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Temporal and Spectral Tailoring of High-Order Harmonics
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We demonstrate that the main features of high harmonic generation by ultrashort laser pulses can
be explained in terms of the intensity dependent phase of the atomic polarization. Focusing conditions
and chirped driving fields may be used to control the harmonic spectrum, while temporal compression
provides a unique way to tailor the time profile. [S0031-9007(98)07968-X]
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Recently, a great deal of attention has been devo
to high-order harmonic generation (HHG) by ultrash
laser pulses (cf. [1,2]). Indeed, this is a promising w
to generate subfemtosecond, i.e., attosecond, pulse
radiation of very high frequency. New phenomena aris
in harmonic spectra at these short laser pulse durat
have been reported both in theoretical calculations an
experiments. First, single atom simulations revealed t
for 27 fs pulses, harmonics in the plateau region are not
more resolved and disappear in a structured continuum
Cutoff harmonics, however, are found broad but discr
with regular quadratic phases. On the other hand, re
experiments showed that the spectrum could evolve f
an irregular continuum to well-resolved harmonic peaks
simply playing on the focusing conditions or on the ch
of the fundamental beam [4,5].

These strange phenomena are of the utmost interes
two reasons: for attosecond pulse generation, the lar
compressible spectral bandwidth is desirable; for ap
cations that require a high degree of coherence, suc
extreme ultraviolet (XUV) interferometry, well-resolve
harmonics are necessary. Thus controlling and optimiz
harmonics widths is a challenging task. Unfortunately,
above-mentioned effects have not thus far been unders
in the framework of the usual adiabatic theory of HHG,
which a slowly varying envelope approximation is used
describe the laser pulse. In effect, nonadiabatic effects
to the short pulse duration have been invoked to inter
the results [3,6], and, in particular, the behavior of the h
monic phase. Indeed, a change in intensity on the t
scale of the laser period could alter the harmonic gen
tion process [7]. In the quasiclassical description of HH
[8], an electron first tunnels through the potential barr
and then oscillates quasifreely in the laser field, gain
kinetic energy. When it returns back to the nucleus
can recombine and emit harmonic photons. If the la
intensity varies sufficiently rapidly, electrons entering t
continuum while the laser intensity is increasing can
perience an additional acceleration before returning. T
could produce a blueshift on the rising edge of the laser
velope. Conversely, electrons ionized after the peak of
pulse would be decelerated, returning later, which wo
544 0031-9007y98y81(25)y5544(4)$15.00
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lead to a redshift of the spectrum. The observed spec
characteristics would thus be the signature of the disto
atomic response to the short laser pulse. This raises m
fundamental questions: What is the pulse duration ne
sary to induce a nonadiabatic response of the atom?
the conflicting observed phenomena and theoretical res
be reconciled and explained within the adiabatic theo
What is their physical origin and can they be controlled

In this Letter, we show that the above-mentioned p
nomena are the manifestation of the same effect, nam
the intensity variation of the adiabatic phase accumula
by the electron on its trajectory [9,10]. This is a very ge
eral process, whose magnitude is amplified by the sh
pulse duration. For the first time, we perform full no
adiabatic calculations, from the single atom response to
three dimensional propagation of the generated harm
fields, and compare them with the adiabatic theory.
contrast to Ref. [11], where the influence of ionization
phase matching was studied in the one dimensional li
we focus here on the incidence of the “pure” 3D propa
tion on the spectrum, below the saturation intensity. T
results indicate that the adiabatic approach is still valid
27 fs pulses, and that the harmonic phase characteri
can be used to control the temporal and the spectral p
erties of the harmonic beam. In particular, we show t
the temporal compression provides a unique opportu
for tailoring the harmonic emission in the form of a tra
of ultrashort pulses with variable periodicity and numb
of peaks. Finally, the adiabatic approximation breaks
low 27 fs, and the influence of the phase of the drivi
field is dramatic already for 10 fs pulses.

First, we calculated the nonadiabatic single ato
response to the fast driving field in the strong field appro
mation (SFA) [12] and compared it with the adiaba
result. The time dependent dipole moment of an at
can be written in the SFA as

$xstd ­ i
Z t

2`

dt0
Z

d3 $p $dpf $p 2 $Astdgapstd

3 expf2iSs $p, t, t0dg $Est0d ? $d f $p 2 $Ast0dgast0d ,

(1)
© 1998 The American Physical Society
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where astd is the ground state amplitude,$Astd is the
vector potential,$ds $pd is the dipole moment of the ground
continuum transition, and$Estd is the electric field. In the
above expression,Ss $p, t, t0d is thequasiclassical actionfor
an electron born in the laser field att0 with a canonical
momentum$p, and returning to the origin att (return time
t ­ t 2 t0),

Ss $p, t, t0d ­
Z t

t0

dt00

√
f $p 2 $Ast00dg2

2
1 Ip

!
.

The expression (1) can be clearly interpreted in
Feynman’s spirit as an integral over all possible electro
trajectories characterized byt0, t, and $p. Nonadiabatic
theory employs directly Eq. (1) for a given temporal for
of the laser pulse$Estd. In the adiabatic theory, the expre
sion (1) is used to calculate the harmonic component
$xstd for a field of givenconstantamplitudeE and phase
f. The time dependence of the Fourier components (
their spectral broadening) is then introduced by replac
E andf by a slowly varying pulse envelopeE std, and a
modulated phasefstd.

We applied both methods to the conditions of Ref. [
i.e., an argon atom interacting with a 27 fs, 810 nm pu
with a peak intensity of3 3 1014 Wycm2. In these cal-
culations, we neglect ionization since the considered
tensity is (slightly) below saturation for this small pul
duration. The spectrum obtained using the nonadiab
approach is presented in Fig. 1(a). In the plateau
gion, the spectrum is “white” with overimposed irreg
lar fluctuations, whereas harmonics in the cutoff are br
but well-resolved, and exhibit regular quadratic phas
Amazingly, the behavior of such a spectrum can be w
described by the adiabatic approach. The underlying p
nomenon is the phase modulation induced by the inten
dependence of the dipole phase. It has been shown
this phase is determined by the value of the action
quired by the electron along the most relevant traject
[9,10]. Since the actionS is primarily determined by the
ponderomotive energyUp ~ Il2, the dipole phase shoul
be F ­ 2S . 2Upt, wheret is the return time, i.e.
the time between tunneling and recombination. Let
first consider the cutoff region. There,t is close to half
of a period, which gives a good estimate for the slope
the linear intensity dependence of the dipole phase. S
the harmonic emission is efficient close to the top of
Gaussian laser pulse, the phase changes quadratically
time, and thus corresponds to a linear frequency ch
The rising edge of the harmonic pulse is shifted to
blue, and the falling edge, to the red. The nonadiab
results, profile and phase, are strikingly similar to the a
abatic results. The main difference appears in the t
poral profiles: The nonadiabatic is delayed by roug
1.3 fs compared to the adiabatic. This shift in time c
be related to the physics of the process. Since the
plitude of the emission is mainly determined by the io
ization probability, the emission, that corresponds to
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FIG. 1. (a) Single atom spectrum generated in argon b
27 fs laser pulse at3 3 1014 Wycm2. (b) Propagated harmoni
spectrum calculated in the same condition as (a) with
confocal parameterb ­ 5 mm, and the atomic jet locate
2 mm after the focus (solid line), and at the focus (dashed lin

recombination, is delayed by the value of the return ti
(close to half of a period in the cutoff region). In th
plateau region, there are typically two electron trajec
ries that give dominant contributions interfering with ea
other [10]. One of these trajectories corresponds to a s
return time, whereas the other, to a return time close
one period, and thus to a strong intensity dependenc
the phase. This contribution undergoes particularly str
phase modulation in the time dependent field, and con
quently strong spectral broadening, leading to an over
ping of neighboring peaks and to a white spectrum [
Fig. 1(a)].

The accuracy of the adiabatic theory can be higher
the macroscopic harmonic signals. In order to calcul
them, we propagate the harmonics generated by individ
atoms using Maxwell equations in the paraxial appro
mation [13]. The atomic polarization which is the sour
of the harmonic fields is proportional to the dipole mome
xstd. In the nonadiabatic theory, we calculate the full tim
dependence ofxstd from Eq. (1) at each point of the fin
spatial grid, Fourier transform it, and propagateall com-
ponents of the continuous Fourier spectrum independe
using Maxwell equations. In the adiabatic theory, on
harmonicFourier components are propagated for a giv
5545
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value of the driving field amplitudeE and phasef. They
are then made time dependent, and phase modulated b
placingE ! E std andf ! fstd.

Propagation and phase matching bring new effe
into account, i.e., the interplay between the dynamica
induced phase of the atomic polarization and the ph
of the focused fundamental (say, Gaussian) beam
We consider here the case of a relatively tight focus
with a confocal parameterb ­ 5 mm, assuming a 1 mm
wide argon jet with a Lorentzian density profile. Th
27 fs laser pulse has the intensity3 3 1014 Wycm2 at
the center of the jet. In such a case, the macroscop
signal in the cutoff region resembles that of the sing
atom, but in the plateau it depends critically on t
position z of the jet with respect to the focus. Th
reason is that propagation may favor contribution of som
and diminish contributions of other, electronic trajectori
[14]. If the jet is located after the focus [cf.z ­ 2 mm,
solid line in Fig. 1(b)], the trajectory with the short retur
time t, and small action, is selected. Its contributio
is characterized by a very weak intensity depende
(that becomes weaker for lower harmonic orders).
a result, phase modulation is small, and the spectr
contains very well-resolved harmonics with decreas
widths for decreasing harmonic orders. Conversely,
z ­ 0 [ jet at the focus, dashed line in Fig. 1(b)], th
contribution of electronic trajectories with longert,
and thus stronger intensity dependence of the phase
dominant. In this case, the phase modulation is v
strong, and the spectrum remains white with overimpo
irregular structures, similar to the case of the sing
atom in Fig. 1(a). Note that, even though the intens
at the center of the jet is the same in both cases,
cutoff position forz ­ 0 is shifted toward lower harmonic
orders due to phase matching effects [15].

The nonadiabatic results of Fig. 1(b) and the resu
of adiabatic theory are practically indistinguishable f
z ­ 2, and very similar forz ­ 0. The discussed mecha
nism explains a long standing mystery, why well-resolv
macroscopic harmonic spectra are observed in exp
ments with pulses as short as 27 fs, whereas they
smeared out on the level of a single atom due to int
ference effects [16].

Given the regularity of the phase modulation, it shou
be possible to compensate for (or increase) the dyna
cally induced harmonic chirp by introducing an approp
ately designed frequency chirp on the laser beam.
have calculated the macroscopic harmonic spectrum g
erated in argon by a laser pulse presenting the same s
tral width as the 27 fs pulse considered above, but w
a quadratic phase in frequency. The latter fact indu
a temporal broadening of the pulse (to 38 fs in the ca
considered), together with a quadratic phase in time (
ear chirp). Figure 2 presents the spectra obtained fr
adiabatic theory for positive and negative chirps in t
casez ­ 0. For this position, the dynamically induce
5546
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FIG. 2. Harmonic spectrum generated by a 38 fs laser pu
presenting a positive chirp (solid line) or a negative ch
(dashed line).

harmonic chirp, which is negative, is relatively big, an
the spectrum in the absence of laser chirp is white in
plateau [see Fig. 1(b)]. When the laser chirp is negat
(blue before the red, dashed line), it adds to the ne
tive dynamic chirp, and does not modify significantly th
spectrum as compared to the Fourier limited 27 fs ca
On the other hand, the positive laser chirp gets subtrac
from the dynamic chirp, leading to very well-resolve
harmonics at the end of the plateau, and significan
narrower peaks in the cutoff. This asymmetry has be
observed in experiments in argon [5], and more recen
in helium [4]. Our theory provides the first explanatio
of those effects.

One can then wonder whether it is possible to compr
temporally themacroscopicharmonic pulses, as was don
for the single atom response in the cutoff region [3]. I
deed, the phase modulation is not spatially homogene
and can be significantly perturbed by the emission fro
points experiencing different peak intensities. Moreov
in the plateau region, harmonics can overlap. What wo
be the result of the compression in such a case? To si
late the compression by a pair of gratings, we subtrac
a mean quadratic phase, centered on a given freque
from the phase of the spectrum emitted at each spa
point at the exit of the medium, and analyzed the res
ing temporal macroscopic profiles. The result of such
procedure is shown as a solid line in Fig. 3 in the ca
z ­ 0, and for the frequency range30vL 36vL. The
profile consists of a train of three ultrashort peaks of d
ration .1.5 fs separated by 4.4 laser periodsT . They
correspond to the three harmonics contained in this
quency range, that are individually compressed. Inde
they present similar phase modulations but centered
each harmonic frequencyvq: Fqsvd ­ 2asv 2 vqd2.
Removing the chirp of harmonicq0 by adding the phase
asv 2 vq0d2 results for harmonicq in both a compres-
sion and a time shiftDt ­ 2asvq 2 v0

qd. In the case
considered here,a . 3 eV22 results in Dt ­ 4.4T for
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FIG. 3. Temporal profile of the macroscopic harmonic em
sion in the frequency range30vL 36vL before (dashed line)
and after (solid line) compression.

neighboring harmonics. Note that this train is very diffe
ent from the train obtained before compression, associ
to the phase relationship between harmonics [14]. T
latter is presented as a dashed line in Fig. 3. The pe
are narrower but their number and periodicity (equal
Ty2) are fixed. On the contrary, the compression bring
unique possibility of tailoring the harmonic temporal pr
file. We have shown that the harmonic spectrum (a
chirp) could be controlled thanks to the jet/focus positi
and to the laser chirp. We thus have a direct contro
Dt through the value ofa, while keeping relatively shor
pulses. Moreover, by filtering an appropriate number
harmonics out of the spectrum, one can choose the n
ber of peaks into the train. This pulse shaping at the fe
tosecond scale provides a rare opportunity for perform
coherent control of ultrashort wave packet dynamics
the XUV.

We have shown that the adiabatic theory explains
main features of harmonic spectra generated with pu
as short as 27 fs. We now investigate what happens
shorter pulse durations. A striking nonadiabatic effe
appears for 10 fs laser pulses: the spectrum chan
dramatically depending on the phase of the driving fi
[17], as illustrated in Fig. 4 in the casez ­ 0. When
the field is maximum at the center of the laser envelo
t ­ 0 (f ­ 0, dashed line), even harmonics as inten
as the odd are generated, leading to an almost w
spectrum also in the cutoff region. On the contra
when the field is minimum att ­ 0 (f ­ py2, solid
line), only odd harmonics quite broad but discrete
generated. In this case, the behavior is very similar
that described by the adiabatic calculation. The reaso
that a certain amount of symmetry is preserved close
t ­ 0 where the harmonics are generated:$xst 1 Ty2d .
2 $xstd. Note that the distortion of the spectrum in th
casef ­ 0 is even larger in the single atom response a
survives the propagation. The experimental observa
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FIG. 4. Macroscopic harmonic spectra generated with a 1
laser such thatf ­ 0 (dashed line) orf ­ py2 (solid line).

of such behavior would be the signature of the first tru
nonadiabatic phenomenon in HHG.

In conclusion, for pulses as short as 27 fs, the regu
behavior of the dynamically induced harmonic chirp c
be employed to tailor the temporal as well as the spec
properties of the macroscopic harmonic emission. T
unprecedented capability of pulse shaping in the XU
at the femtosecond scale opens wide perspectives fo
applications of HHG in physics.
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