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We considerL planar random walks (or Brownian motions) of large lengtht, starting at neighboring
points, and the probabilityPLstd , t2zL that their paths do not intersect. By a 2D quantum grav
method, i.e., a nonlinear map to an exact solution on a random surface, I establish our former con
that zL ­

1
24 s4L2 2 1d. This also applies to the half plane wherez̃L ­

L
3 s1 1 2Ld, as well as to

nonintersection exponents of unions of paths. Mandelbrot’s conjecture for the Hausdorff dime
DH ­ 4y3 of the frontier of a Brownian path follows fromz3y2. [S0031-9007(98)07852-1]

PACS numbers: 05.40.+ j, 02.50.–r, 04.60.Kz, 05.70.Jk
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Random walks (RW) and their continuum counterpa
Brownian motions (BM), describe perhaps the simpl
stochastic process pervading statistical physics, prob
ity theory, and even biology. However, quantum m
chanics and, more importantly, interacting quantum fi
theory can be described very generally in terms of the
tistics of Brownian paths and of their intersections [
This equivalence, used in polymer theory [1] and in r
orous studies of second-order phase transitions and
theories [2–4], suggests that the geometrical propertie
random walks are inherent to the quantum world. In pro
bility theory also, nontrivial properties of Brownian pat
have led to intriguing conjectures. Mandelbrot [5] su
gested that in two dimensions, the hull or external fro
tier of a planar Brownian path has a Hausdorff dimens
DH ­ 4y3, identical to that of a planar polymer. Fam
lies of universal critical exponents are associated with
tersection properties of sets of random walks [6–8].
show here that in two dimensions these exponents
be derived from conformal invariance methods involvi
quantum gravity. This establishes former conjectures
including the Brownian frontier conjecture above, a
hints at deep connections between two apparently rem
fields, probability theory and string field theory.

Consider a numberL of independent random walks (o
Brownian paths)Bsld, l ­ 1, . . . , L in Zd (or Rd), starting
at fixed neighboring points, and the probabilityPLstd ­
Ph<L

l,l0­1sBsldf0, tg > Bsl0df0, tgd ­ [j that the intersec
tion of their paths up to timet is empty [3,6]. At large
times and ford , 4, one expects this probability to de
cay asPLstd , t2zL , wherezLsdd is auniversalexponent
depending only onL andd. Above the upper critical di-
mensiond ­ 4, RW’s almost surely do not intersect. Th
existence of exponentszL in d ­ 2, 3 and their universal
ity have been proven [8], and they can be calculated n
d ­ 4 by renormalization theory [6]. Intwo dimensions
(2D), a generalization was introduced [7] forL walks con-
strained to stay in a half plane, and starting at neighbo
points on the boundary, with a nonintersection probabi
P̃Lstd of their paths governed by a “surface” critical exp
nentz̃L such thatP̃Lstd , t2z̃L .
0031-9007y98y81(25)y5489(4)$15.00
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We have conjectured from conformal invariance arg
ments and numerical simulations that in 2D [7]

zL ­ h
sc­0d
0,L ­

1
24 s4L2 2 1d , (1)

and for the half plane

2z̃L ­ h
sc­0d
1,2L12 ­

1
3 Ls1 1 2Ld , (2)

whereh
scd
p,q denotes the Kǎc conformal weight

hscd
p,q ­

fsm 1 1dp 2 mqg2 2 1
4msm 1 1d

, (3)

of a minimal conformal field theory of central chargec ­
1 2 6ymsm 1 1d, m [ Np [9]. For Brownian motions
c ­ 0, and m ­ 2. For L ­ 1, the intriguing z1 ­
1y8 is actually the disconnection exponent governi
the probability that the origin of a single walk remain
accessible from infinity without crossing the walk.

Many two-dimensional statistical systems like the Isin
model, Osnd, and Potts models have been described
height models and Coulomb gas techniques [10], yield
exact values of critical exponents, in agreement with t
conformal invariance classification [9,11]. However, th
conjectures (1) and (2), even if numerically confirme
[12], and bearing on perhaps the most natural conforma
invariant system, seemed to stay out of reach.

This Letter provides the main lines of a derivatio
of these exponents. The idea is to put the rand
walks on a random lattice with planar geometry, or,
other words, in the presence of two-dimensionalquantum
gravity [13,14]. There, the conformal dimensions o
nonintersecting walks can be obtained from an ex
solution. We then use the nonlinear map which exi
between conformal dimensions on a random surfa
and in the plane [14], to obtain results (1) and (2
Generalizations of these exponents are obtained, fr
which the Brownian frontier dimension4y3 follows.

Random surfaces, in relation to string theory [15], ha
been the subject and source of important development
statistical methanics in two dimensions. In particular, t
discretization of string models led to the consideration
© 1998 The American Physical Society 5489
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abstract random latticesG, the connectivity fluctuations o
which represent those of the metric, i.e., pure 2D quan
gravity [16]. One can then put any 2D statistical mod
(like Ising model [17], polymers [18]) on the random
planar graphG, thereby obtaining a new critical behavio
corresponding to the confluence of the criticality of t
random surfaceG with the critical point of the original
model. The critical system “dressed by gravity” h
a larger conformal symmetry which allowed Knizhni
Polyakov, and Zamolodchikov (KPZ) [14] to derive th
(amazing) relation between the conformal dimensionsDs0d

of scaling operators in the plane and those in prese
of gravity, D: Ds0d ­ Df1 2 s1 2 Ddykg, wherek is a
parameter related to the central charge of the statis
model in the plane:c ­ 1 2 6s1 2 kd2yk; for a minimal
model of the series (3),k ­ 1 1 1ym, andD

s0d
p,q ; h

scd
p,q.

Let us now consider as a statistical modelrandom walks
on arandom graph. We know [7] that their central charg
c ­ 0, whencem ­ 2, k ­ 3y2. Thus the KPZ relation
becomes

Ds0d ­
1
3 Ds1 1 2Dd , (4)

which bears a striking resemblance to our conjecture (
Consider the set of planar random graphsG, built

up here with, e.g., trivalent vertices and with a fix
topology, that of a spheresS d or a disksD d. The partition
function is defined as

Zx sbd ­
X
G

1
SsGd

e2bjGj, (5)

where x denotes the Euler characteristicx ­ 2sS d,
1sD d; jGj is the number of vertices ofG, SsGd its
symmetry factor. The partition sum converges for
values of the parameterb larger than some criticalbc.
At b ! b1

c , a singularity appears due to the presence
infinite graphs in (5)

Zx sbd , sb 2 bcd22gstr sxd, (6)

where gstr sxd is the string susceptibility exponent. Fo
pure gravity as described in (5), the embedding dimens
d ­ 0 coincides with the central chargec ­ 0, and
gstr sxd ­ 2 2

5
4 x [19]. The restricted partition function

of a planar random graph with the topology of a disk a
a fixed numbern of external vertices reads

Gnsbd ­
X

n2leg planar G

e2bjGj, (7)

and can be calculated through the large-N limit of a
randomN 3 N matrix integral [20]. It has an integra
representation

Gnsbd ­
Z b

a
dlrsldln, (8)

where rsld is the spectral eigenvalue density of th
random matrix, for which the explicit expression is know
5490
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as a function ofl, b [20]. The support of the spectra
densityfa, bg depends onb.

Now, imagine putting a set ofL random walksBsld,
l ­ 1, . . . , L on the random graphG with the special
constraint that they start at the same vertexi [ G, end
at the same vertexj [ G, and have no intersections i
between. Consider the setBsldfi, jg of the points visited
on the random graph by a given walkBsld betweeni and
j, and for each sitek [ Bsldfi, jg the first entry; i.e., the
edge ofG along which the walksld reachedk for the
first time. The union of these edges form a treeT

sld
i,j

spanning all the sites ofBsldfi, jg, called the forward tree
An important property is that the measure on all the tr
spanning a given set of points visited by a RW isuniform
[21]. This means that we can also represent the path
RW by its spanning tree taken with uniform probabilit
Furthermore, the nonintersection property of the walks
by definition equivalent to that of their spanning tree
Thus we are led to introduce theL-tree partition function
on the random lattice

ZLsb, zd ­
X

planar G

1
SsGd

e2bjGj
X

i,j[G

X
T

sld
ij

l­1,...,L

zjT j, (9)

where hT sld
ij , l ­ 1, . . . , Lj is a set ofL trees, all con-

strained to have sitesi and j as end points, and withou
mutual intersections; a fugacityz is in addition associated
with the total numberjT j ­ j<L

l­1 T sldj of vertices of the
trees. In principle, the trees spanning the RW paths
have divalent or trivalent vertices onG, but this is imma-
terial to the critical behavior, as is the choice of pure
trivalent graphsG, so we restrict ourselves here to triv
lent trees.

The partition function (9) has been calculated exac
in a previous work [18]. The twofold grand canon
cal partition function is calculated first by summin
over the abstract tree configurations, and then glu
patches of random lattice in-between these trees.
tree generating function is defined asT sxd ­

P
n$1 xnTn,

where T1 ; 1 and Tn is the number ofrooted planar
trees with n external vertices (excluding the root).
reads [18]

T sxd ­ 1
2 s1 2

p
1 2 4xd . (10)

The result for (9) is then given by a multiple integral

ZLsb, zd ­
Z b

a

LY
l­1

dllrslld
LY

l­1

T szll , zll11d , (11)

with the cyclic conditionlL11 ; l1. The geometrical
interpretation is quite clear (Fig. 1). Each patchl ­
1, . . . , L of random surface between treesT sl21d, T sld

contributes as a factor a spectral densityrslld as in
Eq. (8), while the backbone of the boundary treeT sld

contributes an inverse “propagator”T szll , zll11d, which
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FIG. 1. Random trees on a random surface. The shaded
represent portions of random latticesG with a disk topology
[generating function (7,8)];L ­ 2 trees connect the end point
each branch giving a generating functionT (10). Two possible
topologies are represented: for the disk, the dashed
represent the boundary, whereas they should be discarde
the sphere, the upper and lower grey patches being identifi

couples the adjacent eigenvaluesll, ll11:

T sx, yd ; f1 2 T sxd 2 T s ydg21. (12)

We generalize this to theboundarycase whereG now
has the topology of a disk and where the trees connect
sitesi andj now on the boundary≠G:

Z̃Lsb, z, z̃d ­
X

disk G

e2bjGjz̃j≠Gj
X

i,j[G

X
T

sld
ij

l­1,...,L

zjT j, (13)

where z̃ is the fugacity associated with the boundar
length. The integral representation is

Z̃Lsb, z, z̃d ­
Z b

a

L11Y
l­1

dllrslld
LY

l­1

T szll , zll11d

3 s1 2 z̃l1d21s1 2 z̃lL11d21 (14)

with two extra propagators describing the two bound
segments.

The critical behavior of the double grand canonical p
tition functionZLsb, zd (11) associated with nonintersec
ing RW’s on a random lattice is then obtained by tak
the double scaling limitb ! bc (infinite random surface
and z ! zc (infinite trees on RW’s). The latter is ob
tained for the smallestz whereT szll , zll11d (12) van-
ishes. This occurs near the upper edge of the sup
of rsld, i.e., whenl ! b2; thus for4zcbsbcd ­ 1 [see
(10)]. Hereafter we noteb 2 bc ; db, andzc 2 z ;
dz. For l ! b2 and for db ! 0, one knows thatr
has the singular behavior (up to constant coefficients)
r , sdbd1y2sb 2 ld1y2 1 sb 2 ld3y2. By homogene-
ity, each integration of densityr yields a singular powe
behavior

R
dlr , sdbd1y2sdzd3y2 1 sdzd5y2, while each

propagatorT (10), (12) brings in a square root singulari
T , sdzd21y2. We therefore arrive at a formal power b
haviorZL , fsdbd1y2dz 1 sdzd2gL. The analysis of this
singular behavior in terms of conformal dimensions is b
as
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performed by usingfinite size scaling(FSS) [18]. One
balances the two terms ofZL above against each other s
thatdz , sdbd1y2; i.e., jT j , jGj1y2, whence

ZLsb, zd , sb 2 bcdL. (15)

ZL (11) represents a random surface with two punctu
where two conformal operators of dimensionDL are
located (here two vertices ofL nonintersecting RW’s),
and in a graphical way scales as

ZL , Zfºg jGj22DL ­
≠2

≠b2 Zx­2sbd jGj22DL , (16)

where the random surface partition functionZx is given
by (6). Equation (16) immediately gives

2DL 2 gstr sx ­ 2d ­ L , (17)

wheregstrsx ­ 2d ­ 21y2.
For the boundary partition functioñZL (14) a similar

analysis can be performed near the triple critical po
fbc, zc, z̃c ­ 1ybsbcdg, where the boundary length als
diverges. To extract the conformal dimensions, atriple
scaling limit requires the further equivalencez̃c 2 z̃ ,
dz , sdbd1y2, as obvious from homogeneity in (14), i.e
j≠Gj , jGj1y2 , jT j. The boundary partition function
Z̃L corresponds to two boundary operators of dimensio
D̃L, integrated over≠G, on a random surface with the
topology of a disk, or in graphical terms:

Z̃L , Zsßd j≠Gj22D̃L , Zx­1sbd j≠Gj222D̃L . (18)

We can use the punctured disk partition function

Zsßd ­
Z b

a
dlrsld s1 2 z̃ld22,

to divide (14) by the above; comparing to (11), we get

Z̃LyZsßd ,
µZ

dlr

∂L

T L , ZL , sZ1dL, (19)

where the equivalences hold true in terms of scali
behavior. Comparing Eqs. (16) and (19), and using
FSS j≠Gj , jGj1y2 gives the general identity betwee
surfaces and bulk exponents:

D̃L ­ 2DL 2 gstrsx ­ 2d ­ L . (20)

Applying the quadratic KPZ relation (4) toDL andD̃L ­
L of Eq. (20) yields at once the values in the planeR2,
D

s0d
L ; zL [Eq. (1)], andD̃

s0d
L ; 2z̃L [Eq. (2)], QED.

Equation (20) gives the key to many generalization
Indeed the product of propagatorsT L there can be
replaced by a product

Q
l Tl corresponding to different

geometrical objects, as obvious from the construction (
Fig. 1). Consider then the generalizations of expone
z sn1, . . . , nLd ­ Ds0dhnlj, as well as 2z̃ sn1, . . . , nLd ­
D̃s0dhnlj, describing L mutually avoiding bunchesl ­
1, . . . , L, each made ofnl walks transparent to each
other [22]. In the presence of gravity, each bunch w
5491
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contribute a certain inverse propagatorTnl and yield
instead of (20)

Zhnlj ,
Z̃hnlj

Zsßd
,

µZ
dlr

∂L LY
l­1

Tnl , (21)

to be identified withj≠Gj22D̃hnlj. The factorizationprop-
erty (21) immediately implies theadditivity of boundary
conformal dimensions in the presence of gravity

D̃hn1, . . . , nLj ­
LX

l­1

D̃snld , (22)

where D̃snd is now the boundary dimension of asingle
bunch ofn transparent walks on the random surface. W
know D̃snd exactly since it corresponds in the standa
plane to a trivial surface conformal dimensionD̃s0dsnd ­
n. It thus suffices toinvert (4) to get

D̃snd ­ 1
4 s

p
24n 1 1 2 1d . (23)

Because of the identification in (21) of the bulk partitio
function with the ratio of boundary ones, we also have

2Dhn1, . . . , nLj 1
1
2 ­ D̃hn1, . . . , nLj .

In the plane, using once again the KPZ relation (4)
Dhnlj andD̃hnlj gives the general result

z sn1, . . . , nLd ­ 1
24 s4x2 2 1d,

2z̃ sn1, . . . , nLd ­ 1
3 xs1 1 2xd

x ­
LX

l­1

D̃snld . (24)

Recently, Lawler and Werner [23] proved by pure
probabilistic means that there exist two (unknown) fun
tions F and U such thatz hnlj ­ Fsxd and 2z̃ hnlj ­
Usxd, where x ­

P
l U21snld, and U21 denotes the in-

verse function ofU. Quantum gravity methods here e
plain this structure in terms of linear equation (22), a
give the explicit functionsFsxd andUsxd of (24), together
with U21snd ; D̃snd in (23).

Let us finish by remarking that (24) yields forz s2, 1sLdd
describing a two-sided walk andL one-sided walks,
all mutually nonintersecting,z s2, 1sLdd ­ zL13y2. For
L ­ 1, z s2, 1d ­ z5y2 ­ 1 gives correctly the escap
probability of a RW from another RW. ForL ­ 0,
z s2, 1s0dd ­ z3y2 ­ 1y3 is the two-sided disconnectio
exponent. It is related to the Hausdorff dimension
the frontier byD ­ 2 2 2z [24]. Thus we deriveDH ­
4y3, i.e., Mandelbrot’s conjecture.

Obviously, the robust quantum geometric structu
explicited here allows many generalizations.
5492
W. Werner’s talk at the Institut Henri Poincaré [23
provided a motivation for reanalyzing this problem.
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