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Unambiguous Probabilities in an Eternally Inflating Universe
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“Constants of nature” and cosmological parameters may in fact be variables related to some slowly
varying fields. In models of eternal inflation, such fields will take different values in different parts of
the universe. Here, | show how one can assign probabilities to values of the “constants” measured by
a typical observer. This method does not suffer from ambiguities previously discussed in the literature.
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PACS numbers: 98.80.Cq

One of the striking aspects of the inflationary cosmol- An immediate objection to this approach is that we are
ogy [1] is that, generically, inflation never ends [2]. The ignorant about the origin of life, let alone intelligence, and
evolution of the inflaton fields is influenced by quantum therefore the number of civilizations cannot be calculated.
fluctuation, and as a result thermalization does not occurdowever, the approach can still be used to find the
simultaneously in different parts of the universe. The dy-probability distribution for parameters which do not affect
namics of¢ can be pictured as a random walk superim-the physical processes involved in the evolution of life.
posed on the classical slow roll and can be described by 8he cosmological constamt, the density paramete®,
Fokker-Planck equation [2—4]. On small scales, the flucand the amplitude of density fluctuatio@sare examples
tuations in the thermalization time give rise to a spectrunof such parameters. We shall assume that our figlds
of small density fluctuations, but on large scales they makéelong to this category. The probability for a civilization
the universe extremely inhomogeneous. In most of théo evolve on a suitable planet is then independeny of
models, one finds that, at any time, there are parts of thand instead of the number of civilizations we can use the
universe that are still inflating and that the total volumenumber of habitable planets or, as a rough approximation,
of the inflating regions is growing with time. This pic- the number of galaxies.
ture is often referred to as “stochastic inflation” or “eternal If this philosophy is adopted, the problem of calculating
inflation.” P(x) can be split into two parts. The probability for us to

Eternally inflating universes may contain thermalizedobserve certain values gf; is proportional to the volume
regions characterized by different values of the constantsf the regions wherey; take specified values and to the
of nature and of the cosmological parameters. Fodensity of galaxies in those regions. It is convenient to
example, the inflaton potentidl(¢) may have several consider comoving regions and measure their volume at
minima corresponding to different low-energy physics orthe time of thermalization. Then we can write
to different values of the cosmological constant. A more Ply) = () Ply) (1)
interesting possibility is that the “constants” are related to XD VX)X
some slowly varying fields and take values in a continuousiere,P.(y)d" x is proportional to the volume of thermal-
range. Examples are the effective gravitational constant ilzed regions whergy; take values in the intervalgy;,

a Brans-Dicke-type theory [5] and the density parameteand »v(y) is the number of galaxies that form per unit
Q) in some models of open inflation [6]. Just like the thermalized volume. The calculation of y) is a stan-
inflaton field ¢, the fieldsy; (j = 1,...,n) associated dard astrophysical problem, which is completely unrelated
with the constants are subject to quantum fluctuationso the calculation of the volume fact@.(y). Our focus
during inflation, and different regions of the universein this paper will be on the volume factor.

thermalize with different values of;. An intriguing The problem one encounters in using Eg. (1) is that in
question is whether or not we can predict which valuesan eternally inflating universe the thermalized volume is
of the constants we are most likely to observe. infinite, even for a region of a finite comoving size. One

Assume an eternally inflating universe which is inhab-can deal with this problem by simply introducing a time
ited by numerous civilizations that will measure different cutoff and including only regions that thermalized prior
values ofy;. (For simplicity, I do not distinguish between to some moment of time.. One finds, however, that
the fieldsy; and the associated constants.) We can definthe resulting probability distribution is extremely sensitive
the probability?(y)d” x for x; to be in the intervalg/y;  to the choice of the time variable [4]. This gauge
as being proportional to the number of civilizations whichdependence casts doubt on any conclusion reached using
will measurey; in that interval [7]. Assuming that we are this approach.

a typical civilization, we can expect to obserygnear the An alternative procedure, suggested in [10,11], is to in-
maximum of P (y) [8]. troduce ay-dependent cutoff at the time(y), when all
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but a small fractiore of the comoving volume destined to on any sufficiently large part ok.. Hence, there is no
thermalize withy; in the intervalsd y; has thermalized. need to deal with infinite hypersurfaces. The probability
The limit € — 0 is taken after calculating the probabili- distribution P.(y) can be determined by examining a
ties. It was shown in [10,11] that the resulting probability large finite piece oE...

distribution is essentially insensitive to the choice of time The above argument is an adaptation, to the case of
parametrization. However, the same problem appears istochastic inflation, of the argument given earlier by
a different guise. Linde and Mezhlumian [12] have foundGarriga, Tanaka, and Vilenkin [15] for models of open
a family of gauge-invariant cutoff procedures which in-inflation with a variable(2. In such models, each bubble
cludes thee procedure described above. This indicatescontains regions with all possible values @f, and we
that the invariance requirement alone is not sufficient targued that the probability distribution faf can be
define the probabilities uniquely. determined by considering a single bubble.

Another source of uncertainty is associated with large The argument can also be extended to fields with an
values of the inflaton potentiaV(¢). Usually, ¢ is infinite range of variation, provided that the probability
assumed to vary in an infinite range, with¢p) — o at  distributions of y; are concentrated within a finite range,
¢ — *oo. Higher values ofV(¢) correspond to higher with a negligible probability of findingy; very far away
rates of expansion, and thus the regions with Planckiafrom that range.
and super-Planckian values Bf¢) expand at the highest ~ Models with a finite range ofy; are not difficult
rate. The effect of these regions on the dynamics ofo construct. For exampley; could play the role of
stochastic inflation is therefore very important [13]. Sinceangular variables, with the inflaton fietl being the radial
the physics at Planckian energy density is completelywariable in the field space. Another attractive possibility
unknown, this results in a significant uncertainty [4,11]. is a o-model-type theory in which botly; and ¢ take

In the face of these difficulties, serious doubts havevalues on a compact manifold. In such models, the
been expressed that a meaningful definition of probabilipotential is necessarily bounded and problems with super-
ties in an eternally inflating universe is even, in principle,Planckian densities are easily avoided.
possible [4,9,12]. However, these pessimistic conclusions The gauge dependence of the probability distributions
may have been premature. In this paper, | am goin@btained using a constant-time cutoff can be understood
to argue that unambiguous probabilities can in fact beas follows. Suppose that the time coordinateas been
defined in a wide class of models of eternal inflation. chosen to be the proper time,= 7, and that regions

The factorP.(x) in Eq. (1) is the probability distribu- with 0 < y; < A;/2 take a shorter time to thermalize
tion of the fieldsy; on the thermalization hypersurface than regions witl\;/2 < y; < A;. Then, in the vicinity
2. which separates inflating and thermalized spacetimef the cutoff ¢ = ¢.), the surfaceX.(s.) will tend to
regions. It is a three-dimensional spacelike surface whicinclude regions withy; < A;/2 and exclude regions
plays the role of the big bang for the thermalized regionswith y; > A;/2. Suppose now that, despite the shorter
In the case of several discrete vac, consists of a roll-down time, regions withy; < A;/2 expand by a
number of disconnected pieces, each connected comptarger factor than regions witlg; > A,/2. [This can be
nent corresponding to thermalization into a single vacuunarranged with a suitable choice of the potentidt), y).]
[14]. Each connected piece &. has an infinite vol- Then, if we choose the scale factor to be the time
ume. (The situation here is somewhat similar to open incoordinate; = a, the surfacex.(z.) will tend to include
flation, where thermalized regions inside the bubbles haveegions with y; > A;/2 and exclude those witly; <
the form of infinite, open Robertson-Walker universes.)A;/2. Thus, the cutoff at a fixed time. is biased with
In order to determine the relative probability of differ- respect to different types of regions, depending on the
ent vacua, one has to compare the infinite volumes of thehoice of the time coordinate. One might think that the
corresponding components &f,, which is an inherently probability distribution ofy on a hypersurfac&... should
ambiguous task. This ambiguity is the source of the probbe insensitive to variation of the boundaryXf, provided
lems encountered in Refs. [4,10-12]. that the volume of2.. is sufficiently large. However, in

Now, the key observation is that the situation maythe case of a fixed-time cutoff,.. is a multicomponent
be greatly improved in the case of continuous fields hypersurface whose volume is dominated by small, newly
varying in a finite range) = x; = A;. In this case, each formed thermalized regions. It is therefore no surprise
connected part ok.. is still infinite, but now different that the resulting distributiorP.(y) is sensitive to the
parts are not characterized by different valuegypf On  choice of the time variable.
the contrary,y; run through all of the range of their values ~ Thus, what we need is an unbiasly selected portion
on each connected part. Since the inflationary dynamicsf X.. Such an unbiased cutoff is hard to implement
of the fieldsy; has a stochastic nature, the distributions ofin the Fokker-Planck formalism [2—4], which deals with
x; on different components af.. should be statistically probability distributions on equal-time surfaces. A more
equivalent. It is therefore sufficient to consider a singlepromising approach to the calculationBf(y) is to use a
connected component. Moreover, singghave a finite  numerical simulation of stochastic inflation. Simulations
range, they will run through all of their values many timesof this sort have been introduced in Ref. [16] and have
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been further developed in Ref. [4]. In the present papera higher probability of large backwards jumps. | expect
I will not attempt to pursue this numerical approach.this effect to be very small, but more work is needed to
Instead, | am going to argue that in a wide class of modelsbtain a quantitative estimate.
the probabilities can be calculated analytically. Large fluctuations back to the quantum regime may

Suppose the maximum of the potentiéa(¢, y) is at  occur even after thermalization [18]. Then each thermal-
¢ = 0. We shall first consider models in whidh(¢, y)  ization surface. may have an infinite number of other
is very symmetric near the top, so that it is essentiallthermalization surfaces in its future. However, Eq. (2)
independent of in the rangd = ¢ < ¢4, but may have can still be used to derive the probability distribution for
significant y dependence elsewhere. We shall assumg; on any of these surfaces.
that ¢; is in the slow-roll range,¢, < ¢1 < ¢«(x), As an illustrative example, let us consider a two-field
where ¢, is the boundary between the quantum diffusionmodel with a potential
and deterministic slow-roll regimes, and.(y) is the .
value corresponding to the end of inflation. Let us V($,x) = Vocos(ag)[l + Asin‘(ad)codBx)].
consider a constant- hypersurfaceS,: ¢ = ¢ with (4)
¢q < ¢y < . Since ¢o is in the slow-roll range, Here, |Al <1, a = 7/Ag, and the range of¢ is
this hypersurface is (almost everywhere) spacelike [10]y b = Ay, with the values¢ =0 and ¢ = A

; &1 ¢

Moreover, all values o in the past _ono pelong to the jentified. Similarly, 8 = 7/A, with y = 0 and y =
range0 = ¢ < ¢o where the potential is independent of \ “jigentified. We shall assume th@ < a =< 1; that
x. Therefore, we expect t_he distribution gf; on %o is, Ay = Ay = 1. (I use Planck units throughout the
to be flat, Ty(x;) = const, with all values of; equally  naner) The top of the potential is @t = 0, and the true

probable [17]. vacuum is atp = A, /2. The field y i i

. . . . x is massless in the
The hypersurfac&.. is a spacelike hypersurface in the true vacuum, while ?he mass dfis y dependent,
future of 3. The probability distribution foy; on 2. is

related to that or¥, by my(x) = 2Voa’[1 + AcodBx)]. 5)

P.(x) < B(x?) exd3N (x?)1detox/ax).  (2) The boundary ¢, between the quantum diffusion

Here, XJ('O)(X) are the values orE, that evolve, along and slow-roll 2regimes is determined by the corlldzition

the slow-roll trajectory, to the valueg; on 3., N(x®) |0H/op| ~ H", where H(¢,x)=[87V(¢,x)/3] /

is the number of inflationane-folding along that tra- 1S the inflationary expanl,j,lzon rate. We shall assume that

jectory, ex{3N) is the volume expansion factor, and Vo < a?; then ¢, ~ V;'"/a? < A4. Since a <1,

det(a)(“))/a)() is the Jacobian transforming from variablesthfé problem of super-Planckian energies does not arise in

¥\ to xj. Now, Py(x®) = const, and the functions this case. , o

x2(x) and N(x?) can be straightforwardly determined The potential (4) is essentially independent yffor

from a given potentialV (¢, x). Hence, Eq. (2) solves ¢ <<.A¢’ but the _number of_e—foldlngs N and the

the problem of finding the probability distribution fgr; ~ amPlitude of density fluctuationsbp/p are both x

on 3. This equation is significantly simplified in models dependent. For <1, A < 1, we find

wherey; do not change much during the slow roll, so that &-
NG = —4m [

2w A
=~ + —
Xj(-o) ~ xj. Insuch models, 6, 0H/0¢ ¢ = No a? cosBx).

P.(x) = exd3N(x)]. 3) (6)
E_quation (2) disrega_rds quantum quctuations@fan_d and [1]

¢ in the slow-roll regime at$p = ¢,. For x; this is
justified, provided that the average cumulative fluctuation 3p/p(x) = 200my(x). (7)
is small compared ta\;. This condition is not difficult
to satisfy. Small quantum fluctuations a@f are not
correlated with y; and their effect vanishes to linear
order iné¢. However, quadratic and higher-order terms
will give some corrections to Eq. (2). One may also__~ . .
be V\g/]orried about the effect of ?/esy)large fluctt?/ationsva”at'ons of{y during the relevant part ofzthe slow roll
which bring ¢ back to the quantum diffusion regime [4]. &€ respectl}ltgly,ﬁ)(c/AX ~ (A/4m) (B/a)” <1 and _
Although extremely rare, such fluctuations are likely todxq/Ay ~ Vo'"B/a < 1, and can be neglected. This
be present for a sufficiently large piece Bf. If the Justifies they = const approximation in Eq. (6) and the
probability of large fluctuations were independentygf ~ use of Eq. (3) for the probability distribution,
then small patches af, which have such fluctuations in P a2 8
their future could be left out, without any effect on the +(x) o exl6mAa " codfx)]- ®)
distribution (2). If there is somg dependence, its effect The corresponding distribution fa8p/p can easily be
will be to reduce?.(y) for those values of; which give  written using Egs. (5) and (7).

Here, Ny is the number ofe-foldings (from a specified
reference point¢y) in the y-independent casel(=
0), and | have used dia¢.) = 1, which is valid for
a < 1(sinceg, ~ 5~ — %). The classical and quantum
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