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Unambiguous Probabilities in an Eternally Inflating Universe
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“Constants of nature” and cosmological parameters may in fact be variables related to some slow
varying fields. In models of eternal inflation, such fields will take different values in different parts o
the universe. Here, I show how one can assign probabilities to values of the “constants” measured
a typical observer. This method does not suffer from ambiguities previously discussed in the literatu
[S0031-9007(98)08003-X]
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One of the striking aspects of the inflationary cosm
ogy [1] is that, generically, inflation never ends [2]. Th
evolution of the inflaton fieldf is influenced by quantum
fluctuation, and as a result thermalization does not oc
simultaneously in different parts of the universe. The d
namics off can be pictured as a random walk superi
posed on the classical slow roll and can be described
Fokker-Planck equation [2–4]. On small scales, the fl
tuations in the thermalization time give rise to a spectr
of small density fluctuations, but on large scales they m
the universe extremely inhomogeneous. In most of
models, one finds that, at any time, there are parts of
universe that are still inflating and that the total volum
of the inflating regions is growing with time. This pic
ture is often referred to as “stochastic inflation” or “etern
inflation.”

Eternally inflating universes may contain thermaliz
regions characterized by different values of the consta
of nature and of the cosmological parameters. F
example, the inflaton potentialV sfd may have severa
minima corresponding to different low-energy physics
to different values of the cosmological constant. A mo
interesting possibility is that the “constants” are related
some slowly varying fields and take values in a continuo
range. Examples are the effective gravitational constan
a Brans-Dicke-type theory [5] and the density parame
V in some models of open inflation [6]. Just like th
inflaton field f, the fieldsxj (j ­ 1, . . . , n) associated
with the constants are subject to quantum fluctuati
during inflation, and different regions of the univer
thermalize with different values ofxj . An intriguing
question is whether or not we can predict which valu
of the constants we are most likely to observe.

Assume an eternally inflating universe which is inha
ited by numerous civilizations that will measure differe
values ofxj. (For simplicity, I do not distinguish betwee
the fieldsxj and the associated constants.) We can de
the probabilityP sxddnx for xj to be in the intervalsdxj

as being proportional to the number of civilizations whi
will measurexj in that interval [7]. Assuming that we ar
a typical civilization, we can expect to observexj near the
maximum ofP sxd [8].
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An immediate objection to this approach is that we a
ignorant about the origin of life, let alone intelligence, an
therefore the number of civilizations cannot be calculat
However, the approach can still be used to find t
probability distribution for parameters which do not affe
the physical processes involved in the evolution of li
The cosmological constantL, the density parameterV,
and the amplitude of density fluctuationsQ are examples
of such parameters. We shall assume that our fieldsxj

belong to this category. The probability for a civilizatio
to evolve on a suitable planet is then independent ofxj ,
and instead of the number of civilizations we can use
number of habitable planets or, as a rough approximat
the number of galaxies.

If this philosophy is adopted, the problem of calculatin
P sxd can be split into two parts. The probability for us
observe certain values ofxj is proportional to the volume
of the regions wherexj take specified values and to th
density of galaxies in those regions. It is convenient
consider comoving regions and measure their volume
the time of thermalization. Then we can write

P sxd ~ nsxdPpsxd . (1)

Here,Ppsxddnx is proportional to the volume of thermal
ized regions wherexj take values in the intervalsdxj ,
and nsxd is the number of galaxies that form per un
thermalized volume. The calculation ofnsxd is a stan-
dard astrophysical problem, which is completely unrela
to the calculation of the volume factorPpsxd. Our focus
in this paper will be on the volume factor.

The problem one encounters in using Eq. (1) is that
an eternally inflating universe the thermalized volume
infinite, even for a region of a finite comoving size. On
can deal with this problem by simply introducing a tim
cutoff and including only regions that thermalized pri
to some moment of timetc. One finds, however, tha
the resulting probability distribution is extremely sensitiv
to the choice of the time variablet [4]. This gauge
dependence casts doubt on any conclusion reached u
this approach.

An alternative procedure, suggested in [10,11], is to
troduce ax-dependent cutoff at the timetcsxd, when all
© 1998 The American Physical Society 5501
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but a small fractione of the comoving volume destined
thermalize withxj in the intervalsdxj has thermalized
The limit e ! 0 is taken after calculating the probabi
ties. It was shown in [10,11] that the resulting probabi
distribution is essentially insensitive to the choice of ti
parametrization. However, the same problem appea
a different guise. Linde and Mezhlumian [12] have fou
a family of gauge-invariant cutoff procedures which
cludes thee procedure described above. This indica
that the invariance requirement alone is not sufficien
define the probabilities uniquely.

Another source of uncertainty is associated with la
values of the inflaton potentialV sfd. Usually, f is
assumed to vary in an infinite range, withV sfd ! ` at
f ! 6`. Higher values ofV sfd correspond to highe
rates of expansion, and thus the regions with Planc
and super-Planckian values ofV sfd expand at the highes
rate. The effect of these regions on the dynamics
stochastic inflation is therefore very important [13]. Sin
the physics at Planckian energy density is comple
unknown, this results in a significant uncertainty [4,11]

In the face of these difficulties, serious doubts h
been expressed that a meaningful definition of proba
ties in an eternally inflating universe is even, in princip
possible [4,9,12]. However, these pessimistic conclus
may have been premature. In this paper, I am go
to argue that unambiguous probabilities can in fact
defined in a wide class of models of eternal inflation.

The factorPpsxd in Eq. (1) is the probability distribu
tion of the fieldsxj on the thermalization hypersurfac
Sp which separates inflating and thermalized spacet
regions. It is a three-dimensional spacelike surface w
plays the role of the big bang for the thermalized regio
In the case of several discrete vacua,Sp consists of a
number of disconnected pieces, each connected co
nent corresponding to thermalization into a single vacu
[14]. Each connected piece ofSp has an infinite vol-
ume. (The situation here is somewhat similar to open
flation, where thermalized regions inside the bubbles h
the form of infinite, open Robertson-Walker universe
In order to determine the relative probability of diffe
ent vacua, one has to compare the infinite volumes of
corresponding components ofSp, which is an inherently
ambiguous task. This ambiguity is the source of the pr
lems encountered in Refs. [4,10–12].

Now, the key observation is that the situation m
be greatly improved in the case of continuous fieldsxj

varying in a finite range,0 # xj # Dj . In this case, eac
connected part ofSp is still infinite, but now different
parts are not characterized by different values ofxj . On
the contrary,xj run through all of the range of their value
on each connected part. Since the inflationary dynam
of the fieldsxj has a stochastic nature, the distributions
xj on different components ofSp should be statistically
equivalent. It is therefore sufficient to consider a sin
connected component. Moreover, sincexj have a finite
range, they will run through all of their values many tim
5502
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on any sufficiently large part ofSp. Hence, there is no
need to deal with infinite hypersurfaces. The probabi
distribution Ppsxd can be determined by examining
large finite piece ofSp.

The above argument is an adaptation, to the case
stochastic inflation, of the argument given earlier
Garriga, Tanaka, and Vilenkin [15] for models of ope
inflation with a variableV. In such models, each bubb
contains regions with all possible values ofV, and we
argued that the probability distribution forV can be
determined by considering a single bubble.

The argument can also be extended to fields with
infinite range of variation, provided that the probabili
distributions ofxj are concentrated within a finite rang
with a negligible probability of findingxj very far away
from that range.

Models with a finite range ofxj are not difficult
to construct. For example,xj could play the role of
angular variables, with the inflaton fieldf being the radial
variable in the field space. Another attractive possibi
is a s-model-type theory in which bothxj and f take
values on a compact manifold. In such models,
potential is necessarily bounded and problems with su
Planckian densities are easily avoided.

The gauge dependence of the probability distributio
obtained using a constant-time cutoff can be underst
as follows. Suppose that the time coordinatet has been
chosen to be the proper time,t ­ t, and that regions
with 0 , x1 , D1y2 take a shorter timet to thermalize
than regions withD1y2 , x1 , D1. Then, in the vicinity
of the cutoff (t ­ tc), the surfaceSpstcd will tend to
include regions withx1 , D1y2 and exclude regions
with x1 . D1y2. Suppose now that, despite the shor
roll-down time, regions withx1 , D1y2 expand by a
larger factor than regions withx1 . D1y2. [This can be
arranged with a suitable choice of the potentialV sf, xd.]
Then, if we choose the scale factor to be the tim
coordinate,t ­ a, the surfaceSpstcd will tend to include
regions with x1 . D1y2 and exclude those withx1 ,

D1y2. Thus, the cutoff at a fixed timetc is biased with
respect to different types of regions, depending on
choice of the time coordinate. One might think that t
probability distribution ofx on a hypersurfaceSp should
be insensitive to variation of the boundary ofSp, provided
that the volume ofSp is sufficiently large. However, in
the case of a fixed-time cutoff,Sp is a multicomponent
hypersurface whose volume is dominated by small, ne
formed thermalized regions. It is therefore no surpr
that the resulting distributionPpsxd is sensitive to the
choice of the time variable.

Thus, what we need is an unbiasly selected port
of Sp. Such an unbiased cutoff is hard to impleme
in the Fokker-Planck formalism [2–4], which deals wi
probability distributions on equal-time surfaces. A mo
promising approach to the calculation ofPpsxd is to use a
numerical simulation of stochastic inflation. Simulatio
of this sort have been introduced in Ref. [16] and ha
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been further developed in Ref. [4]. In the present pap
I will not attempt to pursue this numerical approac
Instead, I am going to argue that in a wide class of mod
the probabilities can be calculated analytically.

Suppose the maximum of the potentialV sf, xd is at
f ­ 0. We shall first consider models in whichV sf, xd
is very symmetric near the top, so that it is essentia
independent ofx in the range0 # f , f1, but may have
significant x dependence elsewhere. We shall assu
that f1 is in the slow-roll range,fq ø f1 , fpsxd,
wherefq is the boundary between the quantum diffus
and deterministic slow-roll regimes, andfpsxd is the
value corresponding to the end of inflation. Let
consider a constant-f hypersurfaceS0: f ­ f0 with
fq ø f0 , f1. Since f0 is in the slow-roll range,
this hypersurface is (almost everywhere) spacelike [1
Moreover, all values off in the past ofS0 belong to the
range0 # f , f0 where the potential is independent
x. Therefore, we expect the distribution ofxj on S0
to be flat,P0sxjd ­ const, with all values ofxj equally
probable [17].

The hypersurfaceSp is a spacelike hypersurface in th
future ofS0. The probability distribution forxj on Sp is
related to that onS0 by

Ppsxd ~ P0sx s0dd expf3Nsx s0ddg dets≠x s0dy≠xd . (2)

Here, x
s0d
j sxd are the values onS0 that evolve, along

the slow-roll trajectory, to the valuesxj on Sp, Nsx s0dd
is the number of inflationarye-folding along that tra-
jectory, exps3Nd is the volume expansion factor, an
dets≠x s0dy≠xd is the Jacobian transforming from variabl
x

s0d
j to xj . Now, P0sx s0dd ­ const, and the function

x s0dsxd andNsx s0dd can be straightforwardly determine
from a given potentialV sf, xd. Hence, Eq. (2) solve
the problem of finding the probability distribution forxj

on Sp. This equation is significantly simplified in mode
wherexj do not change much during the slow roll, so th

x
s0d
j ø xj . In such models,

Ppsxd ~ expf3Nsxdg . (3)

Equation (2) disregards quantum fluctuations ofxj and
f in the slow-roll regime atf $ f0. For xj this is
justified, provided that the average cumulative fluctuat
is small compared toDj . This condition is not difficult
to satisfy. Small quantum fluctuations off are not
correlated withxj and their effect vanishes to linea
order indf. However, quadratic and higher-order term
will give some corrections to Eq. (2). One may al
be worried about the effect of very large fluctuatio
which bringf back to the quantum diffusion regime [4
Although extremely rare, such fluctuations are likely
be present for a sufficiently large piece ofS0. If the
probability of large fluctuations were independent ofxj ,
then small patches ofS0 which have such fluctuations i
their future could be left out, without any effect on th
distribution (2). If there is somex dependence, its effec
will be to reducePpsxd for those values ofxj which give
r,
.
ls

y

e

].

t

n

a higher probability of large backwards jumps. I expe
this effect to be very small, but more work is needed
obtain a quantitative estimate.

Large fluctuations back to the quantum regime m
occur even after thermalization [18]. Then each therm
ization surfaceSp may have an infinite number of othe
thermalization surfaces in its future. However, Eq.
can still be used to derive the probability distribution f
xj on any of these surfaces.

As an illustrative example, let us consider a two-fie
model with a potential

V sf, xd ­ V0 cos2safd f1 1 l sin4safd cossbxdg .
(4)

Here, jlj , 1, a ­ pyDf, and the range off is
0 # f # Df, with the values f ­ 0 and f ­ Df

identified. Similarly,b ­ pyDx with x ­ 0 and x ­
Dx identified. We shall assume thatb & a & 1; that
is, Dx * Df * 1. (I use Planck units throughout th
paper.) The top of the potential is atf ­ 0, and the true
vacuum is atf ­ Dfy2. The fieldx is massless in the
true vacuum, while the mass off is x dependent,

m2
fsxd ­ 2V0a2f1 1 l cossbxdg . (5)

The boundary fq between the quantum diffusio
and slow-roll regimes is determined by the conditi
j≠Hy≠fj , H2, where Hsf, xd ­ f8pV sf, xdy3g1y2

is the inflationary expansion rate. We shall assume
V0 ø a2; then fq , V

1y2
0 ya2 ø Df. Since a & 1,

the problem of super-Planckian energies does not aris
this case.

The potential (4) is essentially independent ofx for
f ø Df, but the number ofe-foldings N and the
amplitude of density fluctuationsdryr are both x

dependent. Fora ø 1, l ø 1, we find

Nsxd ø 24p
Z fp

f0

H
≠Hy≠f

df ø N0 1
2pl

a2 cossbxd ,

(6)

and [1]

dryrsxd ø 200mfsxd . (7)

Here, N0 is the number ofe-foldings (from a specified
reference pointf0) in the x-independent case (l ­
0), and I have used sinsafpd ø 1, which is valid for
a & 1 (sincefp ø p

2a 2
1
6 ). The classical and quantum

variations ofx during the relevant part of the slow ro
are, respectively,dxcyDx , sly4pd sbyad2 ø 1 and

dxqyDx , V
1y2
0 bya ø 1, and can be neglected. Th

justifies thex ­ const approximation in Eq. (6) and th
use of Eq. (3) for the probability distribution,

Ppsxd ~ expf6pla22 cossbxdg . (8)

The corresponding distribution fordryr can easily be
written using Eqs. (5) and (7).
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As a second example, we consider the spectrum
density perturbations in the standard model of inflat
with a single fieldf. The perturbations are determin
by quantum fluctuationsdf which can be regarded a
random Gaussian variables with a dispersions ­ Hy2p.
A perturbation is produced on each comoving scale at
time when that scale crosses the horizon and has a ga
invariant amplitude [19]:

dryr , 8pHdfyH0, (9)

where H 0 ­ dHydf. Averaging over the Gaussia
distribution gives the standard resultsdryrdrms ,
4H2yjH 0j.

Fluctuations off on different length scales are stat
tically independent and can be treated separately.
can therefore concentrate on a single scale corresp
ing to some valuef ­ f0, disregarding all of the res
The fluctuationdf will take different values on differ
ent parts of the hypersurfaceS0 : f ­ f0, so df plays
the role of the fieldx of our previous example. Lind
et al. [20] have studied the probability distribution for th
observed values ofdf using a constant proper time cuto
and arrived at a surprising conclusion that typical fluct
tions can be much greater than the rms valueHy2p. We
shall see, however, that this large effect disappears in
present approach.

The probability distribution fordf on Sp can be
found directly from Eq. (2) withP0sdfd being the initial
Gaussian distribution onS0. When the fieldf undergoes
a quantum jumpdf, the number ofe-foldings necessar
to complete the classical rollover tofp is changed by
dN ­ 4pdfH0yH 0

0. Hence, we obtain the distribution

Pp ~ exp

"
2

2p2

H2
0

√
df 2

3H3
0

pH 0
0

!2#
, (10)

which describes fluctuations with a nonzero mean va
kdfl ­ 3H3

0 ypH 0
0. The inflaton tends to fluctuate in th

direction opposite to the classical roll, because backw
fluctuations prolong inflation and increase the volume f
tor. This effect, however, is hopelessly small:kdflys ­
6H2

0 yH 0
0 , sdryrdrms ø 1. We thus see that anthrop

considerations do not substantially modify the stand
calculations of the density perturbation spectrum [21].

In conclusion, the approach described in this pape
lows one to assign unambiguous probabilities to cont
ously varying constants measured by a typical obser
In models where the inflaton potential is nearly indep
dent of the constants in the quantum diffusion range,
probabilities can be calculated analytically. Otherwise
numerical simulation is needed to determine the distr
tion P0sx s0dd in Eq. (2).
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