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Molecular-Level Mechanical Instabilities and Enhanced Self-Diffusion in Flowing Liquids
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Molecular simulations show that shear strains arising from liquid flow cause local minima of
the potential-energy surface to disappear, leading to mechanical instabilities which force the system
towards alternate local minima. Associated with these mechanical instabilities are irreversible atomic
displacements, which are strain activated rather than thermally activated. These displacements generate
self-diffusion in excess of that from thermal-activation alone and give rise to the shear-enhanced
self-diffusion known to occur in flowing liquids and concentrated suspensions of particles. The
magnitude of this enhancement is shown to decrease with increasing temperature and strain rate.
[S0031-9007(98)07979-4]

PACS numbers: 61.20.Ja, 66.10.Cb
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The presence of shear flow is known to affect t
diffusion constants of a system. On a molecular lev
nonequilibrium molecular dynamics (NEMD) simulation
have shown that diffusion constants in liquids can
crease significantly within shear flows [1–5]. Sim
lar effects have been observed in systems of parti
suspended in liquids, both in experiments [6–10] a
simulations [11–13].

The present investigation addresses the effects
shear flow on self-diffusion in liquids using the inhere
structure formalism [14], which separates the dynamics
liquids into vibrational motion within one local potentia
energy minimum (an “inherent structure”), and diffusiv
motion between different local minima. The rate of d
fusion is in this way related to the frequency of transitio
between local minima. The simulations are carried
for a system composed of 256 atoms of massm, which in-
teract with a Lennard-Jones potential characterized by
parameterś and s and truncated at the distance2.5s;
the characteristic time for the systemt  sms2y´d1y2.
The simulations are carried out for a dens
r  0.8442s23, which is the triple point density o
the Lennard-Jones system (note that the qualitativ
different effects of shear seen in gas phase systems [3
are not addressed here).

To understand the physical origins of the she
enhanced self-diffusion, the behavior of the system un
shear is examined first in the case that it always rema
at a potential energy minimum (i.e., there is no therm
energy). An initial local potential energy minimum
for a cubic simulation cell is generated by quenching
liquid to zero temperature, after which the shear stra
´xy , of the simulation cell is increased in increments
0.1% (the shear is along thex direction). After each
strain increment, the potential energy is reminimized w
respect to the atomic coordinates (at constant strain).
average atomic displacements with respect to the in
cubic cell atomic positions are obtained at each strain
relevant coordinates are those with respect to the ce
of mass).
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The resulting atomic displacements (with the syste
always at a potential energy minimum) consist of regio
in which there is little change in the displacemen
with strain, punctuated by discontinuous jumps in t
displacements, as shown in Fig. 1(a). To determine
cause of the discontinuous jumps, which account
almost all of the atomic displacements, properties of
potential energy landscape were probed. As shown
Fig. 2, the discontinuous jumps in atomic displaceme
coincide with the decrease to zero of the followin
properties: the height of a barrier (i.e., saddle poin
the curvature of the potential energy surface (alo
one direction) at the positions of both the minimu
and the barrier, and the distance between the minim
and the barrier. These trends are indicative of
disappearance of a local energy minimum which rend
the system mechanically unstable, as shown schematic
in Fig. 3. The discontinuous jumps in atomic positio
thus arise from mechanical instabilities and subsequ
relaxation to different energy minima and are stra
activated rather than thermally activated. The instabilit
are irreversible, as the new potential energy minimu
will in general remain stable as the strains are rever
[see Figs. 2(a) and 2(c)]. The instabilities are also fou
to be localized to a small number of atoms. The
shear-induced mechanical instabilities are analogous
the pressure-induced mechanical instabilities in glas
examined previously [16,17].

The atomic displacements associated with the mech
cal instabilities correspond to steps in a random walk
the directions perpendicular to the shear); the sum of th
steps gives rise to self-diffusion which is strain activat
rather than thermally activated. Although these results
time independent, Einstein relations can be used to ext
the quantitiesDyysT  0dyg andDzzsT  0dyg,

kDy2l  2Dyyt  2

µ
Dyy

g

∂
´xy ,

kDz2l  2Dzzt  2

µ
Dzz

g

∂
´xy ,

(1)
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FIG. 1. Mean-square displacement of atomic positions c
responding to the potential energy minimum, as a funct
of shear strain. Filled circles:k y2l; open circles:kz2l. (a) A
single simulation; (b) average of 29 simulations.

where the strain rateg  ´xyyt and Dii is the diffusion
constant in thei direction (note that the lack of therm
effects here corresponds to the temperatureT  0). From
an average of the results of 29 systems [Fig. 1(b)], i
found thatDyys0d ø 0.16gs2 andDzzs0d ø 0.15gs2.

These strain-activated contributions to diffusion w
augment the usual thermally activated contributions,
the two contributions do not operate independently. T
effect can be understood as follows: A local minimu
remains stable on average for some strain intervalD´xy

or time intervalDt  D´xyyg. If the system does no
undergo a thermally activated transition withinDt, it
will (on average) undergo a strain-activated transiti
However, if the system does undergo a thermally activa
transition duringDt, the strain-activated transition from
that local minimum is precluded. Thermally activat
transitions thus act to decrease the frequency of str
activated transitions, which reduces the strain-activa
-

s

t
s

.
d

n-
d

contribution to diffusion; i.e.,≠Diiy≠g will decrease with
increasing temperature and equalDiis0dyg only asT ! 0.

Both the strain-activated and thermally activated co
tributions to diffusion will decrease with high strain rate
The frequency of strain-activated transitions decrea
with high strain rates for the following reason: After a lo
cal minimum disappears due to shear, the system may
have time to relax to the new minimum before the ne
minimum also disappears due to shear. The frequenc
thermally activated transitions decreases with high str
rates because the system may not have time to trav
a low energy barrier before the shear-induced change
the potential energy surface cause the barrier to beco
large. The shear enhancement of diffusion,≠Diiy≠g, is
thus greatest forg ! 0 andT ! 0.

To demonstrate the validity of the proposed mechani
for enhanced self-diffusion in liquids, NEMD simulation
are carried out to determine the self-diffusion constants
a function of shear rate and temperature, using the s
equations of motion with the temperature maintained
a Gaussian thermostat [18] (previous NEMD simulatio
[1–5] did not address this temperature dependence).
lower temperaturessT # 0.3´ykd, the system is intermit-
tently heated and recooled in order to avoid crystalliz
tion. The diffusion constantsDyy andDzz are determined
from Einstein relations. The simulations are carried o
for 10 to 15 values ofg at each temperature, for value
0 , g , gmax, wheregmax ranges from0.03t21 at the
lower temperatures to0.3t21 at higher temperatures. Th
results forDii are fit to a polynomial ing (first order
for T . 0.3´yk and second order forT # 0.3´yk), from
which the slopes≠Diiy≠gjg!0 are obtained.

The NEMD results for ≠Diiy≠gjg!0, given in
Fig. 4, show that these values decrease with increas
temperature and, asT ! 0, extrapolate towards the val
ues ofDiis0dyg which are due to mechanical instabilitie
(as shown above). Also, previous NEMD simulatio
have shown that≠Diiy≠g decreases with increasingg
[2,3,5]. These results thus corroborate the propo
mechanism for shear-enhanced self-diffusion in terms
mechanical instabilities.

We emphasize that the enhanced self-diffusion eff
arises independently from the NEMD methodology. F
example, our time-independent simulations, in which t
system always remains at the potential energy minimu
exhibit strain-activated diffusion of the formD , s2g

(see Fig. 1). These time-independent simulations co
spond physically to NEMD simulations in the limitsT !
0 andg ! 0 (i.e., it is in these limits that the system wi
remain at the potential energy minimum at all times).

The present results also have implications for very co
centrated suspensions of particles undergoing shear fl
The particle packing in very concentrated suspensions
undergo mechanical instabilities with shear analogou
to the atomic systems described above, giving rise
shear-enhanced self-diffusion in these systems (i.e.,
5577
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FIG. 2. Changes in characteristics of the potential-energy surface with shear strain. (a) Mean-square displacement
positions alongy (filled circles) andz (open circles); (b) a barrier height; (c) curvature along the reaction coordinate at the e
minimum (open circles) and at the barrier (filled circles); (d) distance between the energy minimum and the barrier. The
lines in (a) and (c) represent results obtained when the stresses are reversed.
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FIG. 3. Schematic representation of shear-induced mechan
instabilities in the potential-energy surface underlying liquid
The curves represent the potential energy along the rele
coordinate; the circles represent the state of the system.
5578
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“atoms” now represent “particles”). Previous theori
of shear-enhanced diffusion in suspensions have focu
on dilute suspensions and are thus based on disc
interparticle encounters [6,19–22]; the present mechan
in terms of mechanical instabilities is more appropria
for very concentrated systems, where the particles
essentially in constant contact rather than undergo
discrete encounters. The form of the diffusion const
D , s2g which arises from the mechanical instabilitie
in the same as that found experimentally in systems wh
thermally activated diffusion (i.e., Brownian motion
is negligible [7]. Brownian motion will decrease th
value of ≠Diiy≠g in suspensions, for the same reas
that thermally activated diffusion decreases the value
≠Diiy≠g of liquids; however, the NEMD simulation
are not relevant to suspensions due to the neglec
hydrodynamic effects.
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FIG. 4. Results for≠Dyyy≠gjg!0 and ≠Dzzy≠gjg!0. The
open symbols are the present NEMD results: The symbols w
crosses are the results from Ref. [5], and the filled symbols
DyysT  0dyg and DzzsT  0dyg obtained in the absence o
thermal effects [see Fig. 1(b)]. Squares:≠Dyyy≠gjg!0; circles:
≠Dzzy≠gjg!0.
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