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Random Walks and Quantum Gravity in Two Dimensions
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We consider. planar random walks (or Brownian motions) of large lengtktarting at neighboring
points, and the probability?; (r) ~ =% that their paths do not intersect. By a 2D quantum gravity
method, i.e., a nonlinear map to an exact solution on a random surface, | establish our former conjecture
that ; = ﬁ(4L2 — 1). This also applies to the half plane whefg = %(1 + 2L), as well as to
nonintersection exponents of unions of paths. Mandelbrot's conjecture for the Hausdorff dimension

Dy = 4/3 of the frontier of a Brownian path follows frork,,. [S0031-9007(98)07852-1]
PACS numbers: 05.40.+j, 02.50.—r, 04.60.Kz, 05.70.Jk

Random walks (RW) and their continuum counterpart, We have conjectured from conformal invariance argu-
Brownian motions (BM), describe perhaps the simplesiments and numerical simulations that in 2D [7]
stochastic process pervading statistical physics, probabil- (c=0) I 5
ity theory, and even biology. However, quantum me- {L=ho = @L —1), (1)
chanics and, more !mportantly, interacting quantum fleldand for the half plane
theory can be described very generally in terms of the sta-
tistics of.Brownlan path_s and of their intersections [_1]. 20 = hsfz_Lolz = %L(l +2L), (2)
This equivalence, used in polymer theory [1] and in rig-
orous studies of second-order phase transitions and fieWherehﬁf}; denotes the Kaconformal weight
theories [2—4], suggests that the geometrical properties of )
random walks are inherent to the quantum world. In proba- he = [om + Dp — mq]” — 1 3)
bility theory also, nontrivial properties of Brownian paths P dm(m + 1) '
have led to intriguing conjectures. Mandelbrot [5] sug-of a minimal conformal field theory of central charge=
gested that in two dimensions, the hull or external fron-1 — 6/m(m + 1), m € N* [9]. For Brownian motions
tier of a planar Brownian path has a Hausdorff dimensiont = 0, and m = 2. For L = 1, the intriguing /; =
Dy = 4/3, identical to that of a planar polymer. Fami- 1/8 is actually the disconnection exponent governing
lies of universal critical exponents are associated with inthe probability that the origin of a single walk remains
tersection properties of sets of random walks [6—8]. Weaccessible from infinity without crossing the walk.
show here that in two dimensions these exponents can Many two-dimensional statistical systems like the Ising
be derived from conformal invariance methods involvingmodel, O(n), and Potts models have been described by
quantum gravity. This establishes former conjectures [7]height models and Coulomb gas techniques [10], yielding
including the Brownian frontier conjecture above, andexact values of critical exponents, in agreement with the
hints at deep connections between two apparently remotnformal invariance classification [9,11]. However, the
fields, probability theory and string field theory. conjectures (1) and (2), even if numerically confirmed

Consider a numbet of independent random walks (or [12], and bearing on perhaps the most natural conformally
Brownian pathsB”), I = 1,...,L in Z¢ (or RY), starting  invariant system, seemed to stay out of reach.
at fixed neighboring points, and the probabili®y () = This Letter provides the main lines of a derivation
P{U .~ (BY[0,1] N BU[0,1]) = @&} that the intersec- of these exponents. The idea is to put the random
tion of their paths up to time is empty [3,6]. At large walks on a random lattice with planar geometry, or, in
times and ford < 4, one expects this probability to de- other words, in the presence of two-dimensiomaantum
cay asP;(t) ~ t~%, where{; (d) is auniversalexponent gravity [13,14]. There, the conformal dimensions of
depending only o andd. Above the upper critical di- nonintersecting walks can be obtained from an exact
mensiornd = 4, RW'’s almost surely do not intersect. The solution. We then use the nonlinear map which exists
existence of exponents in d = 2, 3 and their universal- between conformal dimensions on a random surface
ity have been proven [8], and they can be calculated neand in the plane [14], to obtain results (1) and (2).
d = 4 by renormalization theory [6]. Itwo dimensions Generalizations of these exponents are obtained, from
(2D), a generalization was introduced [7] fbowalks con-  which the Brownian frontier dimensiofy3 follows.
strained to stay in a half plane, and starting at neighboring Random surfaces, in relation to string theory [15], have
points on the boundary, with a nonintersection probabilitypeen the subject and source of important developments in
P (1) of their paths governed by a “surface” critical expo- statistical methanics in two dimensions. In particular, the
nent/; such thatP, () ~ ¢t 4. discretization of string models led to the consideration of
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abstract random lattices, the connectivity fluctuations of as a function ofA, 8 [20]. The support of the spectral
which represent those of the metric, i.e., pure 2D quantundensity[a, b] depends orB.
gravity [16]. One can then put any 2D statistical model Now, imagine putting a set of. random walksB",
(like Ising model [17], polymers [18]) on the random [ = 1,...,L on therandom graphG with the special
planar graphG, thereby obtaining a new critical behavior, constraint that they start at the same vertex G, end
corresponding to the confluence of the criticality of theat the same vertex € G, and have no intersections in
random surfaces with the critical point of the original between. Consider the sBt'[i, j] of the points visited
model. The critical system “dressed by gravity” hason the random graph by a given wai) between; and
a larger conformal symmetry which allowed Knizhnik, j, and for each sit& € BY[i, j] the first entry; i.e., the
Polyakov, and Zamolodchikov (KPZ) [14] to derive the edge of G along which the walk(/) reachedk for the
(amazing) relation between the conformal dimensiafs first time. The union of these edges form a tm}%)
of scali_ng operators in the plane and those in presencghanning all the sites &8)[i, j], called the forward tree.
of gravity, A: A® = A1 — (1 = A)/«], wherex is a  An important property is that the measure on all the trees
parameter related to the central charge of the statlstlcgpanning a given set of points visited by a RWiisform
model in the planec = 1 — 6(1 — «)?/«; foraminimal  [21]. This means that we can also represent the path of a
model of the series (3 =1 + 1/m, andAg),)q = th,’q. RW by its spanning tree taken with uniform probability.
Let us now consider as a statistical modeidom walks  Furthermore, the nonintersection property of the walks is
on arandom graph We know [7] that their central charge by definition equivalent to that of their spanning trees.
c = 0, whencem = 2, k = 3/2. Thus the KPZ relation Thus we are led to introduce thetree partition function

becomes on the random lattice
0 _ 1
A 3A(1 + 24), (4) Zu(B.2) = Z 1 e BIGI Z Z ZlTl, 9)
which bears a striking resemblance to our conjecture (2). planar G S(G) Lj€G 40
Consider the set of planar random grapfis built =1t
up here with, e.g., trivalent vertices and with a fixed ) ,
topology, that of a spher) or a disk(D). The partiton Where{7’ .l =1,....L} is a set ofL trees, all con-
function is defined as stralned_ to havg sitesand j as _end points, and Wl_thout
mutual intersections; a fugacityis in addition associated
Z.(8) = Z o o~ BIG] 5) with the total numbetT| = |UL, T")] of vertices of the
X = S(G) ’ trees. In principle, the trees spanning the RW paths can

h d he Eul h istic = 2(S have divalent or trivalent vertices a®, but this is imma-
where y denotes the Euler characteristig = 2(3), terial to the critical behavior, as is the choice of purely

I(D); |G| is the number of vertices ofi, S(G) its  qivalent graphsG, so we restrict ourselves here to triva-
symmetry factor. The partition sum converges for alljg+ trees

values of the parameteB larger than some criticab..

+ : ) The partition function (9) has been calculated exactly
AL B — jB., asingularity appears due to the presence Ofy 5 previous work [18]. The twofold grand canoni-
infinite graphs in (5)

cal partition function is calculated first by summing
Z.(B) ~ (B — Bo)* Y= (6) over the abstract tree configurations, and then gluing
X c ’ . .
_ _ o patches of random lattice in-between these trees. A
where yq: (x) is the string susceptibility exponent. For tree generating function is defined &) = 3,,—; x"T,,
pure gravity as described in (5), the embedding dimensiohere 7, = 1 and T, is the number ofrooted planar

d =0 coincides with the central charge =0, and trees withn external vertices (excluding the root). It
3 . .. .
¥su(¥) =2 — x [19]. The restricted partition function reads [18]

of a planar random graph with the topology of a disk and

a fixed numbenr of external vertices reads T(x) = 5(1 =1 —4x). (10)
G.(B) = Z e~ BIGl (7)  The result for (9) is then given by a multiple integral

n—leg planar G

b L L
and can be calculated through the lafgelimit of a Z.(B.z) :f l—[d)‘lp()‘l) l—[ T (2, zAie1), (11)
randomN X N matrix integral [20]. It has an integral ¢ = =1
representation with the cyclic conditionA,+; = A;. The geometrical
b interpretation is quite clear (Fig. 1). Each patth=
G.(B) =f dAp(A)A", (8) 1,...,L of random surface between treg§'~!, 1"
a contributes as a factor a spectral densityA;) as in
where p(A) is the spectral eigenvalue density of theEq. (8), while the backbone of the boundary trg€
random matrix, for which the explicit expression is known contributes an inverse “propagatdf’(zA;, zA;+1), Which
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performed by usindinite size scalingFSS) [18]. One
balances the two terms &f; above against each other so
thatdz ~ (68)"/%; i.e.,|T| ~ |G|'/2, whence

Zi(B,2) ~ (B — B (15)

Zr (11) represents a random surface with two punctures
where two conformal operators of dimensiaxy, are
located (here two vertices df nonintersecting RW’s),
and in a graphical way scales as

_ 92 _
Zy ~ Z[E3]|G| e = G—WZXZZ(B)lGl 28 (16)
where the random surface partition functi@dp is given

FIG. 1. Random trees on a random surface. The shaded arepy (6). Equation (16) immediately gives
represent portions of random latticés with a disk topology

[generating function (7,8)]. = 2 trees connect the end points, 2A; — yeuly =2) =1L, a7
each branch giving a generating functifn(10). Two possible
topologies are represented: for the disk, the dashed linewhereyg,(y = 2) = —1/2.

represent the boundary, whereas they should be discarded for For the boundary partition functiod; (14) a similar
the sphere, the upper and lower grey patches being 'dent'f'ed'analysis can be performed near the triple critical point
[Be,ze,Zc = 1/b(B.)], where the boundary length also
couples the adjacent eigenvalugs A;+1: diverges. To extract the conformal dimensiongriple
T(,y) =[1 - Tk) — T(y)]". (12) scaling limit requires the further equivalengég — z ~

. . 8z ~ (88)'/2, as obvious from homogeneity in (14), i.e.,
We generalize this to theoundarycase wheres now 0G| ~ |G|/2 ~ |T|. The boundary partition function

has the topology of a disk and where the trees connect twg, o responds to two boundary operators of dimensions

sites/ andj now on the boundaryG: A, integrated ovemG, on a random surface with the

Z1(B,2,3) = Z ¢ BIGI319G] Z Z Tl (13) topology of a disk, or ir? graphical terms: -
disk G i,jEG T/{/l_) ZL — Z(O) |6G|72A" — ZX:I(,B) |aG|272AL' (18)

where 7 is the fugacity associated with the boundary’sWe can use the punctured disk partition function
length. The integral representation is b
) b L L 2(E) = f dApW) (1 — 2072,
Z1(B,z,2) = f [Tdrp) [T A1 zA40) @
a 1=l =1 to divide (14) by the above; comparing to (11), we get
X (1=2x)7'1 = 200)”" (14)

L
with two extra propagators describing the two boundary Z1/Z(<2) ~ <f d/\P) Th~ 7~ (2Zoh  (19)

segments. here th val Hold . ¢ scal
The critical behavior of the double grand canonical par*VN€re the equivalences hold true in terms of scaling

tition function Z, (8, z) (11) associated with nonintersect- 2ehavior. Com%\rm_g Egs. (16) and (19), and using the
ing RW's on a random lattice is then obtained by taking™SS [9G1 ~ IGI'/* gives the general identity between
the double scaling limiB — B, (infinite random surface) surfaces and bulk exponents:

and z — z. (infinite trees on RW's). The latter is ob- AL =2A; — yauely =2) = L. (20)
tained for the smallest where 7 (zA;,zA;+1) (12) van- -

ishes. This occurs near the upper edge of the suppofiPplying the quadratic KPZ relation (4) th, andA, =

of p(A), i.e., whenr — b~; thus fordz.b(B.) = 1 [see L of Eg. (20) yields at once the values in the pldRg
(10)]. Hereafter we not@ — 8. = 88, andz. — z = A = £ [Eq. (1)], andA” = 27, [Eq. (2)], QED.

6z. For A — b~ and for 638 — 0, one knows thatp Equation (20) gives the key to many generalizations.
has the singular behavior (up to constant coefficients) [20Indeed the product of propagator§’ there can be

p ~ (8B)2(b — M)Y2 + (b — A)*2. By homogene- replaced by a produdt]; 7, corresponding to different
ity, each integration of density yields a singular power geometrical objects, as obvious from the construction (see
behavior [dAp ~ (88)'/2(6z)*? + (6z)*2, while each  Fig. 1). Consider then the generalizations of exponents
propagator?_ (10), (12) brings in a square root singularity ¢ (ni,...,n.) = AQ{n;}, as well as2f(ni,...,n.) =

T ~ (82)~ /2. We therefore arrive at a formal power be- A©{n;}, describingZ mutually avoiding buncheg =
haviorZ; ~ [(68)/28z + (8z)*]-. The analysis of this 1,...,L, each made ofy; walks transparentto each
singular behavior in terms of conformal dimensions is besbther [22]. In the presence of gravity, each bunch will
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contribute a certain inverse propagat@;, and yield W. Werner's talk at the Institut Henri Poincaré [23]
instead of (20) provided a motivation for reanalyzing this problem.

Z{n} ~ Zz(g) ~ < ] d/\p)Lllen,, (21)

to be identified with 0G| =22}, Thefactorizationprop-
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