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Spin Relaxation of Conduction Electrons in Polyvalent Metals: Theory
and a Realistic Calculation
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Relaxation of electronic spins in metals is significantly enhanced whenever a Fermi surface c
Brillouin zone boundaries, special symmetry points, or lines of accidental degeneracy. A re
calculation shows that if aluminum had one valence electron its spin relaxation would be slow
nearly 2 orders of magnitude. This not only solves a long-standing experimental puzzle, bu
provides a way of tailoring spin dynamics of electrons in a conduction band. [S0031-9007(98)080

PACS numbers: 71.70.Ej, 75.40.Gb, 76.30.Pk
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Electronic spin is emerging as a building block
new digital devices. The all-metal bipolar spin trans
tor [1] was already demonstrated and new devices are
ing built using the phenomenon of giant magnetoresista
[2]. Recent advances in spin-coherent dynamics in se
conductors [3] may advance the development of a quan
computer [4]. All of these new technological applicatio
rely on a relatively long relaxation time of conduction ele
tron spin eigenstates. In this Letter, we consider theor
cally the problem of electronic spin relaxation in meta
and solve an outstanding puzzle, explaining why very si
lar metals (for example, Al and Na) may have spin rela
tion rates differing by 2 or 3 orders of magnitude.

Experiments [5,6] show that spin states in metals l
several orders of magnitude longer than momentum sta
Furthermore, unlike momentum relaxation timest, spin
relaxation timesT1 [7] vary significantly among metals
According to Elliott [8] and Yafet [9], two factors caus
electronic spin in metals to decay: (i) the spin-orbit inte
action induced, for example, by (crystal) ions or impuritie
and (ii) a momentum relaxation process such as impurit
phonon scattering. The productc2T1, wherec2 is a mea-
sure of the strength of the spin-orbit interaction, is th
well approximated byt and has similar magnitude for a
simple metals. Considering only ion-induced spin-or
interaction, crystalline and atomicc2 should be similar.
Indeed, by substituting the atomic values forc2, Monod
and Beuneu [10] found a “Grüneisen” behavior ofc2T1
for all alkali and noble metals: as a function of reduc
temperatureTyTD , whereTD is a Debye temperature, th
values ofc2T1 fall onto a single curve. On the other han
metals Al, Pd, Mg, and Be havec2T1 much smaller (up
to 3 orders of magnitude for Mg and Be) than the “ma
group.” For example, the atomicc2 for aluminum dif-
fers by less than 10% from that for sodium [10], yet t
spin relaxation times at Debye temperatures are 0.1 ns
aluminum [11] (TD  394 K [12]) and 20 ns for sodium
[5,13] (TD  150 K [12]); the corresponding momentum
relaxation times are in the ratio 1:7 [14]. We resolve th
puzzle by showing that the crystallinec2 is about 30 times
0031-9007y98y81(25)y5624(4)$15.00
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greater in Al than in Na due to a rather subtle “band ren
malization” effect.

In this paper, we answer why spin in some metals d
cays unexpectedly fast, by introducing the concept ofband
renormalizedspin-orbit interaction strengthc2. Common
to the “strange” metals (Al, Pd, Mg, and Be) with un
usually fast spin relaxation is that their Fermi surfac
contain regions wherec2 is significantly enhanced. Such
regions are found near Brillouin zone (BZ) boundarie
special symmetry points, or lines of accidental degen
acy. Although these spin “hot spots” comprise, genera
only a small part of the Fermi surface, they almost entire
determine the effective value ofc2. We predict that the
strange behavior is, in fact, common to all polyvalent m
als, where spin hot spots are a consequence of the Fe
surface topology. This prediction is particularly signifi
cant since no polyvalent metals other than Al, Pd, Mg, a
Be have been measured forT1 so far. Furthermore, our
calculations show thatT1 can be appreciably altered b
modifying the band structure (by alloying, doping, redu
ing the dimensionality, etc.). Our prediction is based
a realistic pseudopotential calculation for aluminum a
analytical estimates forc2.

If the periodic potential due to ions in a crystal lattic
contains spin-orbit coupling (a term proportional to th
scalar product of the orbital and spin momentum operato
L̂ ? Ŝ), the electronic Bloch states are a mixture of sp
up j"l and downj#l species [8]:C

"
knsrd  faknsrd j"l 1

bknsrd j#lg expsik ? rd and C
#
knsrd  fap

2knsrd j#l 2

bp
2knsrd j"lg expsik ? rd. The lattice momentumk is

confined to the first BZ,n is a band index, andaknsrd
andbknsrd are complex periodic functions with the perio
of the lattice: if G denotes the reciprocal lattice vector
then aknsrd 

P
G aknsGd expsiG ? rd and similarly for

bknsrd. Both states have the same energyEkn, as follows
from time and space inversion symmetry [8]; the num
bering of bands is therefore the same as without the s
notation. The degenerate statesC

"
kn andC

#
kn are chosen

to represent electrons with spins polarized along thez
direction [9]: sC#

knjŜzjC
#
knd  2sC"

knjŜzjC
"
knd , 0 and
© 1998 The American Physical Society
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the off-diagonal matrix elements are zero. This condit
implies thataknsrd have values close to one, whilebknsrd
are much smaller, decreasing with the decrease of
strength of the spin-orbit interaction (with the excepti
of the points where the spin-orbit interaction lifts
degeneracy).

Elliott [8] noticed that ordinary (spin conserving) imp
rity or phonon scattering can induce transitions betw
C

"
kn and C

#
k0n0 , leading to the flip of a spin polarizatio

and thus spin relaxation. Ifkb2l is the Fermi surface
average ofjbknj2 

P
G jbknsGdj2, spin relaxation rate

1yT1 ø 4kb2l s1ytd (that is,c2 ø 4kb2l). Such a formula
could be obtained by assuming that (i)1yt ¿ 1yT1 [15],
(ii) aknsrd ø 1, (iii) the scattering form factor has a con
stant amplitude, and (iv) the interference betweenbknsGd
with differentG is neglected. Assumptions (i) and (ii) a
usually satisfied. Assumption (iii) implies a scattering
a delta-function-like impurity potential. This simplifica
tion is consistent with our goal to establish the effect
band structure (throughbkn) on T1 rather than to study
particular scattering processes. The neglect of inter
ence can be justified if the scattering form factors hav
rapidly varying phase. Although such a form factor [th
also satisfies (iii)] is hardly found, realistic form facto
do oscillate on the momentum scale where the transit
occur. Assumption (iv) is then partly justified, since t
phase attached tobknsGd will be different for differentG.

The spin-mixing parametersjbknj2 can have a broad
range of values, depending on the position ofk in the
BZ. Consider a band structure computed without the s
orbit interaction. If the closest band ton is separated from
n by D, the spin-orbit interaction mixes the spins fro
the two bands (direct interband transitions):jbknj2 ø s1 2

Dy
p

D2 1 4V 2
SO dy2, where VSO is some effective spin

orbit interaction. Three cases occur. (A) For a gene
point, the band separation is of orderEF , the Fermi en-
ergy, so thatD ¿ VSO and jbknj2 ø sVSOyEFd2. (B) If
the state is close to a BZ plane that cutsG by half, the
band separation isø2VG (VG is the Gth Fourier coeffi-
cient of the nonspin part of the lattice potential). Sin
typically VG ¿ VSO, jbknj2 ø sVSOy2VGd2; this can be a
few orders larger than in (A). Finally, (C) the spin-orbit i
teraction can lift the degeneracy of two or more bands.
mixing of spins is complete andjbknj2 ø jaknj2 ø 0.5.
The states with property (C) are not covered by the Elli
Yafet theory [9]. This is not a concern, however, since
we show below, such states are statistically irrelevant
aluminumT1.

To illustrate how the band structure affectskb2l (andT1),
we perform a pseudopotential calculation for aluminu
where all three cases (A) to (C) occur. Our pseudo
tential has a nonspin (scalar) part and a spin-orbit te
The scalar part [16] has the nice feature [in view of e
mate (B)] of being fitted to the experimental values [17]
V1  V111  0.008 95 a.u. andV2  V200  0.0281 a.u.
(1 a.u.  2 Ry). In addition to accurately reproducin
the band structure of aluminum, this form factor giv
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reasonable results [16] for the resistivity of liquid a
minum, making it useful in scattering problems. The sp
orbit part of our pseudopotential islL̂ ? ŜP1, wherePl is
the operator projecting on the orbital momentum statl.
The parameterl  2.7 3 1023 a.u. inside the ion core o
twice the Bohr radius,rc  2rB. Outside the corel van-
ishes. This estimate forl is based on the first-principle
spin-orbit pseudopotential of Ref. [18]. Since the sp
orbit interaction acts only inside the core, the effectiveVSO
is reduced to aboutsr3

c yVadl (øly10 for aluminum, where
the primitive cell volumeVa ø 111r3

B).
Having the band structure, the challenge is to eval

the average ofjbknj2, a quantity that varies over seve
orders of magnitudes. We do the averaging by the te
hedron method [19] with a carefully designed grid t
envelops the two sheets of the aluminum Fermi sur
(bands 2 and 3). The grid is denser in the regions wheD

is smaller (around BZ boundaries and accidental dege
acy points). This adaptation of the grid is necessary to
sure thatjbknj2 can be linearly interpolated inside the g
cells (tetrahedrons), as assumed in the tetrahedron me
The number of grid points (in the irreducible wedge
the first BZ) where the band-structure equations mus
solved is about ten thousand.

Figure 1 plots the calculated distributionr of the values
attainable byjbknj2 over the Fermi surface (the visu
perspective of the distribution is in Fig. 2). The span
enormous—almost seven decades. The majority of s
have jbknj2 below 1025. These are the generic poin
from the estimate (A). Once the Fermi surface approa
the BZ planes (violet in Fig. 2), the values jump to1025

1024. However, the largestjbknj2 are found near th
accidental degeneracy points R (red spots in Fig
these points do not lie on symmetry lines, yet they h
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FIG. 1. Calculated distributionr (in arbitrary units) of the
spin-mixing parametersjbknj2 for aluminum. The correspond
ing averagekb2l ø 2.0 3 1025 is indicated by a solid arrow
The linear tail of the distribution is shown in the inset. T
dashed line shows what the distribution would be if alumin
were monovalent (kb2l ø 3.4 3 1027, dashed arrow).
5625
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FIG. 2(color). Stereogram of the Fermi momentum directi
in aluminum. The fragment shows the spin hot spots:
points k (in an extended-zone scheme) withjbknj2 $ 1025.
Colors violet, blue, green, yellow, and red indicate a succes
increase ofb2: violet points haveb2 from 1025 to 1024; blue
1024 to 1023; etc., up to 1021 to 1 for red. To improve
their visibility, the weight of the colors (except for violet)
enhanced.

degenerate bands [20] if no spin-orbit interaction
present. The spin-orbit interaction lifts this degener
and completely mixes the spin states as in the estim
(C). The unusually long tail ofr ensures the large valu
of the averagekb2l ø 2.0 3 1025, about 10 times large
than the value wherer is maximal. To ensure that th
above picture is valid for a large temperature range,
checked that spin hot spots survive energy excitation
at leastøkTD (ø35 meV) above and below the Ferm
surface. This also invalidates the objection that sm
relativistic corrections (of a few meV) could affect th
existence of the spin hot spots in aluminum.

The band structure role inkb2l becomes even mor
evident from the plot (Fig. 1) ofr for a hypothetical
case of monovalent aluminum (the lattice and the fo
factors are unchanged). The monovalent aluminum h
simple Fermi surface, without deformations of type (B)
(C). The distribution ofb2 is appropriately narrower, an
the average valuekb2l ø 3.4 3 1027 is about 50 times
smaller than for trivalent aluminum. Adjusting for th
density of states (monovalent aluminum would have1yt

reduced,1y31y3 times) the spin relaxation would be abo
70 times slower. These values may somewhat vary
different scattering processes.

How different spin hot spots contribute to the ren
malization of kb2l becomes clear from Fig. 3, whic
plots what we call theaverage density of bands(ADOB).
ADOB is the Fermi surface average of the number of (v
tical) bands in the intervalsD, D 1 dDd: ADOBsDd 
s1ygFd

P
k,nfim dsẼkn 2 EFddsjẼkm 2 EFj 2 Dd, were

band energies̃Ekn are computed without the spin-orb
interaction, andgF is the density of states (per spin) atEF .
5626
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FIG. 3. Calculated average density of bands (ADOB) and
mulative average spin-mixing parameterkb2l sDd for aluminum.

The averagekb2l can then be well approximated by takin
the integral (from zero to infinity) of ADOB weighte
by the mixing factors1 2 Dy

p
D2 1 4V 2

SO dy2. Figure 3
usesVSO  1.1 3 1024 a.u., the value that gives the righ
answer forkb2l. At small D ADOB is linear. This is
expected for a region around R where band gaps incr
linearly with increasing distance from R [20]. The line
increase (see also Table I) continues up to the point w
the Fermi surface crosses the first (D ø 2V1) and the
second (D ø 2V2) closest BZ boundary plane. At thes
points, ADOB has power-law singularities (Table
Larger band separations, where ADOB develops ei
logarithmic or steplike singularities [21], are irreleva
Indeed, the cumulative averagekb2l sDd saturates afte
the second peak so thatkb2l is almost entirely determine
by the regions close to accidental degeneracies and
boundaries. As Fig. 3 shows, these regions contrib
about equally tokb2l. The behavior ofkb2l sDd also
shows that states in the immediate neighborhood of R
red spots in Fig. 2) withD & 2VSO ø 2.2 3 1024 are
statistically irrelevant. It is rather a broader neighborho
of R [the states with2VSO & D & 2V1 and estimate (B)]
that is contributing most. These findings are confirm
by the analytical calculation reported in Table I.

Table I summarizes our estimates of ADOB andkb2l
for three different cases. The estimates were obtained
lytically by the orthogonalized-plane-wave methods dev
oped in Ref. [20]. If the Fermi surface (in an extend
zone) lies entirely within the first BZ (region I, alkali an
noble metals), the enhancement ofkb2l is about tenfold
since Emin ø 0.1. If the Fermi surface crosses a zo
boundary (region II, polyvalent metals), the enhancem
is ,1yVG, typically a hundred. Relative to I, however, th
enhancement is in units of ten, in agreement with the
merical calculation. Qualitatively, a fraction of,VG states
on the Fermi surface comes close to zone boundaries (D ø
2VG) so that theirjbknj2 , sVSOyVGd2. The contribution
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TABLE I. Estimated contributions of different Fermi surface regions to ADOB andkb2l.
(I) The Fermi surface is entirely within the first BZ, crosses (II) a zone boundary,
(III) an accidental degeneracy line at R. Momentum and energy are measured in the u
Gy2 and sGy2d2y2, respectively. The region III assumes an fcc lattice with perioda, energy
and momentum in the units of2pya ands2pyad2y2, respectively, andV2 ¿ V1 ¿ V 2

2 . Both
ADOB and kb2l come with the corresponding multiplicative factor. Notation:kF 

p
EF is

the Fermi vector,Emin  GsG 2 2kFd is the band gap at the point of closest approach
the BZ plane given byG; NG and NR are the numbers of the corresponding BZ planes a
accidental degeneracy pointssNR  24d; Q is the step function.

FS area Multiplicative factor ADOB b2yV 2
SO

I NGy4GkF QsD 2 Emind 1yEmin

II NGy4GkF Dy
p

D2 2 4V 2
G spy4d s1yVGd

III NRy8kF sV2yV1d2D sV2yV1d2 lnsV1yVSOd
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c,
of these points tokb2l is therefore,VG 3 sVSOyVGd2;
the enhancement is,1yVG, consistent with the resu
in Table I. Curiously, the region II applies also to the no
metals, whose Fermi surfaces touch zone boundaries
This effect is, however, masked by the unusually highVG

for these metals [22] (VG ø Emin, otherwise the Fermi sur
face would not touch the zone planes). The enhancem
of kb2l can be also significant if the Fermi surface cros
a line of accidental degeneracy (region III). Indeed,
substituting the values for aluminum, the enhancemen
about tenfold, similar to case (II), again agreeing with
numerical result. Finally, not shown in Table I is the ca
when EF coincides with a degenerate level at a spe
symmetry point. Such a situation occurs, for example
Pd and Pt, whose Fermi surfaces go through the fccL point.
If the spin-orbit interaction lifts this degeneracy, the ren
malization ofkb2l can be significant (we find the enhanc
ment,VGyVSO for the fccW point [21]).

Our final note concerns the hexagonal Mg and
where the deviation ofT1 from the main group is mos
striking [10]. We argue that this is also a manifestat
of the band renormalization ofc2. Without the spin-orbit
interaction, all of the states at the hexagonal faces of
first BZ of a simple hexagonal structure are degene
[12]. The spin-orbit interaction lifts this degeneracy [
(except at some symmetry points and lines), presum
by the amountVGVSO, the largest second-order ter
containing the spin-orbit interaction (any first-order te
vanishes since the structure factor associated with
hexagonal faces is zero [12]). The contribution tokb2l of
the points where the Fermi surface intersects the hexag
faces is,VGVSO (in the units of Table I): the characterist
value jbknj2 , 1, times the area of the affected part
the Fermi surface,VGVSO. The enhancement measured
terms ofV 2

SO is thenVGyVSO; this can be as large as
thousand for light elements such as Mg and Be.

We acknowledge discussions with P. B. Allen a
M. Johnson. This work was supported by the U.S. ON

Note added.—After submission of our work R. H. Sils
bee brought to our attention an earlier paper [23] wh
suggests the importance of the accidental degene
points for the spin relaxation in aluminum.
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