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Controlling turbulence in the complex Ginzburg-Landau equation (CGLE) is investigated. The CGLE
is generalized to include gradient force. Local injections (pinnings) are applied for turbulence control.
It is found that local injections are effective in eliminating turbulence. In particular, for large gradient
force, it is possible to suppress fully developed turbulence by adding a few injections much less
in number than the number of positive Lyapunov exponents of the system. The high efficiency of
controlling is heuristically explained, based on the spatial correlation length and space-time-variable
transformation. [S0031-9007(98)07967-8]

PACS numbers: 47.27.Rc, 05.45.+b, 47.27.Eq

The complex Ginzburg-Landau equation (CGLE) (x,1)]. Itis an easy matter to show that Eq. (2) possesses
uniform traveling wave solutions
IA=A+ (1 +ic)o?A— 1+ ic))lAPA (1)

. ) . Alx,t) = Ay exdilkx — w?t)],
has been extensively investigated for the problems of pat-

tern formations and transitions to chaos and turbulence Ay = 1 = k2 w=cy+ (c; — c)k® — rk
[1-3]. On the other hand, chaos control and synchroniza-
tion have attracted much attention in recent years [4—14]. (4)

In this Letter, we will study turbulence control by inject-
ing external signals in the CGLE system. For simplicity,
we consider only one-dimensional (1D) CGLE with the s s 1+ cien

periodic boundary conditiom(x + L,7) = A(x,t). An k* < ki = W
extension to more general cases will be briefly discussed €12 T 262

at the end of the Letter. , __ Forl + ¢ic; < 0, all plane waves (4) are unstable, and
In Eq. (1) the spatial coupling appears to be diffusivey,rylence appears. According to the different natures
and dlgperswe. .ThIS system can be generalized to includgy turbulence, one can classify phase turbulence and
a gradient coupling (bias) defect turbulence in different parameter regions [for the
. L N2 . 2 detail, see Refs. [1-3]; the existence of the constant
GA=A+ oA+ (L +de)dA = (1 + ic) |AFA. gradient force in (2) does not change the distributions of

(2)  various regions for regular and turbulent patterns of (1)].

Assume that the CGLE (2) is in a turbulence region,

It is emphasized that the gradient force is of practicabng now our central task is to perform turbulence control
importance. On one hand, this force is common in naturépy making local feedback injections (pinnings) at a few
it appears in hydrodynamic flows in sloping channels, INhoints inx space in Eq. (2), and driving the whole system

plasma systems with electromagnetic fields, and S0 Ofyom the turbulence state to certain regular target state.
And it has attracted central attention in the study of openTherefore, we modify Eq. (2) to

flow systems. On the other hand, this force introduces
nontrivia}I new fer?qu_res in t.he system dynamics (_e.g., 9A=A+ roA+ (1 +ic))dA — (1 + icy) |APPA
convective instabilities), which have been extensively
investigated for coupled-map-lattice systems and coupled N _
oscillators [15,16]. In this Letter, we will study in + &) 8 — x)[Alx.1) — Al (5)
detail the influence of gradient coupling on the effect of =1
turbulence control of the CGLE.

Without injecting signals, Eq. (2) is identical to Eq. (1)
for the space-time transformation

which are stable in the wave number region

if 1 + cico > 0.

whereA(x, t) is our target state which has been chosen as
one of the traveling wave solutions (4). It can be easily
accepted that for sufficiently large we can effectively
y=x+rr, =1 3) make A(x;, t) approachA(x;,¢). Therefore, for facilitat-
ing our numerical algorithm we simply represent the con-
[i.e., the dynamics of Eq. (2) in the moving frame, 7)  trol (5) by identifyingA(x;, ) = A(x;, 1), i = 1,2,...,N.
is exactly the same as that of Eq. (1) for the static frameictually, this kind of pinning control is equivalent to
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boundary driving control that can be conveniently appliedf the following condition can be satisfied and maintained
in practical situations. Note that the symmetry of Eq. (2)for time periodT, T = 400.
with respect to the transformation (3) no longer exists
in Eq. (5), where the injection term definitely breaks this |RdA(x,t) — A(x, )]l + [Im[A(x,¢) — A(x,1)]| < 0.2.
symmetry. An then, changing may essentially change
the topological structure of the solution of Eq. (5). We|n Fig. 3, various time-space evolutions of the system
start from arbitrary initial conditions, and the global be- states are shown. The following interesting features are
havior of the system evolution can be solved only numeriphserved in Figs. 2 and 3.
cally. In the following simulations we use the hopscotch (i) Pinning control is effective for eliminating turbu-
and classical central finite difference approach [17,18]lence. The control efficiency depends sensitively on the
The validity of the results is confirmed by reducing thegradient force. It is really striking that with relatively
time and space grid lengths. large biasr, the very wild turbulence with a huge number
First, let us study the Lyapunov spectrum of Eq. (1)of positive Lyapunov exponent® can be successfully
in different parameter regions by applying the standar@ontrolled by applying local pinnings of which the num-
approach extensively used for discrete systems [19ker N (proportional toL/d) can be very much smaller
which is of great importance for the system dynamics. Inthana [in Fig. 3(d), we haveV/ /N = 80].
Fig. 1(a) we fixc; = 2.1 and plot the largest Lyapunov  (ii) The effect of control depends not only on the
exponent A, of Eq. (1) vsc, for L =64 and 256. pias, but also on the reference stater, ). Therefore,
Arbitrary initial conditions are used for the plOtS. In choosing a proper target state is also important for
the stable traveling wave regidia, > —0.48), we have  enhancing control efficiency.
An = 0. In the turbulence regiongc, < —0.48) A, (iii) In Fig. 3(d), we apply only a time-dependent
increases to positive value. In Fig. 1(b), we plot thedriving on a single space point which does not contain
number of positive Lyapunov exponents vs ¢, for the  any spatial information. It is interesting that the system
same parameter conditions as 1(a). We hate= 0 in  responds to this purely time-varying injection with a
the laminar phase region, and becomes nonzero in the spatially well ordered wave. Then, spatial order can arise
phase turbulence region and then increases rapidly whefom a time coherent injection, and one has the option
c, decreases. It is emphasized that for Eq. (2) we cadf realizing a variety of spatial patterns by varying the
get Fig. 1 for arbitrary- since both Egs. (1) and (2) are injecting timing only.
equivalent with the transformation (3). Moreover, in our (iv) Feedback injections can be applied not only for
numerical simulations, Fig. 1 is not affected by changingeliminating turbulence, but also for migrating spatiotem-
the time and space grid lengths when these grids argoral patterns [Fig. 2(a)]. In the stable region there are
sufficiently small. many attracting traveling wave solutions [Eq. (4) k3r<
With Fig. 1 in mind we now start to make pinnings, k2], and each has its own basin of attraction. From an
and to drive the system to a target state chosen from thgrbitrary initial condition one does not know which solu-
traveling wave solutions (4). In Figs. 2(a), 2(b), and 2(C).tion can be asymptotically approached. If we have an
we consider three parameter combinations in the laminagnsemble of identical CGLE's it is difficult to realize
phase, phase turbulence, and defect turbulence regions,
respectively, and plaf vs k for differentr, whered is the
largest distance of two adjacent pinnings for successfu #0F
control andk is the wave number of the target traveling |

wave state. Successful control is regarded to be achieve | |
150 | |
=

100
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\ FIG. 2. (a)—(c): d plotted againstk for different r for
\ Eq. (5), with 4 being the largest distance between two
\ adjacent pinnings for successful control, akdthe wave
‘\ number of the target traveling wave solution of (4). = 256.
T, S @ ¢ =21, ¢, =-0.1, stable region. (b)c, = 2.1,
20 LS cz'"0 05 c; = —0.7, phase turbulence region. Dotted lines:= 0;
dashed linesr = 1; solid lines:r = 2; for both (a) and (b).
FIG. 1. (a) The largest Lyapunov exponems vs c, for (€) ¢ =21, ¢, = —1.5, defect turbulence region. The

Eg. (1). ¢; = 2.1; L = 64 (solid line) andL = 256 (dotted number of positive Lyapunov exponents without control is
line), respectively. (b) The number of positive Lyapunov M = 82. Dotted line:r = 0; dashed liner = 2.0; solid line:
exponents vs ¢;. The same parameters as (a). r=25.
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FIG. 3. Spatiotemporal evolutions of CGLE under control. Black regions correspond(#) Re0.6, white regions otherwise.

L =256, ¢, =21, ¢, = —1.5, k =0.031257. (a), (b): r =2, d =15 and 17, respectively.d = 15 is the maximald

for successful control for the given parameters. {cy 0; d = 15; fully developed turbulence is practically not affected.

(d) r = 2.6; d = 256 (only one point is injected). A time-dependent injection develops a regular spatiotemporal pattern, which
eats the original wild fully developed turbulence.

synchronization between different CGLE sets. Withall the values of positive Lyapunov exponents); however,
proper pinnings one can eliminate multibasin structuret builds up convective correlation, and considerably en-
and select a specific basin of attraction, and then realizarges the spatial correlation length. In other words, for
synchronization of identical CGLE systems by driving Eq. (2) the correlation length in space(y = x + r7)is
the systems to the wanted state; that may again be vesqual to that of Eq. (1) i space, and then is very small,
useful in practice. but the correlation between twospace points of Eq. (2),

In order to have a complete idea on how the degrea large distance apart, may be large with shifted times due
of turbulence and the strength of the bias influence théo the convective interaction; that is the key point for the
controllability, we investigate the effect of pinnings by high efficiency of turbulence control of the biased CGLE.
varying various system parameters. In Fig. 4(a) [4(b)] The above explanation can be described in another way.
we plot d,, vs c,(r) for different r(c;) by fixing ¢; =  With the transformation (3) we can transform (5) to
2.1, and L = 256, where d,, is the maximumd with
respect to allk (i.e., the peak height of Fig. 2) for the 9,4 =A + (1 + ic))a;A — (1 + icy) |A]PA
given parameters. In all cases one finds that increasing N
irn(c:?ena\slgi/n)s.ensnwely enhance the control efficiency (i.e., L e Z} 5[y — vi(MI[A(y — rr.1) — A]. (6)

The most significant observation of this Letter is the
strikingly high efficiency of pinning control to suppress
turbulence in the presence of bias. An intuitive under- 250 @
standing on the mechanism underlying this efficiency is
very useful. The essences of local feedback control are, 200F
first, to drive the pinned points (and their vicinities, of ol
course) to the local values of the target state, and then, to_g
bring the entire system to this state through spatial cou- 100}
pling. Therefore, it is acceptable that for successful con-
trol the distance between two adjacent pinnings should not
exceed the correlation distance of the system; that restricts | o I
the minimal pinning density of successful control. With- 25 20 1S ¢, 10 05 00 05 101 2023
out bias(r = 0), the correlation distance of the system
reduces quickly as the system goes deeply into the d&!C: 4- ¢ = 2.1; L = 256. (@) [(b)] 4, plotted vsc,(r) for

foct (fullv d i d) turbul i ithal differentr(c,). d,, is the maximumd with respect to alk for
ect (fully developed) turbulence region with a large NUM-given parameters (the peak height in Fig. 2). (a) Dotted line:

ber of positive Lyapunov exponents. Applying bias does: = ¢; dashed liner = 1; solid line: » = 2. (b) Dotted line:
not affect the intensity of turbulence (i.e., does not affect, = —1.5; dashed liner, = —0.7; solid line:c, = —0.1.
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