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Temporal and Spectral Tailoring of High-Order Harmonics
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We demonstrate that the main features of high harmonic generation by ultrashort laser pulses can
be explained in terms of the intensity dependent phase of the atomic polarization. Focusing conditions
and chirped driving fields may be used to control the harmonic spectrum, while temporal compression
provides a unique way to tailor the time profile. [S0031-9007(98)07968-X]
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Recently, a great deal of attention has been devotektad to a redshift of the spectrum. The observed spectral
to high-order harmonic generation (HHG) by ultrashortcharacteristics would thus be the signature of the distorted
laser pulses (cf. [1,2]). Indeed, this is a promising wayatomic response to the short laser pulse. This raises many
to generate subfemtosecond, i.e., attosecond, pulses faindamental questions: What is the pulse duration neces-
radiation of very high frequency. New phenomena arisingsary to induce a nonadiabatic response of the atom? Can
in harmonic spectra at these short laser pulse duratiortie conflicting observed phenomena and theoretical results
have been reported both in theoretical calculations and ibe reconciled and explained within the adiabatic theory?
experiments. First, single atom simulations revealed thaWWhat is their physical origin and can they be controlled?
for 27 fs pulses, harmonics in the plateau region are notany In this Letter, we show that the above-mentioned phe-
more resolved and disappear in a structured continuum [3homena are the manifestation of the same effect, namely,
Cutoff harmonics, however, are found broad but discretehe intensity variation of the adiabatic phase accumulated
with regular quadratic phases. On the other hand, recetuly the electron on its trajectory [9,10]. This is a very gen-
experiments showed that the spectrum could evolve froneral process, whose magnitude is amplified by the short
an irregular continuum to well-resolved harmonic peaks bypulse duration. For the first time, we perform full non-
simply playing on the focusing conditions or on the chirpadiabatic calculations, from the single atom response to the
of the fundamental beam [4,5]. three dimensional propagation of the generated harmonic

These strange phenomena are of the utmost interest ffields, and compare them with the adiabatic theory. In
two reasons: for attosecond pulse generation, the largesbntrast to Ref. [11], where the influence of ionization on
compressible spectral bandwidth is desirable; for appliphase matching was studied in the one dimensional limit,
cations that require a high degree of coherence, such age focus here on the incidence of the “pure” 3D propaga-
extreme ultraviolet (XUV) interferometry, well-resolved tion on the spectrum, below the saturation intensity. The
harmonics are necessary. Thus controlling and optimizingesults indicate that the adiabatic approach is still valid for
harmonics widths is a challenging task. Unfortunately, the27 fs pulses, and that the harmonic phase characteristics
above-mentioned effects have not thus far been understo@@n be used to control the temporal and the spectral prop-
in the framework of the usual adiabatic theory of HHG, inerties of the harmonic beam. In particular, we show that
which a slowly varying envelope approximation is used tothe temporal compression provides a unique opportunity
describe the laser pulse. In effect, nonadiabatic effects dufer tailoring the harmonic emission in the form of a train
to the short pulse duration have been invoked to interpredf ultrashort pulses with variable periodicity and number
the results [3,6], and, in particular, the behavior of the harof peaks. Finally, the adiabatic approximation breaks be-
monic phase. Indeed, a change in intensity on the timéw 27 fs, and the influence of the phase of the driving
scale of the laser period could alter the harmonic generdield is dramatic already for 10 fs pulses.
tion process [7]. In the quasiclassical description of HHG First, we calculated the nonadiabatic single atom
[8], an electron first tunnels through the potential barrieresponse to the fast driving field in the strong field approxi-
and then oscillates quasifreely in the laser field, gainingnation (SFA) [12] and compared it with the adiabatic
kinetic energy. When it returns back to the nucleus, itresult. The time dependent dipole moment of an atom
can recombine and emit harmonic photons. If the lasecan be written in the SFA as
intensity varies sufficiently rapidly, electrons entering the ;
continuum while the laser intensity is increasing can ex-3(;) = i[ dﬂ] Spdp — AWD)]a* (1)
perience an additional acceleration before returning. This —o
could produce a blueshift on the rising edge of the laser en- af > NN . > )
velope. Conversely, electrons ionized after the peak of the X exd=iS(p, t, NIE() - d[p = A()]a(r),
pulse would be decelerated, returning later, which would (1)
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where a(z) is the ground state amplitudé(r) is the 1079 F ]
vector potentialaf(_fa) is the dipole moment of_ the ground- 110 i (a) ]
continuum transition, andl'(z) is the electric field. In the » || 1
above expressios(p, t, t') is thequasiclassical actiofor S 107" .
an electron born in the laser field dtwith a canonical S . 12
momentump, and returning to the origin at(return time 510 ]
T=1—1), Z 10713 ]
R t > ;1 M2 2 _
S(p,t,1) =/ dt”(—[p 2( )] + I,,). 207 .
t -

The expression (1) can be clearly interpreted in the
Feynman's spirit as an integral over all possible electronic
trajectories characterized hy, ¢, and p. Nonadiabatic
theory employs directly Eq. (1) for a given temporal form
of the laser puls&(z). In the adiabatic theory, the expres-
sion (1) is used to calculate the harmonic components of
x(¢) for a field of givenconstantamplitude’Z and phase i
é. The time dependence of the Fourier components (and <= 107 |
their spectral broadening) is then introduced by replacing (0-10 L
£ and ¢ by a slowly varying pulse envelodE(z), and a —
modulated phaseé (7). 107" |
We applied both methods to the conditions of Ref. [3], I
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i.e., an argon atom interacting with a 27 fs, 810 nm pulse 10°F ‘ ‘ ‘ L Lo

with a peak intensity o8 X 10'* W/cn?. In these cal- 20 30 40 50 60
culations, we neglect ionization since the considered in- Harmonic order

tensity is (slightly) below saturation for this small pulse FIG. 1. (a) Single atom spectrum generated in argon by a
duration. The spectrum obtained using the nonadiabati27 fs laser pulse & x 10" W/cn?. (b) Propagated harmonic
approach is presented in Fig. 1) In the plateau rePeiuh GG i e Sae, e o O e
gion, the spectrum is “white W'.th Qverlmposed |rregu-& mm afterr) the focus (solid Iiné), and at the focus J(dashed line).
lar fluctuations, whereas harmonics in the cutoff are broa

but well-resolved, and exhibit regular quadratic phases.

Amazingly, the behavior of such a spectrum can be well-

described by the adiabatic approach. The underlying pheecombination, is delayed by the value of the return time
nomenon is the phase modulation induced by the intensit{close to half of a period in the cutoff region). In the
dependence of the dipole phase. It has been shown thplateau region, there are typically two electron trajecto-
this phase is determined by the value of the action acries that give dominant contributions interfering with each
quired by the electron along the most relevant trajectoryther [10]. One of these trajectories corresponds to a short
[9,10]. Since the actiod is primarily determined by the return time, whereas the other, to a return time close to
ponderomotive energy/, = 1A, the dipole phase should one period, and thus to a strong intensity dependence of
be ® = —S = —U,7, wherer is the return time, i.e., the phase. This contribution undergoes particularly strong
the time between tunneling and recombination. Let ugphase modulation in the time dependent field, and conse-
first consider the cutoff region. There,is close to half quently strong spectral broadening, leading to an overlap-
of a period, which gives a good estimate for the slope oping of neighboring peaks and to a white spectrum [see
the linear intensity dependence of the dipole phase. Sindeig. 1(a)].

the harmonic emission is efficient close to the top of the The accuracy of the adiabatic theory can be higher for
Gaussian laser pulse, the phase changes quadratically witlhe macroscopic harmonic signals. In order to calculate
time, and thus corresponds to a linear frequency chirpthem, we propagate the harmonics generated by individual
The rising edge of the harmonic pulse is shifted to theatoms using Maxwell equations in the paraxial approxi-
blue, and the falling edge, to the red. The nonadiabaticnation [13]. The atomic polarization which is the source
results, profile and phase, are strikingly similar to the adi-of the harmonic fields is proportional to the dipole moment
abatic results. The main difference appears in the temx(z). Inthe nonadiabatic theory, we calculate the full time
poral profiles: The nonadiabatic is delayed by roughlydependence af(z) from Eq. (1) at each point of the fine
1.3 fs compared to the adiabatic. This shift in time canspatial grid, Fourier transform it, and propagatecom-

be related to the physics of the process. Since the anponents of the continuous Fourier spectrum independently
plitude of the emission is mainly determined by the ion-using Maxwell equations. In the adiabatic theory, only
ization probability, the emission, that corresponds to thénarmonicFourier components are propagated for a given
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value of the driving field amplitud& and phaseb. They o | ]
are then made time dependent, and phase modulated by re- 10~ ]
placingZ — E(¢) and¢ — ¢ (7). 1

Propagation and phase matching bring new effects
into account, i.e., the interplay between the dynamically
induced phase of the atomic polarization and the phase

(arb. units)

_9 r

of the focused fundamental (say, Gaussian) beam [9]. > 10

We consider here the case of a relatively tight focusing 2 107"

with a confocal parametér = 5 mm, assuming a 1 mm 2 i

wide argon jet with a Lorentzian density profile. The 10 ]
27 fs laser pulse has the intensidyx 10'* W/cn? at 10712 | |
the center of the jet In such a case, the macroscopic 20 25 3‘0 35 4‘0 45 50

signal in the cutoff region resembles that of the single

atom, but in the plateau it depends critically on the

position z of the jet with respect to the focus. The FIG. 2. Harmonic spectrum generated by a 38 fs laser pulse

reason is that propagation may favor contribution of some(?égzﬁggqignea)‘. positive chirp (solid line) or a negative chirp

and diminish contributions of other, electronic trajectories
[14]. If the jet is located after the focus [cf.= 2 mm,
solid line in Fig. 1(b)], the trajectory with the short return harmonic chirp, which is negative, is relatively big, and
time 7, and small action, is selected. Its contributionthe spectrum in the absence of laser chirp is white in the
is characterized by a very weak intensity dependencelateau [see Fig. 1(b)]. When the laser chirp is negative
(that becomes weaker for lower harmonic orders). Adblue before the red, dashed line), it adds to the nega-
a result, phase modulation is small, and the spectrurtive dynamic chirp, and does not modify significantly the
contains very well-resolved harmonics with decreasingpectrum as compared to the Fourier limited 27 fs case.
widths for decreasing harmonic orders. Conversely, abn the other hand, the positive laser chirp gets subtracted
z = 0 [jet at the focus, dashed line in Fig. 1(b)], the from the dynamic chirp, leading to very well-resolved
contribution of electronic trajectories with longer,  harmonics at the end of the plateau, and significantly
and thus stronger intensity dependence of the phase, igrrower peaks in the cutoff. This asymmetry has been
dominant. In this case, the phase modulation is verpbserved in experiments in argon [5], and more recently
strong, and the spectrum remains white with overimposeth helium [4]. Our theory provides the first explanation
irregular structures, similar to the case of the singleof those effects.
atom in Fig. 1(a). Note that, even though the intensity One can then wonder whether it is possible to compress
at the center of the jet is the same in both cases, thtemporally themacroscopicdarmonic pulses, as was done
cutoff position forz = 0 is shifted toward lower harmonic for the single atom response in the cutoff region [3]. In-
orders due to phase matching effects [15]. deed, the phase modulation is not spatially homogeneous
The nonadiabatic results of Fig. 1(b) and the result®ind can be significantly perturbed by the emission from
of adiabatic theory are practically indistinguishable forpoints experiencing different peak intensities. Moreover,
z = 2, and very similar for = 0. The discussed mecha- in the plateau region, harmonics can overlap. What would
nism explains a long standing mystery, why well-resolvedoe the result of the compression in such a case? To simu-
macroscopic harmonic spectra are observed in experiate the compression by a pair of gratings, we subtracted
ments with pulses as short as 27 fs, whereas they a@ mean quadratic phase, centered on a given frequency,
smeared out on the level of a single atom due to interfrom the phase of the spectrum emitted at each spatial
ference effects [16]. point at the exit of the medium, and analyzed the result-
Given the regularity of the phase modulation, it shoulding temporal macroscopic profiles. The result of such a
be possible to compensate for (or increase) the dynamprocedure is shown as a solid line in Fig. 3 in the case
cally induced harmonic chirp by introducing an appropri-z = 0, and for the frequency rang#w;-36w;. The
ately designed frequency chirp on the laser beam. Wegrofile consists of a train of three ultrashort peaks of du-
have calculated the macroscopic harmonic spectrum getiation =1.5 fs separated by 4.4 laser periods They
erated in argon by a laser pulse presenting the same speggrrespond to the three harmonics contained in this fre-
tral width as the 27 fs pulse considered above, but witifuency range, that are individually compressed. Indeed
a quadratic phase in frequency. The latter fact inducethey present similar phase modulations but centered on
a temporal broadening of the pulse (to 38 fs in the cas€ach harmonic frequencyg: ®,(w) = —a(w — w,)*.
considered), together with a quadratic phase in time (linRemoving the chirp of harmonig’ by adding the phase
ear chirp). Figure 2 presents the spectra obtained from(w — w,)* results for harmonie; in both a compres-
adiabatic theory for positive and negative chirps in thesion and a time shifdz = 2a(w, — w;). In the case
casez = 0. For this position, the dynamically induced considered hereg = 3 eV ™2 results inAr = 4.4T for

Harmonic order
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FIG. 4. Macroscopic harmonic spectra generated with a 10 fs
FIG. 3. Temporal profile of the macroscopic harmonic emis-laser such tha# = 0 (dashed line) ogp = 7 /2 (solid line).
sion in the frequency rang&w; —36w; before (dashed line)
and after (solid line) compression.

of such behavior would be the signature of the first truly
neighboring harmonics. Note that this train is very differ-nonadiabatic phenomenon in HHG.
ent from the train obtained before compression, associated In conclusion, for pulses as short as 27 fs, the regular
to the phase relationship between harmonics [14]. Th&ehavior of the dynamically induced harmonic chirp can
latter is presented as a dashed line in Fig. 3. The peakse employed to tailor the temporal as well as the spectral
are narrower but their number and periodicity (equal toproperties of the macroscopic harmonic emission. This
T/2) are fixed. On the contrary, the compression brings ainprecedented capability of pulse shaping in the XUV
unique possibility of tailoring the harmonic temporal pro- at the femtosecond scale opens wide perspectives for the
file. We have shown that the harmonic spectrum (andpplications of HHG in physics.
chirp) could be controlled thanks to the jet/focus position We thank M. Gaarde, A. L’Huillier, H. Kapteyn,
and to the laser chirp. We thus have a direct control oK. Kulander, K. Schafer, and M. Murnane for discussions
At through the value of, while keeping relatively short and sharing with us results prior to publication.
pulses. Moreover, by filtering an appropriate number of
harmonics out of the spectrum, one can choose the num-
ber of peaks into the train. This pulse shaping at the fem-
tosecond scale provides a rare opportunity for performing *Also at Fonds national de la Recherche Scientifique de la
coherent control of ultrashort wave packet dynamics in ~ Communauté Framajse de Belgique.
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