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Finsler Geometric Local Indicator of Chaos for Single Orbits in the Hénon-Heiles Hamiltonian
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Translating the dynamics of the Hénon-Heiles Hamiltonian as a geodesic flow Bmster
manifold, we obtain alocal and syntheticgeometric indicator of chaos (GIC), which represents a
link between local quantities and asymptotic behavior of orbits and gives a strikingly evident, one-
to-one, correspondence between geometry and instability. Going beyond the results attained using
the customary dynamical approach and improving also on the global criteria established within the
Riemannian framework, the GIC is able to discriminate between regular and stochastic orbits on a
given energy surface, simply on the basis of the value it assumes along a relatively small piece of
the trajectory, without long integrations of the dynamics and without any reference to a perturbation.
[S0031-9007(98)07882-X]

PACS numbers: 05.45.+b, 02.40.—k

The presence of instability in dynamical systems (DS’s)ot always). Recently Kandrup [11] investigated in detalil
is usually recognized posteriori, looking at the long the relationships existing betwettal dynamical behav-
time evolution of small perturbations, whose average exior andlocal geometric features of the Jacobi (Riemann-
ponential growth is interpreted &lse signature of chaos. ian) manifold for some two-dimensional DS'’s, obtaining
Skipping here most of the issues related to the universajualitative correlations among average curvature and its
meaning attributed to it, we note how the procedures anfluctuations and somewhat more ambiguous ones between
tools that have at the grounds such a criterion alone mancurvature fluctuations and short time Lyapunov exponents.
fest their limitations whenever the behavior of DS’s at theln summary, the Riemannian GDA has been able, up to
boundary between quasiintegrability and stochasticity isiow, either to intrinsically describe the average behavior
investigated (e.g., [1,2]). Instead, the searchdqriori, of a DS or to single out the individual orbits instability
syntheticsignatures of chaos dates back to Toda [3] andh posteriori,as in the Hamiltonian description. Both of
continues, across interesting investigations on the mech#iese approaches have remained unable to find an intrin-
nisms of transition to stochasticity (see, e.g., [4]), up to thesic and individual indicator of long-term behavior of orbits
recently revived Riemannian geometrodynamical approachs the geometric indicator of chaos (GIC) here presented,
(GDA) [5,6]. Although most of its results relate to high di- built within the Finsler GDA and which cannot even be
mensional Hamiltonian systems (for which some approxi-defined [for the Hénon-Heiles (HH) system] within the
mations are justified by the large number of d.o.f. or somether previously mentioned frameworks. Notwithstanding
weak form of the ergodic hypothesis), more recently thists local character (in both spatial and temporal meanings),
approach has been tested also for small DS’s, giving outt is unambiguously related to Lyapunov characteristic
comes clearly supporting its reliability [2,7]. Neverthe- numbers (LCN’s), i.e., to asymptotic quantities, usually
less, if in the case of large DS’s considered the agreemerbmputed with reference to a perturbation. We claim then
between the GDA and the customary tools used to detethat it represents a strong indication (if not a proof) that
chaos has been revealed to be rather satisfactory, at ledee GDA is able not only to reproduce and to explain
as long as the approximations are well justified [8], soméhe results obtained with the usual tools, but even to go
discrepancies emerge in the case of few d.o.f. systemseyond them.

[2,9]. Forthe latter, the GDA provided an alternative way One of the main recent results of the GDA is the
to recover most of the results obtained with the tangentonfirmation that the onset of unpredictability in the
dynamics equations, suggesting deeper hints for the urgeometric transcription of realistic (large) DS’s is driven
derstanding of the sources of chaos and giving in additioby the mechanism of parametric instability [5,6] and thus
some global criteria to single out a transition in the over-differs completely from what occurs in the geodesic flows
all behavior [7]. However, this criterion is unable to cor- of abstract ergodic theory. Indeed, most of the phase
rectly detect the occurrence of chaos in single orbits [10]space of large physical DS’s is not characterized by
as it renounces, in principle, to intrinsically describe the(constant) negative curvatures, but stochasticity is caused
behavior of individual trajectories. Within the Riemann- by the quasirandom fluctuations of (mostly) positive
ian approach to few d.o.f. systems, this issue has been adurvatures. For few dimensional DS’s, however, such
dressed, up to now, resorting only to a numerical procedureandom character cannot be assumed and instead is
analogous to the integration of the tangent dynamics equaarametric resonance, similar to that occurring in the
tions, whose results have been generally confirmed (thougWathieu equation, to bring about instability [6,7,12].
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Nevertheless, we find below that even for 2 d.o.f. systembow intermingled and far from trivial are the relation-
such a mechanism cannot be singled out in ‘a¥eavay ships with the elementary theory of Mathieu-like equa-
and very intricate combinations of geometric features otions. Such seemingly discouraging inconsistencies have
the manifold are linked to instability in a nontrivial way. driven us to check for different signatures of instability.

We already discussed the motivations for an extensioffhe Finslerian approach allows us to consider, even for
of the GDA to include non-Riemannian manifolds [12], 2 d.o.f. Hamiltonians, the possible anisotropy of the mani-
and we also pointed out its somewhat greater effectivenedesld, which plays a crucial role, via the Schur theorem [8]
with respect to the usual tools in the computations ofin the mechanism of instability: fluctuating curvatures re-
instability exponents [2,13]. We refer to [5,6,8] for a quire also that the manifold is anisotropic. The connec-
detailed description of the GDA, to [2,12,14] for its tion between curvature variations along a geodesic and
implementation within Finsler manifolds, and to [9] for anisotropy, on one side, and growth and rotation of per-
a thorough discussion of most of the points here onlturbation, on the other, is far from being clear and is cur-
sketched. Within the GDA the trajectories of M  rently investigated: how the former can interact to steer
d.o.f. system become the geodesics of suitable differentidhe latter can at the moment only be guessed. For a
manifolds, which, in Finsler geometry, argv + 1)- 2 d.o.f. system, the associated Finsler manifold is three
dimensional and represent a generalization of Riemanniagimensional and its curvature properties alongigen
ones. The stability of the flow is determined by thegeodesicare described by the two nonvanishing psc’s,
Jacobi-Levi-Civita (JLC) equations of geodesic spread: A;,, which are invariant functions on the tangent space,
\V (Vz“) representing the sectional (i.e., Gaussian) curvatures in
— + HC“ZC

5\ s =0, (@a=0,1,....N), (1) the two planes defined from the tangent to the flaw
and the two (nontrivial) eigenvectors g . Given them,
where z¢ is the perturbation,V/ds is the covariant we can characterize the way the geodesic explores the
derivative along the geodesic, and the stability tensoFinsler manifold through the (half) Ricci curvature along
H [6,8] derives from the (generalized) curvature tensoghe flow [Ricg(u)] and the anisotropyx[q(s), p(s)] and

of the manifold. The Finsler time parameter= sr is  ¥[q(s), p(s)], respectively,
defined through the Lagrangian functiofi, as dsp =

L dr and possesses a built-in invariance with respect o = Mt A Tr (#) _ Rics(u)

to an arbitrary rescaling of the Newtonian tinmg15]. 2 2 2

The local behavior of geodesics is determined by the A= 4)
eigenvalues of H', which are the principal sectional = T,

curvatures (psc’s) definedy the given geodesion _ o _ .

the manifold [8]. For aN degrees of freedom DS, An exhaustive statistical analysis of the behaviokaind
once a geodesic is chosen, the Finsler stability tenso¥ (Or equivalently ofA;,) and the details of the logical
possesse§N + 1) eigenvalues({As},A = 0,1,...,N), Path leading to the synthetic indicator are presented
one of which vanishes identically), = 0, associated elsewhere [9]. We found that along a generic geodesic
with a neutral eigenvector, along the tangent to thet_he{/\,-} oscillate around their average values, the fluctua-

geodesic. In the case of a standard Hamiltonian syste#ions of Ricci curvature in general turns out to be,
(i.e., without gyroscopic terms)(q, p) = %a,-jp"pf +  however, much smaller than those of the sectional ones,

U (q) we have then [2,12] whigh are, indt_eed, glmost anticorrelated. Such an effect is
A= (B + ') (=1 N) @ partlpularly evident in the HH case, asu_s 2. So, the _

! Kils Pl manifold appears to be everywhere anisotropic but with
where B is related to the time derivatives of the La- psc’s always {;) or mostly (A,) positive. Fluctuations
grangian, the{u;} are the eigenvalues of the Hessian(and then anisotropy) increase with energy, showing a
U.;;(q), and the prime denotes the derivative with re-global qualitative change in correspondence of appearance
spect tosF. In this Letter we will deal with the well  of stochasticity [9]. Although smaller, the overall fluctua-
known two dimensional HH system, whose Hamilton-tions of Ricci curvature seem nevertheless to influence
1an iIs appreciably the stability of geodesics. Moreover, Schur

1/, ) ) 2 ) y? theorem asserts that the two quantities must be related.
H(g.p) = E(x Tyttt Py) Ty TS (3)  We then look for a relative measure of anisotropy
We find that for this DS (as well as for generic realistic fluctuations compared to overall curvature variations.

ones, in spite of some persistent claims, e.g., [16]) nega.C_:orrelations between two quantitid$s) and B(s) reflect

tive curvatures are quite unable to explain the asympl" the functional

totic character of orbits. The mechanism of parametric - . (A - B)s

instability, due to fluctuations of usually positive curva- Cs[A,B] = (425 - (B2 (5)
tures [5,6] manifestdively, however, only for some, S §

many d.o.f. systems being instead hardly perceived in thigshich clearly depends on the averaging inter§ab de-
case. For example, the analysis of spectra [9] showpendence understood in the sequel. An indication about
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the relative importance of anisotropy with respect to averfesults have been obtained at all the energies; the esre
age curvature fluctuations can be obtained comparing theential,though lessuggestivehistograms of Fig. 2, con-
phase space normalized correlation functiénis}, 544]  firm that our GIC is able to depict correctly the single
and C[«k, 6], being 5A(s) = A(s) — {(A). Using them orbit's behavior up to the dissociation energy. The col-
we build up a quantity which apparently describes onlyumns in this plot represent the valuesltﬁfE, defined as
the local geometric features of the submanifold explored 2 . 2 2
(in a lapseS) by the geodesic having initial conditions R, (@0, po) = @ (E)R;(qo. Po). ()
[q(0),p(0)] = (qo, po): where a«(E) = a; - E? is a scaling factor to get rid of

_ C[9,89] a global energy dependence, which is useful to compare

Rr[S] = Rr(qo. po) = Clx.ox] =0. (6)  results at different energies. For each energy, Rfie

i values are reported for a sample of seven initial condi-

soxz\;?]rééht?eltr\:vsg:r?ttlﬁg gfc):?gérlé S;L?}';i;;}ggg&?{g; ns, chosen among those topologically equivalent to the
P es indicated in Fig. 1(b) faf = 1/8. We observe that

and the map ofR7. Indeed, Figs. 1(a) and 1(b), which
refer to the typical energy valug = 1/8, show that the
smaller the value oRr(qo, po), then themore regularthe
geodesic passing throudl, po). To obtain the plot of
Fig. 1(b), we chose a grid of poinfgy, p,,} on the PSS

while chaotic trajectories are always characterizedeﬁy
values around its upper limit (normalized to unity, this is
because we usB%E instead ofRp), regular orbits have
instead considerably smaller values, which is, however,
x = 0, choosingp,, such thatd = E, and then numeri- higher for those geodesics tending to become chaotic ear-

cally integrated the geodesic equations, computing th%!er, as the energy increases. In particular, from both the

correlation functions enteri ’ 17]. The same 'lgures, we see thqt the geodesics in the regular islands
N8 (do. po) [17] located on thep, axis of the PSS are recognized by our

GIC as nearer to chaotic ones than those belonging either
, to the large regular island on theaxis or to the banana

a ] region; this explains why these islands disappear earlier

. as the energy increases and gives also some insights on
1 the causes of the (partial) failure of the Riemannian ap-

04

02| L N proach to describe these peculiar orbits [2,7,10]. More-
i e , over, very interesting insights can be obtained looking at
o OOF ‘ C == D T the relaxation patterns ot as a function of the aver-
’ ? e aging timeS [9], as can be perceived from the diffusive

. behavior around the border of regular islands. Well then,
a geometric local quantity turns out to be deeply related
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FIG. 1. Phase space portraits of HH system Fat= 1/8: ‘ 0095 0.105 0.115 0.125 0.135 0.145 0.155 0.166

(a) PSS obtained numerically integrating a sample of orbits E

up to T = 10000 units; (b) Gray-scale plot OW%(yg,pm)

computed following a set of geodesics for a lagse= 200 FIG. 2. Values of R}, for geodesics starting from initial
units. Darker dots represent small&; values, thewhite  conditions “topologically equivalent” to those indicated on
stochastic seaorresponds tde%E > 0.8. The numbers label Fig. 1 for E = 1/8, at energies fromE = 0.095 up to E =
the initial conditions of Fig. 2. 0.166.
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to the asymptotic behavior of geodesics. We stress thaf1]
the values plotted in the map and histograms are obtained
through computations of correlation functions over time [2]
intervals much shorter than those needed to obtain either
the PSS’s or the LCN's: it suffices to follow a geodesic [
for as few as fifteen periods in order to see if the value
of Ry attains the upper limit characterizing the stochastic 4
sea or tends to a lower value, which though different for 4]
distinct regular orbits, is, however, always smaller than 5]
for chaotic ones. A local signature of asymptotic insta-
bility acquires a special significance also on the light of
the issue of reliability of long time numerical integrations
of chaotic systems [18]. The definition & obviously
implies that it can be used also as a global indicator, able
to give a quantitative measure of the overall degree of
stochasticity at a fixed value of energy: a phase-averaged
local indicator is a global one; instead, a global indicator
is, in general, nonlocal. Perplexities which can be raised
by the apparently cumbersome definition Bf are an- [7]
swered on the light of the pathologies affecting the HH
Hamiltonian, which amount mainly to the degeneracies of [g)
its integrable limit (see p. 46 in [19]). Indeed, for most
two dimensional DS’s, more ha Finsler geometric in-
dicators suffice to discriminate between chaotic and regu-
lar orbits. Although the outcomes presented here (and in
[2,9]) clearly support the reliability of Finsler GDA, nev-
ertheless a better understanding is still waiting, as we need
to test and extend the proposed criterion to more genergro]
and higher dimensional DS’s. Moreover, it is desirable to
improve the rather phenomenological interpretatio® pf

and possibly to predict theoretically the threshold above
which stochasticity occurs. This goal amounts essentially
to understanding whether higRr values either follow
from or are a cause of stochastic behavior (or both). The
results obtained support the conviction [2,5—8] that nega-
tive curvature is unnecessary (if not irrelevant) to explain
the onset of chaos in realistic DS’s, keeping in mind, how-
ever, that some faded global correlations exist. Instead, a
separate spot concerns the long-lasting claims about the
implications of scalar curvature: except for two dimen-
sional or isotropic manifolds, it appears to have nothing
to do with the behavior of geodesics representing realistiT:lz]
DS’s [8] and a hopefully coherent explanation of its ir- [13]
relevance will be presented elsewhere. Among the issugs4]
still open, it is worth investigating more deeply the rele-
vance of the rotation of eigendirections 81 : a direct
inspection of the JLC equations seems to indicate that thi-5]
rotation of the perturbation vector should give a contri-
bution to instability; nevertheless a separation by hand of
interacting effect®ften causes serious inconsistencies. [16]
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