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Finsler Geometric Local Indicator of Chaos for Single Orbits in the Hénon-Heiles Hamiltonian
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Translating the dynamics of the Hénon-Heiles Hamiltonian as a geodesic flow on aFinsler
manifold, we obtain alocal and syntheticgeometric indicator of chaos (GIC), which represents a
link between local quantities and asymptotic behavior of orbits and gives a strikingly evident, one-
to-one, correspondence between geometry and instability. Going beyond the results attained using
the customary dynamical approach and improving also on the global criteria established within the
Riemannian framework, the GIC is able to discriminate between regular and stochastic orbits on a
given energy surface, simply on the basis of the value it assumes along a relatively small piece of
the trajectory, without long integrations of the dynamics and without any reference to a perturbation.
[S0031-9007(98)07882-X]
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The presence of instability in dynamical systems (DS
is usually recognizeda posteriori, looking at the long
time evolution of small perturbations, whose average
ponential growth is interpreted asthe signature of chaos
Skipping here most of the issues related to the unive
meaning attributed to it, we note how the procedures
tools that have at the grounds such a criterion alone m
fest their limitations whenever the behavior of DS’s at
boundary between quasiintegrability and stochasticit
investigated (e.g., [1,2]). Instead, the search fora priori,
syntheticsignatures of chaos dates back to Toda [3]
continues, across interesting investigations on the me
nisms of transition to stochasticity (see, e.g., [4]), up to
recently revived Riemannian geometrodynamical appro
(GDA) [5,6]. Although most of its results relate to high d
mensional Hamiltonian systems (for which some appro
mations are justified by the large number of d.o.f. or so
weak form of the ergodic hypothesis), more recently
approach has been tested also for small DS’s, giving
comes clearly supporting its reliability [2,7]. Neverth
less, if in the case of large DS’s considered the agreem
between the GDA and the customary tools used to de
chaos has been revealed to be rather satisfactory, at
as long as the approximations are well justified [8], so
discrepancies emerge in the case of few d.o.f. syst
[2,9]. For the latter, the GDA provided an alternative w
to recover most of the results obtained with the tang
dynamics equations, suggesting deeper hints for the
derstanding of the sources of chaos and giving in addi
some global criteria to single out a transition in the ov
all behavior [7]. However, this criterion is unable to co
rectly detect the occurrence of chaos in single orbits [
as it renounces, in principle, to intrinsically describe
behavior of individual trajectories. Within the Rieman
ian approach to few d.o.f. systems, this issue has bee
dressed, up to now, resorting only to a numerical proced
analogous to the integration of the tangent dynamics e
tions, whose results have been generally confirmed (tho
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)

x-

al
d

ni-
e
is

d
a-
e
ch

i-
e
s
t-

nt
ct
ast
e

s

nt
n-
n
-

],
e

ad-
re
a-
gh

not always). Recently Kandrup [11] investigated in de
the relationships existing betweenlocal dynamical behav-
ior and local geometric features of the Jacobi (Rieman
ian) manifold for some two-dimensional DS’s, obtaini
qualitative correlations among average curvature and
fluctuations and somewhat more ambiguous ones betw
curvature fluctuations and short time Lyapunov expone
In summary, the Riemannian GDA has been able, up
now, either to intrinsically describe the average behav
of a DS or to single out the individual orbits instabili
a posteriori,as in the Hamiltonian description. Both o
these approaches have remained unable to find an in
sic and individual indicator of long-term behavior of orb
as the geometric indicator of chaos (GIC) here presen
built within the Finsler GDA and which cannot even
defined [for the Hénon-Heiles (HH) system] within th
other previously mentioned frameworks. Notwithstand
its local character (in both spatial and temporal meaning
it is unambiguously related to Lyapunov characteris
numbers (LCN’s), i.e., to asymptotic quantities, usua
computed with reference to a perturbation. We claim th
that it represents a strong indication (if not a proof) t
the GDA is able not only to reproduce and to expla
the results obtained with the usual tools, but even to
beyond them.

One of the main recent results of the GDA is t
confirmation that the onset of unpredictability in t
geometric transcription of realistic (large) DS’s is driv
by the mechanism of parametric instability [5,6] and th
differs completely from what occurs in the geodesic flo
of abstract ergodic theory. Indeed, most of the ph
space of large physical DS’s is not characterized
(constant) negative curvatures, but stochasticity is cau
by the quasirandom fluctuations of (mostly) positi
curvatures. For few dimensional DS’s, however, su
random character cannot be assumed and instea
parametric resonance, similar to that occurring in
Mathieu equation, to bring about instability [6,7,12
© 1998 The American Physical Society
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Nevertheless, we find below that even for 2 d.o.f. syste
such a mechanism cannot be singled out in a naı¨ve way
and very intricate combinations of geometric features
the manifold are linked to instability in a nontrivial way

We already discussed the motivations for an extens
of the GDA to include non-Riemannian manifolds [12
and we also pointed out its somewhat greater effective
with respect to the usual tools in the computations
instability exponents [2,13]. We refer to [5,6,8] for
detailed description of the GDA, to [2,12,14] for i
implementation within Finsler manifolds, and to [9] fo
a thorough discussion of most of the points here o
sketched. Within the GDA the trajectories of aN
d.o.f. system become the geodesics of suitable differe
manifolds, which, in Finsler geometry, aresN 1 1d-
dimensional and represent a generalization of Rieman
ones. The stability of the flow is determined by t
Jacobi-Levi-Civita (JLC) equations of geodesic spread

=

ds

√
=za

ds

!
1 H a

c zc  0, sa  0, 1, . . . , Nd , (1)

where za is the perturbation,=yds is the covariant
derivative along the geodesic, and the stability ten
HHH [6,8] derives from the (generalized) curvature ten
of the manifold. The Finsler time parameters ; sF is
defined through the Lagrangian functionL , as dsF 
L dt and possesses a built-in invariance with resp
to an arbitrary rescaling of the Newtonian timet [15].
The local behavior of geodesics is determined by t
eigenvalues ofHHH , which are the principal sectiona
curvatures (psc’s) definedby the given geodesicon
the manifold [8]. For aN degrees of freedom DS
once a geodesic is chosen, the Finsler stability ten
possessessN 1 1d eigenvaluesshlAj, A  0, 1, . . . , Nd,
one of which vanishes identically,l0 ; 0, associated
with a neutral eigenvector, along the tangent to
geodesic. In the case of a standard Hamiltonian sys
(i.e., without gyroscopic terms),Hsq, pd  1

2 aijpipj 1

U sqd we have then [2,12]

li  t0sB 1 t0mid, si  1, . . . , Nd , (2)

where B is related to the time derivatives of the L
grangian, thehmij are the eigenvalues of the Hessi
U ,ij sqd, and the prime denotes the derivative with
spect tosF . In this Letter we will deal with the wel
known two dimensional HH system, whose Hamilto
ian is

Hsq, pd 
1
2

≥
x2 1 y2 1 p2

x 1 p2
y

¥
1 x2y 2

y3

3
. (3)

We find that for this DS (as well as for generic realis
ones, in spite of some persistent claims, e.g., [16]) ne
tive curvatures are quite unable to explain the asym
totic character of orbits. The mechanism of parame
instability, due to fluctuations of usually positive curv
tures [5,6] manifestsnaı̈vely, however, only for some
many d.o.f. systems being instead hardly perceived in
case. For example, the analysis of spectra [9] sh
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how intermingled and far from trivial are the relation
ships with the elementary theory of Mathieu-like equ
tions. Such seemingly discouraging inconsistencies h
driven us to check for different signatures of instabili
The Finslerian approach allows us to consider, even
2 d.o.f. Hamiltonians, the possible anisotropy of the ma
fold, which plays a crucial role, via the Schur theorem
in the mechanism of instability: fluctuating curvatures
quire also that the manifold is anisotropic. The conn
tion between curvature variations along a geodesic
anisotropy, on one side, and growth and rotation of p
turbation, on the other, is far from being clear and is c
rently investigated: how the former can interact to st
the latter can at the moment only be guessed. Fo
2 d.o.f. system, the associated Finsler manifold is th
dimensional and its curvature properties along agiven
geodesicare described by the two nonvanishing psc
l1,2, which are invariant functions on the tangent spa
representing the sectional (i.e., Gaussian) curvature
the two planes defined from the tangent to the flowu
and the two (nontrivial) eigenvectors ofHHH . Given them,
we can characterize the way the geodesic explores
Finsler manifold through the (half) Ricci curvature alon
the flow fRicFsudg and the anisotropy,kfqssd, pssdg and
q fqssd, pssdg, respectively,

k 8
l1 1 l2

2
;

Tr sHHH d
2


RicFsud

2
;

q 8
l1 2 l2

2
.

(4)

An exhaustive statistical analysis of the behavior ofk and
q (or equivalently ofl1,2) and the details of the logica
path leading to the synthetic indicator are presen
elsewhere [9]. We found that along a generic geode
the hlij oscillate around their average values, the fluct
tions of Ricci curvature in general turns out to b
however, much smaller than those of the sectional on
which are, indeed, almost anticorrelated. Such an effe
particularly evident in the HH case, asDU ; 2. So, the
manifold appears to be everywhere anisotropic but w
psc’s always (l1) or mostly (l2) positive. Fluctuations
(and then anisotropy) increase with energy, showing
global qualitative change in correspondence of appeara
of stochasticity [9]. Although smaller, the overall fluctu
tions of Ricci curvature seem nevertheless to influe
appreciably the stability of geodesics. Moreover, Sc
theorem asserts that the two quantities must be rela
We then look for a relative measure of anisotro
fluctuations compared to overall curvature variatio
Correlations between two quantitiesAssd andBssd reflect
in the functional

C̃SfA, Bg 8
kA ? BlS

skA2lS ? kB2lSd1y2 , (5)

which clearly depends on the averaging intervalS, a de-
pendence understood in the sequel. An indication ab
5533
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the relative importance of anisotropy with respect to av
age curvature fluctuations can be obtained comparing
phase space normalized correlation functionsC̃ fq , dq g
and C̃ fk, dkg, being dAssd 8 Assd 2 kAl. Using them
we build up a quantity which apparently describes o
the local geometric features of the submanifold explo
(in a lapseS) by the geodesic having initial condition
fqs0d, ps0dg  sq0, p0d:

RFfSg ; RFsq0, p0d 8
C̃ fq , dq g
C̃ fk, dkg

$ 0 . (6)

However, the inspection of Fig. 1 shows a striking cor
spondence between the Poincaré surface of section (
and the map ofR2

F . Indeed, Figs. 1(a) and 1(b), whic
refer to the typical energy valueE  1y8, show that the
smaller the value ofRFsq0, p0d, then themore regularthe
geodesic passing throughsq0, p0d. To obtain the plot of
Fig. 1(b), we chose a grid of pointsh y0, py0 j on the PSS
x  0, choosingpx0 such thatH  E, and then numeri-
cally integrated the geodesic equations, computing
correlation functions enteringRFsq0, p0d [17]. The same

FIG. 1. Phase space portraits of HH system atE  1y8:
(a) PSS obtained numerically integrating a sample of or
up to T  10 000 units; (b) Gray-scale plot ofR2

Fs y0, py0 d
computed following a set of geodesics for a lapseS  200
units. Darker dots represent smallerRF values, thewhite
stochastic seacorresponds toR2

FE . 0.8. The numbers labe
the initial conditions of Fig. 2.
5534
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results have been obtained at all the energies; the mores-
sential,though lesssuggestive,histograms of Fig. 2, con
firm that our GIC is able to depict correctly the sing
orbit’s behavior up to the dissociation energy. The c
umns in this plot represent the values ofR2

FE
, defined as

R2
FE

sq0, p0d 8 a2sEdR2
Fsq0, p0d , (7)

where asEd  a1 ? E2 is a scaling factor to get rid o
a global energy dependence, which is useful to comp
results at different energies. For each energy, theR2

FE

values are reported for a sample of seven initial con
tions, chosen among those topologically equivalent to
ones indicated in Fig. 1(b) forE  1y8. We observe that
while chaotic trajectories are always characterized byR2

FE

values around its upper limit (normalized to unity, this
because we useR2

FE
instead ofRF), regular orbits have

instead considerably smaller values, which is, howev
higher for those geodesics tending to become chaotic
lier, as the energy increases. In particular, from both
figures, we see that the geodesics in the regular isla
located on thepy axis of the PSS are recognized by o
GIC as nearer to chaotic ones than those belonging e
to the large regular island on they axis or to the banana
region; this explains why these islands disappear ea
as the energy increases and gives also some insight
the causes of the (partial) failure of the Riemannian
proach to describe these peculiar orbits [2,7,10]. Mo
over, very interesting insights can be obtained looking
the relaxation patterns ofRF as a function of the aver
aging timeS [9], as can be perceived from the diffusiv
behavior around the border of regular islands. Well th
a geometric local quantity turns out to be deeply rela

FIG. 2. Values of R2
FE for geodesics starting from initia

conditions “topologically equivalent” to those indicated o
Fig. 1 for E  1y8, at energies fromE  0.095 up to E 
0.166.
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to the asymptotic behavior of geodesics. We stress
the values plotted in the map and histograms are obta
through computations of correlation functions over tim
intervals much shorter than those needed to obtain e
the PSS’s or the LCN’s: it suffices to follow a geode
for as few as fifteen periods in order to see if the va
of RF attains the upper limit characterizing the stocha
sea or tends to a lower value, which though different
distinct regular orbits, is, however, always smaller th
for chaotic ones. A local signature of asymptotic ins
bility acquires a special significance also on the light
the issue of reliability of long time numerical integratio
of chaotic systems [18]. The definition ofRF obviously
implies that it can be used also as a global indicator, a
to give a quantitative measure of the overall degree
stochasticity at a fixed value of energy: a phase-avera
local indicator is a global one; instead, a global indica
is, in general, nonlocal. Perplexities which can be rai
by the apparently cumbersome definition ofRF are an-
swered on the light of the pathologies affecting the H
Hamiltonian, which amount mainly to the degeneracies
its integrable limit (see p. 46 in [19]). Indeed, for mo
two dimensional DS’s, more naı¨ve Finsler geometric in
dicators suffice to discriminate between chaotic and re
lar orbits. Although the outcomes presented here (an
[2,9]) clearly support the reliability of Finsler GDA, nev
ertheless a better understanding is still waiting, as we n
to test and extend the proposed criterion to more gen
and higher dimensional DS’s. Moreover, it is desirable
improve the rather phenomenological interpretation ofRF

and possibly to predict theoretically the threshold ab
which stochasticity occurs. This goal amounts essenti
to understanding whether highRF values either follow
from or are a cause of stochastic behavior (or both).
results obtained support the conviction [2,5–8] that ne
tive curvature is unnecessary (if not irrelevant) to expl
the onset of chaos in realistic DS’s, keeping in mind, ho
ever, that some faded global correlations exist. Instea
separate spot concerns the long-lasting claims abou
implications of scalar curvature: except for two dime
sional or isotropic manifolds, it appears to have noth
to do with the behavior of geodesics representing real
DS’s [8] and a hopefully coherent explanation of its
relevance will be presented elsewhere. Among the iss
still open, it is worth investigating more deeply the re
vance of the rotation of eigendirections ofHHH : a direct
inspection of the JLC equations seems to indicate that
rotation of the perturbation vector should give a con
bution to instability; nevertheless a separation by hand
interacting effectsoften causes serious inconsistencies.
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