 2 4z
Z p

0
fgsud sz 2 cosudy

sz2 2 2z cosu 1 1dg du , (1)

which correlates the normalized magnetizationI  myms

and gsud, is used in order to approximategsud from
corresponding approximations ofIszd. Here m and ms
0031-9007y98y81(25)y5644(4)$15.00
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denote the magnetic moment and its saturation value.
coefficients of the high field series expansion

Iszd  1 1 2p
X̀
n1

gnzn (2)

directly determine the coefficientsgn  s2ypd
Rp

0 gsud 3

cossnud du, n $ 1, of the Fourier cosine series ofgsud
[8]. Unfortunately, the poor convergence of the series
requires a huge number of expansion coefficients in
der to satisfactorily representgsud. However, Kortman
and Griffiths [10] pointed out thatgsud may also be con-
structed, e.g., from quickly converging Padé approxima
of Iszd when using the relation,

gsud  s1y2pd lim
r!12

ReIfr expsiudg . (3)

This equation is easily verified by substitution ofz 
r expsiud into Eq. (2). As will be shown below, this ansa
turns out to be particularly useful for analyzing experime
tal data. Based on high field series expansions ofIszd [11],
Kortman and Griffiths computed the corresponding Pa
approximants and calculatedgsud for Ising ferromagnets
on a 2D square and a 3D diamond lattice forT fi Tc. In
addition they investigatedgsud for the mean-field mode
and the linear chain. Their solution of the latter proble
was in good agreement with the rigorous analytical expr
sion obtained previously by Lee and Yang [1].

In analogy to the procedure introduced by Kortman a
Griffiths [10], we have determinedgsud from experimental
data m vs H by using, again, Eq. (3). To this end, th
data sets are normalized with respect to the low temp
ture and high field saturation valuems of the magnetic
moment and subsequently best fitted to empirical functi
of the type,

fszd  f1 1 n1z 2 s1 1 n1dz2gys1 1 d1z 1 d2z2d ,

(4)

with appropriate parametersn1, d1, and d2. The fitting
functions take into account the limiting casesfsz  1d  0
© 1998 The American Physical Society
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and fsz  0d  1 of the normalized magnetization
T . Tc in zero and infinite magnetic field, respective
Once the fitting parameters of such an empirical Padé-
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approximant are determined,gsud can be calculated b
replacingIszd in Eq. (3) by the ansatz function (4). On
readily obtains
gsud 1y2pf1 1 sd1 2 d2dn1 2 d2 1 s1 2 d1 1 d2dn1 cosu 2 s1 2 d2 1 n1d coss2udgy

f1 1 d2
1 1 d2

2 1 2d1s1 1 d2d cosu 1 2d2 coss2udg . (5)
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In the first step, we have tested the above proce
on numerical data sets of the isothermal magnetiza
in the case of the linear chain and the mean-field mo
The density functions, Eq. (5), emerging from the b
fits agree with previous results apart from roundings
the pole occurring for the linear chain and of the step
change at the upper bound of the gap encountered in
mean-field case [10]. In particular,gsud inherently fulfills
the condition [12],Z p

0
gsud du 

1
2

. (6)

In order to test Eq. (5) on real experimental data
have measured the isothermal axial magnetic momenm
of the layered antiferromagnet FeCl2, which behaves as
quasi-2D triangular Ising ferromagnet at temperatures
above the 3D ordering temperature,TN  23.7 K [13,14].
The experiments are carried out on an as-cleftc platelet
with thicknesst  0.5 mm and areaA  18 mm2 by use
of a SQUID magnetometer (Quantum Design MPMS-
at temperatures34 # T # 99 K. The saturation momen
ms ø 4 kA m2, is deduced from the high field limit o
the m vs H data atT  4.5 K (Fig. 1, dashed line). A
this temperature, FeCl2 behaves as a prototypical met
magnet switching from long-range antiferromagnetic i
saturated paramagnetic order atH ø 0.8 MAym. Note
that all data have been corrected for demagnetization

FIG. 1. myms vs H of FeCl2 for temperaturesT  34, 49,
50, 51, 52, 53, and 99 K (solid circles, down triangles, o
squares, crosses, open circles, up triangles, and solid squ
respectively) andT  4.5 K (dashed line). Results of the be
fits of Eq. (4) to the data atT  49, . . . , 53 K are indicated by
full lines and in detail shown within the insets [(a),(b),. . . ,(e),
respectively].
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fects usingH  Ha 2 Nm, whereHa is the applied ax-
ial magnetic field. N is the demagnetizing factor, whic
is calculated according toN  sdmydHad21 ø const for
0.8 , Ha , 1.3 MAym, within the coexistence region o
the antiferromagnetic and paramagnetic phases [15].

Figure 1 shows the normalized isothermal magn
moment myms vs H of FeCl2 [13,14] for temperatures
T  34, 49, 50, 51, 52, 53, and 99 K. The data are b
fitted to Eq. (4). The results of the fitting procedure a
indicated in Fig. 1 by full lines and are in detail shown f
the extended magnetic field range in the insets (a)–(e
the temperaturesTn  49 K 1 nDT , where DT  1 K
andn  0, 1, . . . , 4, respectively.

Figure 2 shows the density functions,gsud which
correspond to the magnetization data obtained
T  49, . . . , 53 K (curves 1–5) andT  99 K (curve 6).
They have been calculated via Eq. (5) inserting the fitt
parametersn1, d1, and d2 obtained from Eq. (4) and
summarized in Table I. The Landé-factorg  4.1 [16]
entersz and, hence, Eq. (4), as a fixed parameter. Si
the zeros of the partition function of a noninteracti
system accumulate atz  21, its density function is
given by gsud  dsu 2 pd. The pronounced peak o
gsu, T  99 Kd at u  p (Fig. 2, curve 6) is, hence
in accordance with the limit of weak interaction. Wi
decreasing temperature the maximum value ofgsud de-
creases, while its position shifts towards loweru-values.
For example, atT  51 K (curve 3),gsud is nearly zero
for 0 , u u 0.8, but exhibits a steep increase with i
creasingu, which yields a maximum ofdgydu atu  1.5.

FIG. 2. LY-zero density function gsud for T  49,
50, . . . , 53 K (curves 1–5, respectively) andT  99 K
(curve 6). Data of curve 5 and 6 are scaled by factors1

2 and 1
4 ,

respectively.
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TABLE 1. Best-fit parametersn1, d1, and d2 of Eq. (4) to themyms vs H data partially
displayed in Fig. 1;JykB  2sTy12d lnfsd1 2 n1dy2g; and quality parameterx2, which
measures the sum of the squares of the deviations of Eq. (4) from the respective data
normalized to the degrees of freedom.

T fKg n1 d1 d2 JykB fKg x2

34 21.5583 21.07621 0.44795 4.031 2.45 3 1027

35 21.62526 21.09583 0.42893 3.877 4.66 3 1027

36 21.60725 21.04905 0.41056 3.829 6.26 3 1027

49 21.22375 20.33542 0.28636 3.314 2.86 3 1027

50 21.00352 20.12235 0.35496 3.415 1.84 3 1027

51 20.79428 0.07411 0.44338 3.546 1.79 3 1028

52 20.58248 0.28942 0.52122 3.598 6.10 3 1028

53 20.10146 0.71108 0.74829 3.978 2.28 3 1028

99 20.41602 1.50348 0.54979 0.339 5.90 3 1029
-
ll
se

e

si
e
e
d
en
n
u

ul
is

a

ity
ta
t

)–

n
a-
e

c

t-
ive
-
s
en-

i-

hat,
ors

-
tion

ky
ulate

,

The pronounced peak atu  1.8 is followed by a smooth
decay into the constant valuegsu  pd  0.19. This be-
havior bears similarity with theu-dependence of the den
sity function of the square lattice, which was theoretica
determined atT  6Tc [10]. The observed steep increa
of gsud indicates the upper bound of the gap,gsud  0
for 0 , u , ug, while the pronounced peak in curve 3 r
flects the smeared singularity atu  ug. This smearing
originates from the truncation of the Padé-type expan
used in Eq. (4). This was clearly evidenced in the cas
the linear chain, whose exactly known [10] singularity b
comes rounded within our approach (see above). In a
tion, however, one has to take into account the depend
of msHd on the details of the lattice structure. Hence, o
might also expect qualitative differences between the
derlying density functions of the square and the triang
lattice. Tentatively, this might be at the origin of the d
crepancy between the steep decay ofgsu ! pd in the case
of the square lattice [10] and its virtual absence in the c
of the triangular lattice (Fig. 2).

The validity of our procedure yielding the dens
function, gsud, from experimental magnetization da
msHd, is determined by a comparison of the magne
specific heat,csHd, as deduced from eithergsud or msHd.
Both results are shown in Fig. 3 by the functionscsHd
andDcsHd, respectively.

The functionDc  fcsHd 2 csH  0dgyms is calcu-
lated from the fitting results shown in Fig. 1 [inset (a
(e)] according to

Dc  T
Z H

0
≠2smymsdy≠T2 dH 0. (7)

Equation (7) is derived from Maxwell’s relatio
≠My≠T  ≠Sy≠H [17,18]. The second order deriv
tive which enters the integral is approximately giv
by ≠2my≠T2  s1y12d f2msT  49 Kd 1 16ms50 Kd 2

30ms51 Kd 1 16ms52 Kd 2 ms53 KdgK22 [9].
The alternative method to obtaincsHd utilizes the

density functiongsud in conjunction with the magneti
free-energy function [1],
y
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FyNgmBS  2 m0H 2 skBTygmBSd

3
Z p

0
gsud lnsz2 2 2z cosu 1 1d du ,

(8)

whereN  msygmBS is the number of spins. By inser
ing thegsud functions shown in Fig. 2 and the respect
zsT , Hd values one obtainsF vs H curves, which are dis
played in Fig. 4 forT  49, 50, 51, 52, and 53 K (curve
1–5, respectively). From these functions the magnetic
tropy, s, and the specific heat,c, is calculated by numer
cal derivation as shown forT  51 K in Fig. 4 (inset)
and Fig. 3 (open circles), respectively. It is seen t
apart from small deviations which originate from err
of the numerical integration, both curvesDcsHd andcsHd
yield identical results, wherecsH  0d  2DcsH ! `d
as expected.

Since the curvature ofmyms vs H is weak in the avail
able field range of the magnetometer, the extrapola
of the fitting results into the high field regime is ris
and has to be checked separately. Therefore we calc
the leading term of the high field series offszd, Eq. (4),

FIG. 3. Field dependence ofc (open circles) andDc (solid
circles) calculated fromgsud and by use of Maxwell’s relation
respectively.
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FIG. 4. Field dependence of the free energy calculated f
gsud at T  49, . . . , 53 K (curves 1–5, respectively). Th
inset shows the field dependence of the entropy atT  51 K
calculated from the free-energy curves 1, 2, 4, and 5
numerical derivation.

which readsfszd  1 2 sd1 2 n1dz 1 Ofz2g. Compari-
son with the theoretical expansion of the magneti
tion of the 2D Ising ferromagnet on a triangular latti
[11] yields u3  s1y2d sd1 2 n1d, where u is given by
u  exps24JykBT d. Hence, the ferromagnetic neare
neighbor in-plane exchange constant of FeCl2 is re-
lated to the fitting parametersn1 and d1 according to
JykB  2sTy12d lnfsd1 2 n1dy2g. The average value o
the exchange constant yieldsJykB  3.7 K for 34 #

T # 53 K. Within an error of ø6% this is in accor-
dance with the valueJykB  3.94 K which has been de
termined from magnon dispersion data of inelastic neu
scattering investigations on FeCl2 [14]. Disappointingly,
the value from the data atT  99 K, JykB  0.339, de-
viates from the experimental one by 1 order of magnitu
Presumably this is due to the finite value of the single-
anisotropy of FeCl2 [14], which violates the condition o
Ising-type symmetry at high temperatures.

In conclusion, it has been shown for the first time, t
the LY-zero density can be determined experiment
with high accuracy from the field dependence of
isothermal magnetization data,msHd, of a quasi-2D Ising
ferromagnet. In accordance with theoretical predictio
[1] and model calculations [1–7,10]gsud exhibits a gap
in the low-u region, which shrinks upon lowering th
temperature towards the phase transition instability.
resulting density functions are used to calculate the fi
dependencies of the magnetic free energy, the entr
and the specific heat. The latter quantity is alternativ
calculated frommsHd by utilizing Maxwell’s relation. The
results of both methods are in nearly perfect agreemen

It will be interesting to perform high field magnetiz
tion measurements in the regime of strong curvature
the m vs H dependencies. These data will require Pa
type approximants, which contain relevant additional f
parameters. Such higher order approximants are expe
m
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to reduce the smearing of possible singularities and s
contained in the density functions. Furthermore, inve
gations on Ising ferromagnets in other dimensions,D  1
and 3, seem desirable in order to reveal pertinent dif
ences [1] with theD  2 case considered in this Lette
Finally, it will be a challenging future task to determin
the ill-known symmetries of the zero distribution in th
case of antiferromagnetic systems [5,7] in a similar w
as has been done here on Ising ferromagnets.

I thank W. Kleemann for very fruitful discussions.
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