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The dynamical structure factor of a Coulomb crystal of ions is calculated at arbitrary tempe
below the melting point, taking into account multiphonon processes in the harmonic approxim
In a strongly coupled Coulomb ion liquid, the static structure factor is split into two parts, a Br
diffraction-like one, describing incipient long-range order structures, and an inelastic part correspo
to thermal ion-density fluctuations. It is assumed that the diffractionlike scattering does not lead
electron relaxation in the liquid phase. This assumption, together with the inclusion of multiph
processes in the crystalline phase, eliminates large discontinuities of the transport coefficients ( ju
the thermal and electric conductivities, as well as shear viscosity, reported previously) at a melting
[S0031-9007(98)07942-3]
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We consider a strongly coupled Coulomb plas
(SCCP) of ions immersed in a nearly uniform char
compensating electron gas. The ions may be disord
(liquid phase) or arranged in a crystalline lattice. T
energetically favorable body-centered cubic (bcc) lat
appears atG . Gm ø 172 [1], where G ­ sZed2yaT
is the ion-coupling parameter,T is the temperature
a ­ s4pniy3d21y3, andni is the ion number density.

Many astrophysical objects (interiors of white dwar
massive stars, and giant planets; envelopes of neu
stars) are made of such a plasma. Its kinetic prope
required for various applications are determined ma
by electron-ion (ei) scattering. A general framewor
for calculation of these transport properties has b
described in [2]. Numerous calculations (e.g., [3–7
done under additional assumption of strong elect
degeneracy, predict large (a factor of 3–4) discontinui
of the electric and thermal conductivities at the melt
point. In contrast, the thermodynamic quantities in
liquid and solid phases, determined solely by ions,
very similar nearG ­ Gm (e.g., [1,8]). This suggests th
properties of the ion system serving as a main scatt
for electrons should vary smoothly through the melt
transition. In this Letter, we propose a modification
the transport theory which removes large jumps of
transport coefficients.

The differentialei scattering rate in a SCCP averag
over initial and summed over final electron spin states

ands0 is

Gsp ! p0d ­
2pN

h̄2

1
2

X
ss0

jUq,s0sj2S sq, vd , (1)

S sq, vd ­
1

2p

Z 1`

2`

dt e2ivtSsq, td

­
1

2pN

Z 1`

2`

dt
Z

dx dx0 eiq?sx2x0d2ivt

3 k r̂ysx, td r̂sx0, 0dlT , (2)
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where N is the total number of ions,p and p0 are the
electron momenta before and after scattering, respectiv
h̄q ­ p0 2 p, h̄v ­ e0 2 e is the difference between
final and initial electron energies, andUq,s0s is the matrix
element of the operator of elementaryei interaction.
S sq, vd is the dynamical structure factor of the plasm
the most important quantity of the theory. In the liqu
regime, r̂sx, td is the operator of the charge density
units of Zjej: r̂sx, td ­ n̂Isx, td 2 ni , where n̂Isx, td is
the ion-density operator andni ­ neyZ takes account of
the compensating electron background with the elect
density ne. In the solid regime,r̂sx, td ­ n̂Isx, td 2P

i dsx 2 Rid (where Ri is a lattice vector), i.e., the
operator of fluctuations of the charge density.

Integrating overx andx0 we obtain the structure facto
of the ion-density fluctuations in the solid phase in t
form

NSsolsq, td ­

* X
i,j

eiq?sRi2Rj dfeiq?uistd 2 1g

3 fe2iq?ujs0d 2 1g

+
T

, (3)

where ui is an ion displacement fromRi. Expanding
ui in the phonon normal coordinates and using the W
operator identityeAeB ­ eA1BefA,Bgy2, we can decompose
Ssolsq, td into the elastic (Bragg) and inelastic par
Ssolsq, td ­ S0

solsqd 1 S00
solsq, td. The elastic part is easily

calculated (cf. [9]):

S0
solsqd ­ s1 2 e2W d2s2pd3ni

X
G

dsq 2 Gd , (4)

whereG is a reciprocal lattice vector, andW ­ Wsqd is
the Debye-Waller factor, exps2W d ­ kexpsiq ? ujdlT ,

W ­
h̄

2MN

X
n

sq ? end2

vn

√
n̄n 1

1
2

!
. (5)

In this case,M is the ion mass,n ; sk, sd, s ­ 1, 2, 3
enumerates phonon modes,k is a phonon wave vector
© 1998 The American Physical Society
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en the polarization vector,vn the frequency, and̄nn ­
sezn 2 1d21 is the mean number of phonons,zn ­
h̄vnyT . For the lattice types of interest (e.g., bcc
W ­ r2

T q2y6, wherer2
T ­ ku2lT is the mean-squared io

displacement (cf. [6,9]).
The Bragg scattering of electrons results in the ene

band structure of the electron Bloch states but does
contribute to theei collision integral in the kinetic equation
[2]. Indeed, this scattering occurs at the boundaries of
Brillouin zones and translates an electron from one z
to another. The transition requires change of the elec
energy by the value of the interband gap; thus anot
particle must be involved to carry the excess energy.

Therefore only the inelastic part of the structure fac
contributes to the collision integral. The inelastic part c
be found by the same technique [9]:

NS00
solsq, td ­ e22W

X
ij

eiq?sRi2Rjd
X̀
n­1

1
n!

3

(
h̄

2MN

X
n

sq ? end2

vn

3 faijnsn̄n 1 1d 1 ap
ijnn̄ng

)n

, (6)

where aijn ; expfik ? sRi 2 Rjd 2 ivntg. The sum-
mation overi, j yields the delta function which remove
one summation overk (included in the sums overn).
Thus we haven sums overs and n 2 1 sums overk
in eachnth term of Eq. (6).

Retaining the first termn ­ 1, we recover the one
phonon approximation employed in previous works (e
[2–6]). Our point is that this approximation fails near th
melting point. In fact, the contribution of then-phonon
processes (nth term) atT above the Debye temperatu
can be estimated assqrT d2nyn! , skFrT d2nyn!, where
kF ­ s3p2ned1y3 is the electron Fermi wave vecto
r2

T ø u22a2yG, u22 ; kv2
pyv2

nlph ø 13 is a frequency
moment for a bcc lattice [8],vp is the ion plasma
frequency, andk· · ·lph denotes averaging over phono
spectrum (e.g., [6]) in the harmonic-lattice approximatio
For instance, for the Fe plasma atG ø Gm we obtain a
typical value ofn , skFrT d2 ø 3, which is not small.

An important difference of astrophysical Coulom
crystals from the terrestrial metals is that the umkla
processes dominate the scattering, because the equiv
radius of the Brillouin zoneqB ­ s6p2nid1y3 is smaller
than typical momentum transfersq , kF . For q .

qB one can approximately replace
P

ssq ? end2fsvnd !
q2k fsvndlph [10]. Then the remaining summations
Eq. (6) are done explicitly:

e2W S00
solsq, td ­ exp

"
h̄q2

2M

*
cossvntd

vn tanhszny2d

2 i
sinsvntd

vn

+
ph

#
2 1 . (7)
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The static structure factor is defined
Ssqd ­

R
1`

2` S sq, vd dv ­ Ssq, 0d. Thus the inelastic
contribution toSsqd in the solid is given by settingt ­ 0
in Eq. (7), which yieldsS00

solsqd ­ 1 2 e22W .
Let us turn to the liquid phase. Numerical simul

tions by different authors show the appearance of inc
ent long-range order atG ¿ 1. For example, Schmid
et al. [11] observed a shear mode atG . 100 in their
molecular-dynamics experiment along with the famil
longitudinal ion plasmon. We have verified that the sp
trum of these modes can be described by the phonon s
trum averaged over orientations of a crystal. Although
long-range order does not persist forever, it may be w
preserved during typical electron scattering time. Th
a temporary electron band structure emerges, and an
sociated elastic scattering does not contribute to the c
duction (as in solid). This is in line with Edwards’s [12
argument that one should deal with a local disorder “o
served” by an electron along its mean free path, rat
than with the global disorder. Therefore we suggest
subtract the elastic contribution from the total static str
ture factorSliqsqd in the liquid (e.g., [13,14]). Since in
the liquid an electron couples directly to the ion numb
density, the elastic part must have the form [9]

S0
liqsqd ­ e22W s2pd3ni

X
Gfi0

dsq 2 Gd . (8)

Then the “inelastic” part which determines the transp
properties isS00

liqsqd ­ Sliqsqd 2 S0
liqsqd. There may be

various types of periodic structures in this regime, b
they are very similar and we can use the bcc lattice.
have checked that the result is almost the same for fa
centered cubic (fcc) and hexagonal close-packed (h
lattices.

At this stage we need to specify the matrix eleme
of the elementaryei interactionUq,s0s. Assuming the
Coulomb potential screened by the static polarization
ideal, relativistic, strongly degenerate (p ø p0 ø h̄kF)
electrons, we obtain

2pN
h̄2

1
2

X
ss0

jUq,s0sj2 ­
2pN
h̄2V 2

16p2Z2e4

q4j´sqdj2

3

√
1 2

h̄2c2q2

4e
2
F

!
, (9)

where eF ­ fm2
ec4 1 p2

Fc2g1y2 is the electron Ferm
energy,V is the normalization volume, and́sqd is the
electron longitudinal static dielectric function [15].

The electric (s) and thermal (k) conductivities, and
shear viscosity (h) can be written in the form [2]

s ­
nee2

mp
ens

, k ­
p2Tne

3mp
enk

, h ­
nemp

ey
2
F

5nh

, (10)

wheremp
e ­ eFyc2, and

ns,k,h ­ 4pmp
eZ2e4Ls,k,hniysh̄kFd3 (11)
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are the effective collision frequencies. Here, the effec
Coulomb logarithms are

Ls,k ­
Z 2kF

q0

dq q3

q4j´sqdj2

"
1 2

1
4

√
h̄q

mp
ec

!2#
Ss,ksqd ,

(12)

Lh ­ 3
Z 2kF

q0

dq q3

q4j´sqdj2

√
1 2

q2

4k2
F

!

3

"
1 2

1
4

√
h̄q

mp
ec

!2#
Sssqd , (13)

q0 ­ 0 for the liquid phase andq0 ­ qB for the solid
phase [6], andSs,ksqd are theeffectivestatic structure
factors. In the liquid regime, we approximateSs,ksqd by
S00

liqsqd as described above. In the solid regime, we ha

Sssqd ­
1

2p

Z 1`

2`

dv
Z 1`

2`

dt e2ivt z
1 2 e2z

S00
solsq, td ,

(14)

Sksqd ­ Sssqd 1

√
3k2

F

q2 2
1
2

!
dSksqd , (15)

dSksqd ­
1

2p

Z 1`

2`

dv
Z 1`

2`

dt e2ivt

3
z3

1 2 e2z
S00

solsq, td , (16)

with z ­ h̄vyT . The integration overv can be per
formed analytically. The remaining numerical integrat
over t is then facilitated by shifting the integration pa
in complex plane:t ­ t0 2 ih̄y2T , wheret0 is real. The
final result reads

Sssqd ­
1
2

Z 1`

2`

dx
cosh2 x

e22W Ksq, T , t0d , (17)

dSksqd ­
Z 1`

2`

dx
1 2 2 sinh2 x

cosh4 x
e22W Ksq, T , t0d ,

(18)
wherex ­ p t0Tyh̄ and

Ksq, T , t0d ­ exp

"
h̄q2

2M

*
cossvnt0d

vn sinhszny2d

+
ph

#
2 1 .

(19)

Retaining the term~ q2 in the expansion ofKsq, T , td, we
recover the standard one-phonon approximation [3–6

Figures 1 and 2 show temperature dependence o
electric and thermal conductivities for carbon plasma
density 104 g cm23 and for iron plasma at108 g cm23,
respectively, calculated in the Born approximation.
spite of large differences in densities and chemical
ments, the figures are fairly similar. Dashes show
traditional results calculated with the full structure fa
5558
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FIG. 1. Dependence of the electron electric (left vertic
scale) and thermal (right vertical scale) conductivities of carb
plasma at density104 g cm23 on temperature (lower horizonta
scale) or ion coupling parameter (upper horizontal sca
Dashes are traditional results in ion liquid [3,7] and bcc crys
[4,6] for Gm ­ 172. Solid line is the present multiphono
calculation in solid, extended artificially to highT ; dots show
the present calculation with reduced structure factor in liq
at G # 225. Vertical dotted lines correspond toG ­ 172
and 225.

tor Sliqsqd in ion liquid [3,7] and in the one-phonon ap
proximation [4,6] for bcc crystal (notice that the resu
of Ref. [6] for fcc crystals are in error; actually, they a
very similar to those for bcc). One can see strong jum
of k and s at the melting pointGm ­ 172. Solid lines
are the present results in the solid phase (including m
tiphonon processes), while dots show the present res
in the liquid obtained using the analytic fits for the sta
structure factorSliqsqd at G # 225 [14] by subtracting the
long-range correlations (see above). For illustration
suggested by H. DeWitt), we have extended the impro
results in liquid by shifting artificially the melting poin
to lower T (to G ­ 225, considering thus supercoole
liquid) and the improved results in solid by shifting th
melting to higherT (lower G, superheated crystal). Th
curves for liquid and solid ions match one another qu
well, and the jumps at the melting point actually disa
pear. In a wide temperature range the improved curves
liquid and solid almost coincide. We have verified th
the same is true for all transport coefficients (includi
shear viscosity) in a wide range of densities for a num
of chemical elements. Thus one can observe that elec
transport properties in SCCP of ions appear to be fa
insensitive to the state of SCCP (liquid or solid, bcc
other crystals). This should be taken into account in va
ous astrophysical applications, for instance, in calculat
the temperature growth from the surface into interior
the isolated neutron stars important for theories of neut
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FIG. 2. Same as in Fig. 1 but for iron matter at dens
108 g cm23.

star cooling [7,16]. The thermal conductivity of neutro
star envelopes to be reconsidered lies exactly in the “
sitivity strip” [16] which strongly affects the temperatu
profiles and neutron-star cooling.
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