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Controlling turbulence in the complex Ginzburg-Landau equation (CGLE) is investigated. The CG
is generalized to include gradient force. Local injections (pinnings) are applied for turbulence con
It is found that local injections are effective in eliminating turbulence. In particular, for large gradi
force, it is possible to suppress fully developed turbulence by adding a few injections much
in number than the number of positive Lyapunov exponents of the system. The high efficienc
controlling is heuristically explained, based on the spatial correlation length and space-time-var
transformation. [S0031-9007(98)07967-8]

PACS numbers: 47.27.Rc, 05.45.+b, 47.27.Eq
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The complex Ginzburg-Landau equation (CGLE)

≠tA ­ A 1 s1 1 ic1d≠2
xA 2 s1 1 ic2d jAj2A (1)

has been extensively investigated for the problems of
tern formations and transitions to chaos and turbule
[1–3]. On the other hand, chaos control and synchron
tion have attracted much attention in recent years [4–
In this Letter, we will study turbulence control by injec
ing external signals in the CGLE system. For simplici
we consider only one-dimensional (1D) CGLE with t
periodic boundary conditionAsx 1 L, td ­ Asx, td. An
extension to more general cases will be briefly discus
at the end of the Letter.

In Eq. (1) the spatial coupling appears to be diffus
and dispersive. This system can be generalized to inc
a gradient coupling (bias)

≠tA ­ A 1 r≠xA 1 s1 1 ic1d≠2
xA 2 s1 1 ic2d jAj2A .

(2)

It is emphasized that the gradient force is of practi
importance. On one hand, this force is common in nat
it appears in hydrodynamic flows in sloping channels
plasma systems with electromagnetic fields, and so
And it has attracted central attention in the study of op
flow systems. On the other hand, this force introdu
nontrivial new features in the system dynamics (e
convective instabilities), which have been extensiv
investigated for coupled-map-lattice systems and cou
oscillators [15,16]. In this Letter, we will study i
detail the influence of gradient coupling on the effect
turbulence control of the CGLE.

Without injecting signals, Eq. (2) is identical to Eq. (
for the space-time transformation

y ­ x 1 rt , t ­ t (3)

[i.e., the dynamics of Eq. (2) in the moving frames y, td
is exactly the same as that of Eq. (1) for the static fra
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sx, td]. It is an easy matter to show that Eq. (2) posses
uniform traveling wave solutions

Asx, td ­ A0 expfiskx 2 vtdg ,

A0 ­
p

1 2 k2 , v ­ c2 1 sc1 2 c2dk2 2 rk ,

(4)

which are stable in the wave number region

k2 , k2
c ­

1 1 c1c2

3 1 c1c2 1 2c2
2

if 1 1 c1c2 . 0 .

For 1 1 c1c2 , 0, all plane waves (4) are unstable, an
turbulence appears. According to the different natu
of turbulence, one can classify phase turbulence a
defect turbulence in different parameter regions [for t
detail, see Refs. [1–3]; the existence of the const
gradient force in (2) does not change the distributions
various regions for regular and turbulent patterns of (1)

Assume that the CGLE (2) is in a turbulence regio
and now our central task is to perform turbulence cont
by making local feedback injections (pinnings) at a fe
points inx space in Eq. (2), and driving the whole syste
from the turbulence state to certain regular target sta
Therefore, we modify Eq. (2) to

≠tA ­ A 1 r≠xA 1 s1 1 ic1d≠2
xA 2 s1 1 ic2d jAj2A

1 ´

NX
i­1

dsx 2 xid fAsx, td 2 Ag , (5)

whereAsx, td is our target state which has been chosen
one of the traveling wave solutions (4). It can be eas
accepted that for sufficiently largé we can effectively
makeAsxi , td approachAsxi , td. Therefore, for facilitat-
ing our numerical algorithm we simply represent the co
trol (5) by identifyingAsxi , td ­ Asxi , td, i ­ 1, 2, . . . , N .
Actually, this kind of pinning control is equivalent to
© 1998 The American Physical Society
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boundary driving control that can be conveniently appl
in practical situations. Note that the symmetry of Eq.
with respect to the transformation (3) no longer exi
in Eq. (5), where the injection term definitely breaks t
symmetry. An then, changingr may essentially chang
the topological structure of the solution of Eq. (5). W
start from arbitrary initial conditions, and the global b
havior of the system evolution can be solved only num
cally. In the following simulations we use the hopscot
and classical central finite difference approach [17,1
The validity of the results is confirmed by reducing t
time and space grid lengths.

First, let us study the Lyapunov spectrum of Eq.
in different parameter regions by applying the stand
approach extensively used for discrete systems [
which is of great importance for the system dynamics.
Fig. 1(a) we fixc1 ­ 2.1 and plot the largest Lyapuno
exponent lm of Eq. (1) vs c2 for L ­ 64 and 256.
Arbitrary initial conditions are used for the plots.
the stable traveling wave regionsc2 . 20.48d, we have
lm ­ 0. In the turbulence regionssc2 , 20.48d lm

increases to positive value. In Fig. 1(b), we plot t
number of positive Lyapunov exponentsM vs c2 for the
same parameter conditions as 1(a). We haveM ­ 0 in
the laminar phase region, andM becomes nonzero in th
phase turbulence region and then increases rapidly w
c2 decreases. It is emphasized that for Eq. (2) we
get Fig. 1 for arbitraryr since both Eqs. (1) and (2) ar
equivalent with the transformation (3). Moreover, in o
numerical simulations, Fig. 1 is not affected by chang
the time and space grid lengths when these grids
sufficiently small.

With Fig. 1 in mind we now start to make pinning
and to drive the system to a target state chosen from
traveling wave solutions (4). In Figs. 2(a), 2(b), and 2(
we consider three parameter combinations in the lam
phase, phase turbulence, and defect turbulence reg
respectively, and plotd vs k for differentr, whered is the
largest distance of two adjacent pinnings for succes
control andk is the wave number of the target travelin
wave state. Successful control is regarded to be achie

FIG. 1. (a) The largest Lyapunov exponentslm vs c2 for
Eq. (1). c1 ­ 2.1; L ­ 64 (solid line) andL ­ 256 (dotted
line), respectively. (b) The number of positive Lyapun
exponentsM vs c2. The same parameters as (a).
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if the following condition can be satisfied and maintain
for time periodT , T $ 400.

jRefAsx, td 2 Asx, tdgj 1 jImfAsx, td 2 Asx, tdgj , 0.2 .

In Fig. 3, various time-space evolutions of the syst
states are shown. The following interesting features
observed in Figs. 2 and 3.

(i) Pinning control is effective for eliminating turbu
lence. The control efficiency depends sensitively on
gradient force. It is really striking that with relativel
large biasr, the very wild turbulence with a huge numb
of positive Lyapunov exponentsM can be successfull
controlled by applying local pinnings of which the num
ber N (proportional toLyd) can be very much smalle
thanM [in Fig. 3(d), we haveMyN ø 80].

(ii) The effect of control depends not only on th
bias, but also on the reference stateAsx, td. Therefore,
choosing a proper target state is also important
enhancing control efficiency.

(iii) In Fig. 3(d), we apply only a time-depende
driving on a single space point which does not cont
any spatial information. It is interesting that the syst
responds to this purely time-varying injection with
spatially well ordered wave. Then, spatial order can a
from a time coherent injection, and one has the opt
of realizing a variety of spatial patterns by varying t
injecting timing only.

(iv) Feedback injections can be applied not only
eliminating turbulence, but also for migrating spatiote
poral patterns [Fig. 2(a)]. In the stable region there
many attracting traveling wave solutions [Eq. (4) fork2 ,

k2
c ], and each has its own basin of attraction. From

arbitrary initial condition one does not know which sol
tion can be asymptotically approached. If we have
ensemble of identical CGLE’s it is difficult to realiz

FIG. 2. (a)–(c): d plotted againstk for different r for
Eq. (5), with d being the largest distance between tw
adjacent pinnings for successful control, andk the wave
number of the target traveling wave solution of (4).L ­ 256.
(a) c1 ­ 2.1, c2 ­ 20.1, stable region. (b) c1 ­ 2.1,
c2 ­ 20.7, phase turbulence region. Dotted lines:r ­ 0;
dashed lines:r ­ 1; solid lines: r ­ 2; for both (a) and (b).
(c) c1 ­ 2.1, c2 ­ 21.5, defect turbulence region. Th
number of positive Lyapunov exponents without control
M ­ 82. Dotted line:r ­ 0; dashed line:r ­ 2.0; solid line:
r ­ 2.5.
5553
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FIG. 3. Spatiotemporal evolutions of CGLE under control. Black regions correspond to ResAd . 0.6, white regions otherwise
L ­ 256, c1 ­ 2.1, c2 ­ 21.5, k ­ 0.031 25p. (a), (b): r ­ 2, d ­ 15 and 17, respectively.d ­ 15 is the maximald
for successful control for the given parameters. (c)r ­ 0; d ­ 15; fully developed turbulence is practically not affecte
(d) r ­ 2.6; d ­ 256 (only one point is injected). A time-dependent injection develops a regular spatiotemporal pattern,
eats the original wild fully developed turbulence.
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synchronization between different CGLE sets. W
proper pinnings one can eliminate multibasin struct
and select a specific basin of attraction, and then rea
synchronization of identical CGLE systems by drivi
the systems to the wanted state; that may again be
useful in practice.

In order to have a complete idea on how the deg
of turbulence and the strength of the bias influence
controllability, we investigate the effect of pinnings b
varying various system parameters. In Fig. 4(a) [4(
we plot dm vs c2srd for different rsc2d by fixing c1 ­
2.1, and L ­ 256, where dm is the maximumd with
respect to allk (i.e., the peak height of Fig. 2) for th
given parameters. In all cases one finds that increa
r can very sensitively enhance the control efficiency (i
increasedm).

The most significant observation of this Letter is t
strikingly high efficiency of pinning control to suppre
turbulence in the presence of bias. An intuitive und
standing on the mechanism underlying this efficiency
very useful. The essences of local feedback control
first, to drive the pinned points (and their vicinities,
course) to the local values of the target state, and the
bring the entire system to this state through spatial c
pling. Therefore, it is acceptable that for successful c
trol the distance between two adjacent pinnings should
exceed the correlation distance of the system; that rest
the minimal pinning density of successful control. Wit
out biassr ­ 0d, the correlation distance of the syste
reduces quickly as the system goes deeply into the
fect (fully developed) turbulence region with a large nu
ber of positive Lyapunov exponents. Applying bias do
not affect the intensity of turbulence (i.e., does not aff
5554
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all the values of positive Lyapunov exponents); howev
it builds up convective correlation, and considerably e
larges the spatial correlation length. In other words,
Eq. (2) the correlation length iny spaces y ­ x 1 rtd is
equal to that of Eq. (1) inx space, and then is very sma
but the correlation between twox space points of Eq. (2)
a large distance apart, may be large with shifted times
to the convective interaction; that is the key point for t
high efficiency of turbulence control of the biased CGL

The above explanation can be described in another w
With the transformation (3) we can transform (5) to

≠tA ­ A 1 s1 1 ic1d≠2
yA 2 s1 1 ic2d jAj2A

1 ´

NX
i­1

df y 2 yistdg fAs y 2 rt, td 2 Ag . (6)

FIG. 4. c1 ­ 2.1; L ­ 256. (a) [(b)] dm plotted vsc2srd for
different rsc2d. dm is the maximumd with respect to allk for
given parameters (the peak height in Fig. 2). (a) Dotted li
r ­ 0; dashed line:r ­ 1; solid line: r ­ 2. (b) Dotted line:
c2 ­ 21.5; dashed line:c2 ­ 20.7; solid line: c2 ­ 20.1.
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Now in y space we no longer have bias, but the pinnin
points are no longer fixed; they move in the mann
yistd ­ xi 1 rt. These moving pinnings go through
the entire y space while staying in each givenDL
space segment for small time portionNDLyL. A good
match between the moving velocity, which is determine
by the bias r, and the moving fashion of the targe
state, determined byk, produces an optimal contro
efficiency.

In conclusion, we emphasize that gradient force is ve
common in nature, and it is thus significant to reve
its influence on turbulence control. On the other han
turbulence may appear in systems without bias. F
effectively controlling this turbulence it might be possibl
(not always possible, of course) to intentionally app
certain bias for making control easier. For instance,
is not difficult to apply uniform electrical or magnetic
fields to do it if the system consists of a charged mediu
At any rate, we expect that the study in this Letter ma
initiate the extremely useful investigation to control full
developed turbulence with a huge number of positi
Lyapunov exponents in extended systems continuous
both time and space.

In this Letter, we focus on turbulence control in the 1
CGLE system. The approach can be directly applicab
to 2D systems by using line pinnings. For systems w
higher dimensions it becomes more difficult as well
more interesting to design proper distribution of pinning
that is worthwhile for further investigation.

This work is supported by the National Natural Scien
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