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Molecular-Level Mechanical Instabilities and Enhanced Self-Diffusion in Flowing Liquids
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Molecular simulations show that shear strains arising from liquid flow cause local minima of
the potential-energy surface to disappear, leading to mechanical instabilities which force the system
towards alternate local minima. Associated with these mechanical instabilities are irreversible atomic
displacements, which are strain activated rather than thermally activated. These displacements generate
self-diffusion in excess of that from thermal-activation alone and give rise to the shear-enhanced
self-diffusion known to occur in flowing liquids and concentrated suspensions of particles. The
magnitude of this enhancement is shown to decrease with increasing temperature and strain rate.
[S0031-9007(98)07979-4]

PACS numbers: 61.20.Ja, 66.10.Cb

The presence of shear flow is known to affect the The resulting atomic displacements (with the system
diffusion constants of a system. On a molecular levelalways at a potential energy minimum) consist of regions
nonequilibrium molecular dynamics (NEMD) simulations in which there is little change in the displacements
have shown that diffusion constants in liquids can in-with strain, punctuated by discontinuous jumps in the
crease significantly within shear flows [1-5]. Simi- displacements, as shown in Fig. 1(a). To determine the
lar effects have been observed in systems of particlesause of the discontinuous jumps, which account for
suspended in liquids, both in experiments [6—10] andalmost all of the atomic displacements, properties of the
simulations [11-13]. potential energy landscape were probed. As shown in

The present investigation addresses the effects dfig. 2, the discontinuous jumps in atomic displacements
shear flow on self-diffusion in liquids using the inherentcoincide with the decrease to zero of the following
structure formalism [14], which separates the dynamics oproperties: the height of a barrier (i.e., saddle point),
liquids into vibrational motion within one local potential the curvature of the potential energy surface (along
energy minimum (an “inherent structure”), and diffusive one direction) at the positions of both the minimum
motion between different local minima. The rate of dif- and the barrier, and the distance between the minimum
fusion is in this way related to the frequency of transitionsand the barrier. These trends are indicative of the
between local minima. The simulations are carried outlisappearance of a local energy minimum which renders
for a system composed of 256 atoms of massvhich in-  the system mechanically unstable, as shown schematically
teract with a Lennard-Jones potential characterized by thim Fig. 3. The discontinuous jumps in atomic positions
parametere and o and truncated at the distan2éso;  thus arise from mechanical instabilities and subsequent
the characteristic time for the system= (mo?2/¢)'/2. relaxation to different energy minima and are strain
The simulations are carried out for a densityactivated rather than thermally activated. The instabilities
p = 0.84420 3, which is the triple point density of are irreversible, as the new potential energy minimum
the Lennard-Jones system (note that the qualitativelwill in general remain stable as the strains are reversed
different effects of shear seen in gas phase systems [3,18ee Figs. 2(a) and 2(c)]. The instabilities are also found
are not addressed here). to be localized to a small number of atoms. These

To understand the physical origins of the shearshear-induced mechanical instabilities are analogous to
enhanced self-diffusion, the behavior of the system undethe pressure-induced mechanical instabilities in glasses
shear is examined first in the case that it always remainexamined previously [16,17].
at a potential energy minimum (i.e., there is no thermal The atomic displacements associated with the mechani-
energy). An initial local potential energy minimum cal instabilities correspond to steps in a random walk (in
for a cubic simulation cell is generated by quenching ahe directions perpendicular to the shear); the sum of these
liquid to zero temperature, after which the shear strainsteps gives rise to self-diffusion which is strain activated
&y, Of the simulation cell is increased in increments ofrather than thermally activated. Although these results are
0.1% (the shear is along the direction). After each time independent, Einstein relations can be used to extract
strain increment, the potential energy is reminimized withthe quantities,, (7 = 0)/y andD_.(T = 0)/v,
respect to the atomic coordinates (at constant strain). The D
average atomic displacements with respect to the initial (Ay?)y = 2Dyt = 2<l>sxy,
cubic cell atomic positions are obtained at each strain (the N Y
relevant coordinates are those with respect to the center ) < DZZ> 1)

(Az%) = 2Dt =2 Exy >
of mass). y )
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04 re) contribution to diffusion; i.e.gD;; /9y will decrease with
(@) increasing temperature and eqi®g{(0)/y only asT — 0.
M-J Both the strain-activated and thermally activated con-

tributions to diffusion will decrease with high strain rates.
The frequency of strain-activated transitions decreases
— with high strain rates for the following reason: After a lo-
02 _M cal minimum disappears due to shear, the system may not
' have time to relax to the new minimum before the new
minimum also disappears due to shear. The frequency of
thermally activated transitions decreases with high strain
rates because the system may not have time to traverse
a low energy barrier before the shear-induced changes in
the potential energy surface cause the barrier to become
large. The shear enhancement of diffusiom,;/dvy, is

thus greatest foy — 0 andT — 0.

To demonstrate the validity of the proposed mechanism
for enhanced self-diffusion in liquids, NEMD simulations
are carried out to determine the self-diffusion constants as
a function of shear rate and temperature, using the sllod
equations of motion with the temperature maintained by
a Gaussian thermostat [18] (previous NEMD simulations
[1-5] did not address this temperature dependence). At
lower temperature6l’ = 0.3¢/k), the system is intermit-
tently heated and recooled in order to avoid crystalliza-
tion. The diffusion constant®,, andD_, are determined
from Einstein relations. The simulations are carried out
for 10 to 15 values ofy at each temperature, for values
0 < ¥ < Ymax, Where yn., ranges from0.037~! at the
lower temperatures .37~ ! at higher temperatures. The
results forD;; are fit to a polynomial iny (first order
for T > 0.3g/k and second order f&f < 0.3¢/k), from
which the slope®D;;/dy|,—o are obtained.

The NEMD results for aD;;/dyl,—o, given in
Fig. 4, show that these values decrease with increasing
FIG. 1. Mean-square displacement of atomic positions cortemperature and, a& — 0, extrapolate towards the val-
:)?Sgﬁengr'ns%éﬁl_thgi”ggt%?rté?é;ygir goyperp]'ryir:l‘fgkﬁi’_ a(;)u'r&ctmnues ofD;;(0)/y which are due to_mechanical in_stabili_ties
single simulation; (b) average of 29 simulations. (as shown above). Also, previous NEMD simulations

have shown thabD;;/9y decreases with increasing
where the strain ratg = &,,/t and D;; is the diffusion [2,3,5]. These results thus corroborate the proposed
constant in the direction (note that the lack of thermal mechanism for shear-enhanced self-diffusion in terms of
effects here corresponds to the temperafure 0). From  mechanical instabilities.
an average of the results of 29 systems [Fig. 1(b)], it is We emphasize that the enhanced self-diffusion effect
found thatD,,(0) =~ 0.16yo? andD.(0) = 0.15yo>. arises independently from the NEMD methodology. For

These strain-activated contributions to diffusion will example, our time-independent simulations, in which the
augment the usual thermally activated contributions, busystem always remains at the potential energy minimum,
the two contributions do not operate independently. Thisxhibit strain-activated diffusion of the form» ~ o2y
effect can be understood as follows: A local minimum(see Fig. 1). These time-independent simulations corre-
remains stable on average for some strain intetva), spond physically to NEMD simulations in the limits—
or time intervalAr = Aeg,,/y. If the system does not 0andy — 0 (i.e., it is in these limits that the system will
undergo a thermally activated transition withikz, it  remain at the potential energy minimum at all times).
will (on average) undergo a strain-activated transition. The present results also have implications for very con-
However, if the system does undergo a thermally activatedentrated suspensions of particles undergoing shear flow.
transition duringAr, the strain-activated transition from The particle packing in very concentrated suspensions will
that local minimum is precluded. Thermally activatedundergo mechanical instabilities with shear analogously
transitions thus act to decrease the frequency of strairte the atomic systems described above, giving rise to
activated transitions, which reduces the strain-activatedhear-enhanced self-diffusion in these systems (i.e., the
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FIG. 2. Changes in characteristics of the potential-energy surface with shear strain. (a) Mean-square displacement of atomic
positions alongy (filled circles) andz (open circles); (b) a barrier height; (c) curvature along the reaction coordinate at the energy
minimum (open circles) and at the barrier (filled circles); (d) distance between the energy minimum and the barrier. The dashed
lines in (a) and (c) represent results obtained when the stresses are reversed.
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“atoms” now represent “particles”). Previous theories
of shear-enhanced diffusion in suspensions have focused
on dilute suspensions and are thus based on discrete
interparticle encounters [6,19—-22]; the present mechanism
in terms of mechanical instabilities is more appropriate
for very concentrated systems, where the particles are
essentially in constant contact rather than undergoing
discrete encounters. The form of the diffusion constant
D ~ o*y which arises from the mechanical instabilities
in the same as that found experimentally in systems where
thermally activated diffusion (i.e., Brownian motion)
is negligible [7]. Brownian motion will decrease the
value of aD;;/dy in suspensions, for the same reason

. . . _that thermally activated diffusion decreases the value of
FIG. 3. Schematic representation of shear-induced mechanlc%IDii/ay of liquids; however, the NEMD simulations

instabilities in the potential-energy surface underlying liquids. t rel tt . d to th lect of
The curves represent the potential energy along the relevaft’® NOL relevant 10 suspensions due 1o the neglect o
hydrodynamic effects.

coordinate; the circles represent the state of the system.
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