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Feedout and Rayleigh-Taylor Seeding Induced by Long Wavelength Perturbations
in Accelerated Planar Foils
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The perturbation transfer between the rear and front surface (feedout), secular distortion, an
Rayleigh-Taylor (R-T) instability growth is studied for long wavelength modes in accelerated flat
foils. A simple formula is derived, relating the R-T growth factor to the amplitude of the rear
surface perturbation. Comparisons with two-dimensional simulations confirm the validity of the theory
[S0031-9007(98)07934-4]
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The Rayleigh-Taylor (R-T) instability in laser acce
erated targets [1] is seeded by the laser imprinting
target nonuniformities. In recent years, the implemen
tion of smoothing techniques [2] has produced unifo
laser beams and greatly reduced laser imprinting le
in directly driven targets. Recent experimental results
seem to indicate that, in the near future, the level of
printing in direct drive inertial confinement fusion (ICF
could be reduced to or below the level of target nonu
formities. The latter are particularly pronounced on
inside surface of the ICF capsules. Both direct and in
rect drive ICF shells have an outer ablator and an in
layer of solid deuterium-tritium (DT) deposited on the i
side surface of the ablator. The inner and outer abl
surfaces are usually very smooth while the inner DT
surface is rough. In spite of the significant improveme
in smoothing techniques [4], the DT-ice inside surfa
is much rougher than the ablator surface. Even tho
the inside surface is stable during the acceleration ph
of the implosion, the nonuniformities propagate throu
the target and reach the ablation front (feedout [5]), t
imprinting a perturbation and seeding the ablation fr
R-T instability. In this paper, we describe the feedout a
growth of long wavelength small perturbations in las
accelerated planar targets. We have derived a theo
cal understanding of the perturbation transfer from
rear to the front surface, consequent imprinting of the p
turbation and R-T seeding. Here, long wavelength sm
perturbations are defined as single Fourier componen
the inside surface perturbations with an amplitudeD and
inverse wave numberk21 smaller than the postshock ta
get thicknessdps (i.e., linear perturbations andkdps , 1).
This theory is relevant to the stability of accelerated p
nar foils as well as high gain capsules [6] where the fe
out process occurs well before the convergence eff
become important. However, long (kdps , 1) as well as
short wavelength (kdps . 1) feedout play an importan
role in seeding the R-T instability and determining t
level of mixing in ignition capsules. Because of the an
0031-9007y98y81(25)y5560(4)$15.00
d
-

ls
]
-

-

i-
r

r

s

h
se

s
t
d
r
ti-
e
r-
ll
of

-
-
ts

-

lytic complexity, the theoretical understanding of sho
wavelength feedout must heavily rely on numerical sim
lations [7] and will be the subject of future work.

We start by determining the one-dimensional behav
of a planar foil accelerated by a large constant press
applied on the front surface. This is a typical scenario
flat targets accelerated by a square laser pulse as we
high-gain direct drive implosion where the laser intens
(i.e., applied pressure) is initially kept constant to set
shell on the desired adiabat. We consider a planar foi
thicknessd0 and densityr0. At time t ­ 02, the outside
pressure isp0. At time t ­ 01, the pressurepa ¿ p0
is applied on one side of the foil via laser illuminatio
at x ­ d0 while the pressure on the other side is ke
constant atp0. As a consequence of the sudden rise
pressure, an ionizing shock wave propagates through
foil. The shock velocityUs depends on the shock streng
and the sound speed ahead of the shock. The posts
sound speedaps, flow velocity Ups, and gas densityrps
can also be expressed in terms of the shock stren
and the physical properties ahead of the shock using
Hugoniot relations [8]. The target is ionized, compress
and its thickness isdps ­ r0d0yrps as a result of the
shock propagation. In order to simplify the analysis,
treat the compressed target material as an ideal gas w
ratio of specific heatsg ­ 5y3. After the shock breakou
on the rear surface at timetsb ­ d0yUs, the gas expands
isentropically and a rarefaction front propagates towa
the front surface. The rarefaction front travels with t
postshock sound speed and reaches the front sur
at the rarefaction wave break-out timetrb ­ dpsyaps.
The rarefaction wave solution is well known and it c
be easily written in the Lagrangian frame of referen
defined by the initial positionx of the fluid elements
at the time of the shock break out. The Lagrang
transformationsx, td ! sx, td can be expressed throug
the fluid element trajectories,x ­ x 1

R
t

0 Ufx, t0g dt0

wheret ­ t 2 tsb and0 , x , dps. Solving the mass
momentum, and entropy conservation equations and u
© 1998 The American Physical Society
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the dimensionless coordinatej ­ xyapst leads to the
following form of the rarefaction wave solution:

r ­ rpsj
3y4, p ­ ppsj

5y4,

U ­ 3apssj1y4 2 1d 1 Ups ,
(1)

for 0 , x , apst and r ­ rps, p ­ pps, U ­ Ups for
apst , x , dps. Here,U andUps are both negative be
cause the shock-induced motion is directed in the ne
tive x direction. In the target frame of reference, Eqs.
are equivalent to the rarefaction wave solution found
Ref. [8]. The target-vacuum interface (expansion fro
travels with the escape velocityUes ­ Ups 2 3aps and
the rarefaction front with the velocityUr ­ aps 1 Ups.
The rarefaction wave solution is valid only until the ra
efaction wave reaches the front surface. Since the app
pressure is constant, the front surface moves at con
velocity until the rarefaction wave breaks out. The fro
surface starts accelerating fort $ trb. As shown later,
it is crucial for the feedout problem and R-T growth
determine the acceleration at timet $ trb. The problem
can be greatly simplified by using the hodograph met
in the Lagrangian frame of referencesx, td. The Rie-
mann invariantsJ1 ­ 3a 1 u andJ2 ­ 3a 2 u are con-
stant along the characteristic curvesC1 fdxydt ­ âg,
andC2 fdxydt ­ 2âg, respectively, wherêa ­ aryrps

anda ­
p

5py3r is the sound speed. Using the Riema
invariants as new coordinates replacingsx, td, the charac-
teristic equations can be combined into a single pa
differential equation,

≠2
J1J2

t 1 2f≠J1 t 1 ≠J2tgysJ1 1 J2d ­ 0 . (2)

The solution of Eq. (2) yields the timet as a function
of the Riemann invariants:t ­ tsJ1, J2d. Equation (2)
must be solved in the domain (region II) shown in Fig.
between the characteristicC2

0 and the front surface
x ­ dps. In region I, â ­ xyt and C2

0 is given by
the equationdxydt ­ 2xyt with initial condition x ­
dps for t ­ dpsyaps. Thus, the curveC2

0 is given by
x ­ d2

psyapst and the Riemann invariants onC2
0 are

J2 ­ 3aps 2 Ups and J1 ­ 3apsf2
p

dpsysapstd 2 1g 1

Ups. The last equation can be inverted yieldingt ­
tsJ1d on C2

0 . The other side of region II is the fron

FIG. 1. Characteristics in the Lagrangian frame of refere
corresponding to the shock break-out time.
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surface atx ­ dps where the pressure (and therefo
the density and sound speed) is assigned andJ1 1 J2 ­
6aps is constant. Sincedx ­ 0 anddJ1 ­ 2dJ2 on the
front surface, using the characteristic equations leads
the boundary condition≠J1t 1 ≠J2 t ­ 0 for x ­ dps.
Using the general Riemann’s solution [8] of Eq. (2) a
applying the boundary conditions yield

T ­ e
p

3 ĴfÂscos Ĵ 1
p

3 sin Ĵd 2 s2y
p

3 d sin ĴgyÂ3,
(3)

whereT ­ apstydps, Â ­ ayaps, andĴ ­ sJ2 1 Ups 2

3apsdys2
p

3 apsd. The velocityufs and accelerationgfs of
the front surface can be obtained by substitutingÂ ­ 1
and Ĵ ­ 2Duys2

p
3 apsd into Eq. (3)sDu ; ufs 2 Upsd

leading to the following implicit equation:

T ­
2

p
3

cos

√
Du

2
p

3 aps
1

p

6

!
exp

√
2

Du
2aps

!

gfssT d ­
aps

dps

dsDud
dT

.
(4)

The acceleration given above is valid only as lo
as the flow is isentropic. It is easy to show th
the Jacobian of the hodograph transformation vanis
whent ­ s9y4d sdpsyapsd at x ­ s4y9ddps indicating that
a secondary shock forms inside the target during
acceleration phase. Thus, one can conclude that Eqs
are valid until t ­ s9y4d sdpsyapsd (or sometime after
that) when the isentropic flow assumption breaks dow
Since the target moves in the negativex direction, we use
the transformationx ! 2x through the rest of this paper
At the rarefaction wave break-out time, Eq. (4) yields t
front surface acceleration

gfsstrbd ­ 5pay2r0d0 . (5)

At later times, the front surface acceleration decrea
and reaches the quasi-steady-state valuepayr0d0. This
concludes the analysis of the 1D motion of the planar f
subject to a constant pressurepa. The next step is to
determine the two-dimensional evolution in the presen
of a rippled rear surface.

If the rear surface is rippled, the shock-wave ripple
surface interaction produces a rippled rarefaction front [
We consider an initial rear surface rippleD0 cossky 1

pd. Soon after the shock breaks out on the rear surfa
the ripple on the rarefaction front can be determined
ing the following considerations. For long waveleng
modes, the motion parallel to the shock front can be
glected and the rarefaction occurs perpendicularly to
shock. As shown in Fig. 2(a), the shock first reach
the ripple valleys where the expansion and the raref
tion fronts originate. The rarefaction fan widens while t
shock travels towards the ripple peaks. As shown earl
the velocity of the rarefaction front isUr ­ aps 2 jUpsj.
By the time the shock has reached the ripple pe
[Fig. 2(b)], the rarefaction front originated at the va
leys has moved byUrD0yUs. Thus, the ripple amplitude
5561
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FIG. 2. The shock reaches the rippled rear surface (a);
rippled rarefaction front is formed (b); the rarefaction reac
the front (ablation) surface (c).

on the rarefaction front right after the shock has reac
the peaks isDr ­ D0s1 1 UryUsd. The latter repre-
sents the initial conditions for the rippled rarefaction wa
propagation. The peaks and valleys of the rarefac
front travel at the sound speedaps toward the front sur-
face, thus keeping the ripple amplitude constant. Once
rippled rarefaction front approaches the front surfa
the ripple valleys experience the accelerationgfs before
the peaks [Fig. 2(c)]. The peaks reach the front surf
with a delaydt ­ Dryaps. During that time, the valleys
have been accelerated to the velocitydyx ­ gfsstrbddt.
It follows that by the time the entire rarefaction fro
(peaks and valleys) has reached the front surface, a
locity perturbation is imprinted on the latter. The r
sulting velocity perturbationdyx cosskyd imprinted at the
rarefaction wave break-out time on the front surface
the feedout process is

dyxstrbd ­ gfsstrbd sDryapsd , (6)

wheregfsstrbd is given by Eq. (5). Moreover, the targ
mass under the valleys of the initial perturbation is l
than under the peaks because the target thickness u
the valleys is D0 less than under the peaks. Sin
the target acceleration depends on the mass/thickn
a perturbation in the accelerationdgfs cosskyd develops
between the peaks and the valleys,

dgfs ­ 2s≠gfsstdy≠d0dD0 . (7)

wheregfs is given by Eq. (4) as long as the flow is ise
tropic. At later timesst ¿ trbd, the acceleration reache
a quasi-steady-stategfs ! payr0d0 and the perturbed ac
celeration becomes

dgfs ! gfsstdD0yd0 . (8)

We conclude that the feedout process of long wavelen
modes leads to the imprinting of a velocity and an acc
eration perturbation on the front surface. Equ
tions (6),(7) are derived as a lowest order expans
in kdps , 1 because any transversal motion has b
neglected.

The growth of the Rayleigh-Taylor instability starts a
ter the rarefaction wave break-out time and it is see
5562
he
s

d

e
n

he
e,

e

e-

y

s
der

ss,

th
l-
-
n
n

d

by the imprinted velocity and acceleration perturbatio
Only in the limit of k ! 0, no R-T growth occurs
and the front surface distortionDfs grows secularly be-
cause of the imprinted velocity and acceleration pert
bations described by the following ordinary differenti
equation (ODE) and initial conditions:fD̈fsgk!0 ­ dgfs,
Dfsstrbd ­ 0, ÙDfsstrbd ­ dyxstrbd. Initially, the ripple is
driven by the imprinted velocity perturbation and grow
linearly in time. Then, the perturbed acceleration leads
a quadratic secular distortion. For finite wave numbe
the R-T instability takes over at later times and the ripp
amplitude grows exponentially. Because of the compl
ity of the analytic solution, we rely on a simplified mod
and physical intuition to study the R-T growth from th
imprinted perturbations. We assume that the R-T is a s
face instability inducing an incompressible perturbed v
locity field and neglect the effect of ablation [6] on lon
wavelength modes. A careful comparison with numeri
simulations will determine the validity of the R-T model

We consider an incompressible layer of thicknessdps
subject to the accelerationgstd in a vacuum. The linear
analysis shows that the frontDfs cosskyd and rear surface
Drs cosskyd distortions produced by long wavelengt
modes can be written as

Dfs ­ sD1 1 D2d

Drs ­ fD1s1 2 kdpsd 1 D2s1 1 kdpsdg ,
(9)

where D1 and D2 represent a couple of growing
damped and oscillatory modes satisfying the following o
dinary differential equations:̈D1 ­ kgstdD1 and D̈2 ­
2kgstdD2. Four initial conditions are needed to solv
the two ODEs. For the feedout problem, two initi
conditions are provided by the front surface and velo
ity perturbations at the rarefaction wave break-out tim
Dfsstrbd ­ 0 and ÙDfsstrbd ­ dyxstrbd. Furthermore, since
the flow is incompressible,ÙDrsstrbd ­ ÙDfsstrbd. The last
condition is provided by assigningDrsstrbd in such a way
that the asymptotic value of the acceleration pertur
tion is the same as in the real compressible problem.
setting Drsstrbd ­ 2Dps ­ 2D0dpsyd0, the acceleration
perturbation of the incompressible foil of thicknessdps
is dginc ­ gstdD0yd0 identical to the asymptotic com
pressible value as shown in Eq. (8). However, duri
a brief transient after the rarefaction wave breaks
dg fi dginc. In order to correctly include the secula
distortion occurring during this transient, we add a no
homogeneous term into the equations forD1 andD2 re-
producing the exactdg and secular distortion fork ! 0.
Our final model describing the secular distortion as w
as the R-T growth can be written in the following form:

D̈6 ­ 6kgfsstdD6 1 fdgfs 2 gfsstdD0yd0gy2 , (10)

where gfs is the front surface acceleration anddgfs ­
2s≠gfsy≠d0dD0 is the exact perturbed acceleration. T
front surface distortion is given byDfs ­ D1 1 D2.
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Equations (10) must be solved using the following init
conditions:

D1strbd ­ 2D2strbd ­ D0y2kd0

ÙD1strbd ­ ÙD2strbd ­ dyxstrbdy2 ,
(11)

where D0 and d0 are the initial (uncompressed) rea
surface perturbation amplitude and target thickne
respectively, anddyxstrbd is the imprinted velocity
perturbation as given by Eq. (6). It is easy to show t
Eqs. (10),(11) yield the correct secular distorion equa
for k ! 0. If a steady state is reached shortly af
the rarefaction wave breaks out, Eqs. (10),(11) can
solved analytically. In this case, the time asympto
behavior ft . trb 1 skgfsd21y2g of the solution can be
approximated by the following simple formula:

Dfs ø
1
4

√
D0

kd0
1

s
3
5

rps

r0

Drp
kd0

!

3 exp

"Z t

trb

q
kgfsst0d dt0

#
, (12)

where Dr ­ 0.8D0 and rps . 4r0 for strong shocks
The WKB integral is used to improve the accura
at shorter wavelengths and includes the early temp
changes ofgstd. Equation (12) represents an appro
mate, yet accurate, formula for the front surface dis
tion seeded by a rear surface perturbation of amplit
D0. Observe that the R-T induced distortion depends
the wave number through the growth rate as well the
efficient of the exponential. The latter increases ask de-
creases. It is easy to show that the first and second te
in the coefficient are produced by the imprinted accele
tion and velocity perturbations, respectively.

The accuracy of Eq. (12) and the R-T mod
[Eqs. (10),(11)] has been tested by comparing
analytic results with two-dimensional Lagrangian sim
lations of a 20mm thick target with initial density
r0 ­ 1 gycm3 and pressure of 10 kbar accelerated
an applied constant pressurepa ­ 20 Mbar. The initial
rear surface perturbation amplitude isD0 ­ 0.05 mm,
the shock and rarefaction wave break-out times
tsb ­ 0.4 ns andtrb ­ 0.58 ns. Figure 3 shows the tim
evolution of the front surface distortionDfs obtained from
Eqs. (10),(11), the approximate formula Eq. (12), and
simulations for wavelengthsl ­ 60 mm skdps . 0.5d
and l ­ 300 mm skdps . 0.1d. The functions gfsstd
and dgfsstd are obtained from Eqs. (4),(7) while th
flow is isentropic and from the 1D numerical simulatio
after that. Although Eqs. (4),(7) have been derived
isentropic flows (the secondary shock formation time
l
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FIG. 3. Front surface distortion predicted by the simulatio
(solid line), the model Eqs. (10),(11) (dotted line), and Eq. (
(dashed line) for two wavelengths. Overlapping occurs for b
wavelengths.

0.8 ns), they can be used as long as the secondary s
is weak up to about 1.2 ns as indicated by numer
simulations.

The good agreement between analytic theory and si
lations shows that Eq. (12) can indeed be used to estim
the level of distortions induced by a long wavelength re
surface perturbation withkdps , 1.
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