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The perturbation transfer between the rear and front surface (feedout), secular distortion, and
Rayleigh-Taylor (R-T) instability growth is studied for long wavelength modes in accelerated flat
foils. A simple formula is derived, relating the R-T growth factor to the amplitude of the rear
surface perturbation. Comparisons with two-dimensional simulations confirm the validity of the theory.
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The Rayleigh-Taylor (R-T) instability in laser accel- lytic complexity, the theoretical understanding of short
erated targets [1] is seeded by the laser imprinting an@vavelength feedout must heavily rely on numerical simu-
target nonuniformities. In recent years, the implementatations [7] and will be the subject of future work.
tion of smoothing techniques [2] has produced uniform We start by determining the one-dimensional behavior
laser beams and greatly reduced laser imprinting levelef a planar foil accelerated by a large constant pressure
in directly driven targets. Recent experimental results [3lapplied on the front surface. This is a typical scenario for
seem to indicate that, in the near future, the level of im{lat targets accelerated by a square laser pulse as well as
printing in direct drive inertial confinement fusion (ICF) high-gain direct drive implosion where the laser intensity
could be reduced to or below the level of target nonuni<i.e., applied pressure) is initially kept constant to set the
formities. The latter are particularly pronounced on theshell on the desired adiabat. We consider a planar foil of
inside surface of the ICF capsules. Both direct and indithicknessd, and densitypy. Attimer = 07, the outside
rect drive ICF shells have an outer ablator and an innepressure ispy. At time ¢+ = 0", the pressure, > po
layer of solid deuterium-tritium (DT) deposited on the in- is applied on one side of the foil via laser illumination
side surface of the ablator. The inner and outer ablatoat x = dy while the pressure on the other side is kept
surfaces are usually very smooth while the inner DT iceconstant atp,. As a consequence of the sudden rise in
surface is rough. In spite of the significant improvementspressure, an ionizing shock wave propagates through the
in smoothing techniques [4], the DT-ice inside surfacefoil. The shock velocity/; depends on the shock strength
is much rougher than the ablator surface. Even thoughnd the sound speed ahead of the shock. The postshock
the inside surface is stable during the acceleration phas®ound speed,, flow velocity U,,, and gas density,,
of the implosion, the nonuniformities propagate throughcan also be expressed in terms of the shock strength
the target and reach the ablation front (feedout [5]), thusnd the physical properties ahead of the shock using the
imprinting a perturbation and seeding the ablation frontHugoniot relations [8]. The target is ionized, compressed,
R-T instability. In this paper, we describe the feedout andand its thickness ist,s = podo/pps as a result of the
growth of long wavelength small perturbations in lasershock propagation. In order to simplify the analysis, we
accelerated planar targets. We have derived a theoretireat the compressed target material as an ideal gas with a
cal understanding of the perturbation transfer from theatio of specific heaty = 5/3. After the shock breakout
rear to the front surface, consequent imprinting of the peren the rear surface at timg, = dy/U;, the gas expands
turbation and R-T seeding. Here, long wavelength smalisentropically and a rarefaction front propagates towards
perturbations are defined as single Fourier components dfie front surface. The rarefaction front travels with the
the inside surface perturbations with an amplitidend postshock sound speed and reaches the front surface
inverse wave numbee~! smaller than the postshock tar- at the rarefaction wave break-out timg, = dps/ aps.
get thicknessi, (i.e., linear perturbations anid/,; < 1). ~ The rarefaction wave solution is well known and it can
This theory is relevant to the stability of accelerated pla-be easily written in the Lagrangian frame of reference
nar foils as well as high gain capsules [6] where the feeddefined by the initial positiork of the fluid elements
out process occurs well before the convergence effeciat the time of the shock break out. The Lagrangian
become important. However, longd,s < 1) as well as  transformation(x,7) — (¥, 7) can be expressed through
short wavelength kd,s > 1) feedout play an important the fluid element trajectoriesy = ¥ + [{ U[x, r']d 7’
role in seeding the R-T instability and determining thewherer =t — ¢, and0 < x < d,,;. Solving the mass,
level of mixing in ignition capsules. Because of the ana-momentum, and entropy conservation equations and using
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the dimensionless coordinat® = X/a,s7 leads to the surface atx = d,; where the pressure (and therefore

following form of the rarefaction wave solution: the density and sound speed) is assigned.angt J, =
o=p ér3/4 p=p f5/4 6ap is constant. _ Sincdx = 0 and_dJ_1 = —dJ_z on the

pss 2 pss (1) front surface, using the characteristic equations leads to
U = 3ap(¢7* = 1) + Ups, the boundary conditiord;, 7 + 9,7 = 0 for X = dps.

for 0 < ¥ < apr andp = pos, p = poe, U = Uy, for Using the general Riemann’s solution [8] of Eq. (2) and
ps ps» ps? ps

apsT < ¥ < dy. Here,U andU,, are both negative be- @PPlying theAbounAdary conditi?ns yield o
cause the shock-induced motion is directed in the nega-T = eﬁj[A(cosJ + V3 sinJ) — (2/\/3) sin J]/A3,
tive x direction. In the target frame of reference, Eqgs. (1) (3)
are equivalent to the rarefaction wave solution found in ~ A
. . whereT = ans7/dys, A = a/a,s, andJ = (J, + Uy —
Ref. . The t 1- terf front ps ps? L L ops
ef. [8] € target-vacuum interface (expansion fron )3aps)/(2\/§aps). The velocityus; and acceleratiogy, of

travels with the escape velocity/.; = U,s — 3a,s and . oA

the rarefaction front vSith the vtgledcity]r P apsai‘ Ups. the front surface can be obtained by substitutihg 1

The rarefaction wave solution is valid only until the rar- 2ndJ = —Au/ (243 ap) into Eq. (3)(Au = ur — Upy)
dgading to the following implicit equation:

efaction wave reaches the front surface. Since the appli

pressure is constant, the front surface moves at constant T — 2 co Au T oxd — Au
velocity until the rarefaction wave breaks out. The front V3 243 aps 6 2aps
surface starts accelerating for= r,. As shown later, aps d(Au)

it is crucial for the feedout problem and R-T growth to g (7) = —=

determine the acceleration at time= r,,. The problem dps  dT

can be greatly simplified by using the hodograph method’he acceleration given above is valid only as long
in the Lagrangian frame of referendg, 7). The Rie- as the flow is isentropic. It is easy to show that
mann invariant; = 3a + u andJ, = 3a — u are con- the Jacobian of the hodograph transformation vanishes
stant along the characteristic curv€s [dx/dr = a], whent = (9/4) (dps/aps) atx = (4/9)d,, indicating that
andC~ [dx/dt = —a], respectively, wheré = ap/p,s @ secondary shock forms inside the target during the
anda = 4/5p/3p is the sound speed. Using the Riemannacceleration phase. Thus, one can conclude that Egs. (4)
invariants as new coordinates replaciigr), the charac- are valid until 7 = (9/4) (dys/aps) (or sometime after

teristic equations can be combined into a single partiathat) when the isentropic flow assumption breaks down.
differential equation, Since the target moves in the negativdirection, we use

5 the transformation — —x through the rest of this paper.
90,7 + 2057 + 9,7]/(1 + J2) = 0. (2) At the rarefaction wave break-out time, Eq. (4) yields the

The solution of Eqg. (2) yields the time as a function front surface acceleration

of the Riemann invariantst = 7(J1,J2). Equation (2) gis(t) = 5pa/2pods . (5)

must be solved in the domain (region II) shown in Fig. 1, ) .
between the characteristi€; and the front surface At later times, the front surface acceleration decreases

¥ =d,. In regionl, a=%/r and C; is given by and reaches the quasi-steady-state va@iygoody. This
the ec?Uationdf/dr — —%/r with initial condition ¥ = concludes the analysis of the 1D motion of the planar foil

dys for 7 = dy/ap,. Thus, the curveCy is given by subject_ to a constant pressupe. Thg next step is to
T = df,s/apsT and the Riemann invariants ofi, are determine the two-dimensional evolution in the presence

_ _ _ B of a rippled rear surface.
Jo = 3ap — Uy and Ji = 3ap[2ydp/(apet) = 1] + If the rear surface is rippled, the shock-wave rippled-
Ups. The last equation can be inverted yielding=

° ; - ) surface interaction produces a rippled rarefaction front [9].
7(J1) on Cy. The other side of region Il is the front We consider an initial rear surface ripple, cosky +

7). Soon after the shock breaks out on the rear surface,
] A the ripple on the rarefaction front can be determined us-
T ing the following considerations. For long wavelength
modes, the motion parallel to the shock front can be ne-
0 glected and the rarefaction occurs perpendicularly to the
| shock. As shown in Fig. 2(a), the shock first reaches
1| ap2 the ripple valleys where the expansion and the rarefac-
N i tion fronts originate. The rarefaction fan widens while the
shock travels towards the ripple peaks. As shown earlier,
X=0 X=d the velocity of the rarefaction front i§, = aps — |Upsl.
ps By the time the shock has reached the ripple peaks

FIG. 1. Characteristics in the Lagrangian frame of referencdFig. 2(b)], the rarefaction front originated at the val-
corresponding to the shock break-out time. leys has moved by, Ay/U,. Thus, the ripple amplitude
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- ] by the imprinted velocity and acceleration perturbations.
gfs,x" Only in the limit of k — 0, no R-T growth occurs

5 8 and the front surface distortioA¢; grows secularly be-

..3::' A ..g cause of the imprinted velocity and acceleration pertur-

S 3 bations described by the following ordinary differential

%‘\ = equation (ODE) and initial condition$A¢ [i—o = dgss,

=N |0 As(tp) = 0, Ags(tip) = Svi(tp). Initially, the ripple is

NS driven by the imprinted velocity perturbation and grows

Ots linearly in time. Then, the perturbed acceleration leads to

(c) a quadratic secular distortion. For finite wave numbers,

FIG. 2. The shock reaches the rippled rear surface (a): th‘éhe R-T instability takes over at later times and the ripple

rippled rarefaction front is formed (b); the rarefaction reaches@mplitude grows exponentially. Because of the complex-
the front (ablation) surface (c). ity of the analytic solution, we rely on a simplified model

and physical intuition to study the R-T growth from the

imprinted perturbations. We assume that the R-T is a sur-
on the rarefaction front right after the shock has reacheffice instability inducing an incompressible perturbed ve-
the peaks isA, = A¢(1 + U,/U,). The latter repre- locity field and neglect the effect of ablation [6] on long
sents the initial conditions for the rippled rarefaction wavewavelength modes. A careful comparison with numerical
propagation. The peaks and valleys of the rarefactiosimulations will determine the validity of the R-T model.
front travel at the sound speeg, toward the front sur- We consider an incompressible layer of thickndss
face, thus keeping the ripple amplitude constant. Once theubject to the acceleratiog(r) in a vacuum. The linear
rippled rarefaction front approaches the front surfaceanalysis shows that the froft;, cogky) and rear surface
the ripple valleys experience the acceleratign before A, cogky) distortions produced by long wavelength
the peaks [Fig. 2(c)]. The peaks reach the front surfacenodes can be written as
with a delayé™ = A, /aps. During that time, the valleys Ap = (A" + A7)
have been accelerated to the veloddty, = g¢(4p)07. fs
It follows that by the time the entire rarefaction front Ay =[A (1 = kdps) + A™(1 + kdy)],
(peaks and valleys) has reached the front surface, a ve- + _ .
locity perturbation is imprinted on the latter. The re- Wwhere A™ and A represent a_co_uple of grov_vlng/
sulting velocity perturbatio v, cogky) imprinted at the damped and oscillatory modes satisfying the following or-

; ; ; i A+ — + A— —
rarefaction wave break-out time on the front surface by?Ma"y dljferennal 'eq.uatlonsA_ . kg()A™ and A™ =
the feedout process is —kg(r)A~. Four initial conditions are needed to solve

the two ODEs. For the feedout problem, two initial
Svx(trn) = grs(trn) (Ar/aps) , (6)  conditions are provided by the front surface and veloc-
where g¢(71) is given by Eq. (5). Moreover, the target ity perturbations at the rarefaction wave break-out time:
mass under the valleys of the initial perturbation is lessA¢(#,) = 0 andA¢(t,) = v, (fp). Furthermore, since
than under the peaks because the target thickness undge flow is incompressibled(#,,) = Af(t5). The last
the valleys isA, less than under the peaks. Sincecondition is provided by assignindy(#) in such a way
the target acceleration depends on the mass/thicknesdat the asymptotic value of the acceleration perturba-
a perturbation in the acceleratiagigs, cogky) develops tion is the same as in the real compressible problem. By
between the peaks and the valleys, setting Ans(tp) = —Aps = —Aod,s/do, the acceleration
Sgis = —(9gss(r)/0do)A . (7)  perturbation of the incompressible foil of thicknegs
is 8ginc = g(t)Ao/dy identical to the asymptotic com-
pressible value as shown in Eq. (8). However, during
a brief transient after the rarefaction wave breaks out
0g # 8gme. In order to correctly include the secular
distortion occurring during this transient, we add a non-
Sgis — &rs(t)Ao/do . (8)  homogeneous term into the equations for and A~ re-
We conclude that the feedout process of long wavelengthroducing the exacé g and secular distortion fat — 0.
modes leads to the imprinting of a velocity and an accelOur final model describing the secular distortion as well
eration perturbation on the front surface. Equa-as the R-T growth can be written in the following form:
tions (6),(7) are derived as a lowest order expansion x= _ _ * _
in kdys < 1 because any transversal motion has been A k(A + Loty — gr(D)Ao/dol/2, (10)
neglected. where g, is the front surface acceleration add; =
The growth of the Rayleigh-Taylor instability starts af- —(dgss/9dg)Ay is the exact perturbed acceleration. The
ter the rarefaction wave break-out time and it is seedeffont surface distortion is given by = AT + A™.

9

wheregg, is given by Eq. (4) as long as the flow is isen-
tropic. At later times(r > r,;,), the acceleration reaches
a quasi-steady-staig; — p./podo and the perturbed ac-

celeration becomes
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Equations (10) must be solved using the following initial 10
conditions:

AT (ty) = —A7 (tpy) = Ao/2kdy
At (t) = A () = 80, (1) /2,

where Ag and dy are the initial (uncompressed) rear-
surface perturbation amplitude and target thickness,
respectively, andév,(s,) is the imprinted velocity
perturbation as given by Eqg. (6). It is easy to show that 1.

Egs. (10),(11) yield the correct secular distorion equation time (ns )

for k — 0. If a steady state is reached shortly afterrig. 3. Front surface distortion predicted by the simulations
the rarefaction wave breaks out, Egs. (10),(11) can bésolid line), the model Egs. (10),(11) (dotted line), and Eq. (12)
solved analytically. In this case, the time asymptotic(dashed line) for two wavelengths. Overlapping occurs for both
behavior[t > t, + (kgs) /2] of the solution can be Wavelengths.

approximated by the following simple formula:

1 k dp5= 0.5 \"/“,—"”’

(11)

Amplitude ( um)
(=]

Ag, =~ 1 (ﬂ + 3 Pes A, ) 0.8 ns), they can be used as long as the secondary shock
T 4 \kdy 5 po Vkdo is weak up to about 1.2 ns as indicated by numerical
' simulations.
X exp[f \kggs(t)) dt’:|, (12) The good agreement between analytic theory and simu-
fro lations shows that Eq. (12) can indeed be used to estimate

where A, = 0.8A¢ and p,, = 4p, for strong shocks. the level of distortions induced by a long wavelength rear-

The WKB integral is used to improve the accuracysurface perturbation withd,s < 1.
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