VOLUME 81, NUMBER 24 PHYSICAL REVIEW LETTERS 14 BCeEMBER 1998

Natural Gradient Descent for On-Line Learning
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Natural gradient descent is an on-line variable-metric optimization algorithm which utilizes an
underlying Riemannian parameter space. We analyze the dynamics of natural gradient descent beyond
the asymptotic regime by employing an exact statistical mechanics description of learning in two-layer
feed-forward neural networks. For a realizable learning scenario we find significant improvements over
standard gradient descent for both the transient and asymptotic stages of learning, with a slower power
law increase in learning time as task complexity grows. [S0031-9007(98)07950-2]

PACS numbers: 87.10.+e, 02.50.-r, 05.20.—y

Optimization of a parametrized probability distribution then, when the input dimensiaN is large compared to
to approximate some unknown underlying distribution in-the number of hidden unit&, inversion of the Fisher in-
stanced by a set of examples is an important interdisciformation matrix for a two-layer feed-forward network re-
plinary problem which recurs in various settings. On-linequires onlyO(N?) operations, providing an efficient and
optimization, which is carried out by modifying the pa- practical algorithm.
rameters iteratively in response to a stream of examples, In this Letter we investigate the properties of NGD
is of particular importance as it is arguably the methodbeyond the asymptotic regime using a nonlinear model
of choice for large systems and nonstationary tasks. One&hich may be regarded as a probabilistic two-layer feed-
of the most popular on-line optimization methods is sto-forward neural network. Such models are of significant
chastic gradient descent on some cost function. Over thienportance given their ability to approximate any con-
years, many attempts have been made to devise practidatuous input-output mapping to an arbitrary degree of
alternative methods which will provide an improved per-accuracy [4]. We quantify the benefits of NGD using a
formance over the entire learning session (i.e., not onlyecent statistical mechanics framework which allows an
asymptotically). exact solution to the dynamics as— oo for fixed K [5].

Natural gradient descent (NGD) was recently proposedin particular, we consider a realizable learning scenario
by Amari as a principled alternative to standard on-lineand apply a site-symmetric ansatz which simplifies the
gradient descent (GD) [1]. When learning to emulate adynamical equations and allows us to obtain results for
stochastic rule with some probabilistic model, e.g., a feedarbitrary task complexity and nonlinearity. For this spe-
forward neural network, NGD has the desirable propertiegial case we show that trapping time in an unstable fixed
of asymptotic optimality, given a sufficiently rich model point which often dominates the training time is signifi-
which is differentiable with respect to its parameters, anctantly reduced by using NGD and exhibits a slower power
invariance to reparametrization of our model distribution.law increase as task complexity grows. We also find that
These properties are achieved by viewing the parametersymptotic performance is greatly improved, with the gen-
space of the model as a Riemannian space in which lceralization performance of NGD equaling the universal
cal distance is defined by the Kullback-Leibler divergenceasymptotics for batch learning [6].

[2,3]. The Fisher information matrix provides the appro- We consider a mapping from an input spage RV

priate metric in this space. If the training error is definedonto a scalag;(£) = Zfil ¢(JF &), which defines a soft

as the negative log likelihood of the data under our probacommittee machine (we call this the “student” network),

bilistic model, then the direction of steepest descent in thisvhere g(x) is some sigmoid activation function for the

Riemannian space is found by premultiplying the errorhidden units,J = {J;}1<;<x is the set of input to hidden

gradient with the inverse of the Fisher information matrix; weights, and the hidden to output weights are set to one.

this defines the NGD learning direction. In practice weWe choose a Gaussian noise model for oufpgiven input

require knowledge of the input distribution in order to de- £ which is parametrized by,

termine the Fisher information matrix. Yang and Amari

discuss methods of preprocessing to obtain a whitened _ 1 —[¢ = ¢5(&F

Gaussi . o ; ni¢lé) = ex - (@
aussian process for the inputs [3]. If this is possible J2mol, 202
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The Fisher information matrix is then defined, noise variance. The equations of motion are coupled first
order differential equations for the order parameters with

G = f dé& p(f)f d¢ py(Z | €)[Vy logpy(Z| &)] respect to the normalized number of examples- u/N,
and we can integrate them numerically in order to de-
X [Vy log py(¢ | )]T. (2) termine the evolution of the generalization error (further

details will be given elsewhere [7]). As for GD, a typi-

cal learning scenario is often characterized by trapping in
one or more unstable fixed points in which the general-
ization error remains at a constant nonzero value while

With g(x) = erf(x/+/2) and an isotropic Gaussian in-
put distribution p(£) = N (0,I) we find a particularly
simple expression fos = A/o2 with A in block form,

A = 2 I — B 1+ 07 the student adapts slowly because of an inherent symme-
Yo Ay Ay HIEE try between different permutations of its hidden nodes.
+ 1+ Qii)JjJ,T Figure 1(a) shows an example of the generalization error

evolution for NGD (solid line) and GD (dashed line). No-
(1T T tice that the approach to the plateau, or symmetric phase,

QyJidj + Jidi )]]’ 3) is slower for NGD. We find that a very brief initial stage

5 of GD (to a = 1) improves performance considerably.

where A; = (1 + Q;)(1 + Qj) — Qi; and Q; =  Eventually, small perturbations due to the random initial
J;FJj- conditions lead to an escape from the symmetric phase
In order to analyze the dynamics of NGD we needand convergence towards zero generalization error. If the
to specify the function being learned. A sequence oteacher is corrupted by noise then the learning rate must
independently drawn input§#: u = 1,2,... are labeled be annealed at late times in order for the generalization

by a “teacher” network corrupted by Gaussian noise, error to decay.

1 —[¢* — dp(EM] A_Ithough our equations of motion are sufficient to de-

pB(SH | &F) = o & o2 . (4)  scribe learning for arbitrary system size, they number

2mo 7 JK(K + 1) + KM so that the numerical integration soon

Here, pp(£4) = Y™ | ¢(BT£*) defines the teacher net- Pecomes rather cumbersomefasndM grow and analy-

work which may differ in complexity from the student. SiS becomes difficult (the complexity of inverting the
Because of the flexibility of this mapping [4] we can rep- Fisher mformaﬂpn matnx'also grows with |ncreaS|Kg.
resent a variety of learning scenarios within this frame-T0 obtain generic results in terms of system size we there-
work. The weight update at each iteration of NGD is thenfore exploit symmetries which appear in the dynamics

given by for isotropic tasks and structurally matched student and
% teacher K = M and T = T§,,,). This site-symmetric

Jlf‘“ =J 4 % Z 5;LA;jl§u, (5) ansatzis n_gt_;rously Jg§tlf|ed only for th_e spe_C|aI.case of

=i symmetric initial conditions and further investigations are

u T . required to determine the validity of this approximation
wheres;” = g'(J; £#) [pp(§") — ¢3(§#) + p#], p*is  in general for large values ot (fixed points other than

zero-mean Gaussian noise of variance and the leam-  those considered here have been reported [8] and it is
ing raten is scaled by the input dimension. Notice that

knowledge of the noise variance is not required to execute
this algorithm. 1

The Fisher information matrix can be inverted using® o (a) s 1z | o o

the partitioning method described in [3] and each block °
is some additive combination of the identity matrix and
outer products of the student weight vectors,

K K
Al =a L+ > > THyT. (6)
k=1 =1
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Using the methods described in [S] we derive equation%lG 1. In (a) the generalization error is shown for optimal
0¥ motion forTa set of macros;;opm order parameter GD (solid line) and optimal GD (dashed line) f&r = 10 (we

JiJ;j = Qi, JiB, =R;, and B, B, = T,,,, measur- gefinea = 10 2a). The inset shows the optimal learning rate
ing overlaps between student and teacher weight veder NGD. In (b) the time required for optimal NGD to reach a
tors. These order parameters are necessary and suffici@neralization error of0~*K is shown as a function ot ona
to determine the generalization erref = <%[¢J(§) _ log-log scale. The inset shows the optimal learning rate within

- N the symmetric phase. In both (a) and (b) we udee- 1,
oB(£))¢ [5]. We define the generalization error to be ;¢ r31loise and ielitial condition® i )10*3, Q( i U[0,0.5] and
the expected error in the absence of noise; the predictiop — ¢ = 0. A brief stage of GD is used before NGD is

error contains an additive contribution proportional to thestarted.
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unclear whether or not their basins of attraction are negfour new order parameters vi@;; = 06;; + C(1 — §;;)
ligible). Simulations of the GD dynamics fak up to  andR;, = Ré;, + S(1 — 8;,) (here,d;; denotes the Kro-
10, with random initial conditions, show good correspon-necker delta). For this simplified system symmetries sug-
dence with the symmetric system. In this case we def|ingest the following form for the tensdr in Eq. (6):

F,{(jl = ¥16;0ubi + v2(8ibi + 6 b)) + v3(8ubjx + 8:udij) + vabubdij + yséidji
+ Y60jkbu + v7(8j1 + i) + vs(8jx + 8u) + vobi + y106ij + vi1. (7)

The inversion of A then reduces to solving anl- | some gualitative observations. For low noise levels there
dimensional linear system to determine At the cost is no noticeable effect on the length of the symmetric
of some loss in generality we therefore obtain a muctphase, or on the order parameters and generalization error
simplified dynamical system with complexity independentwithin this phase. For larger noise levels the symmetric
of K. phase increases in length and the student norms increase,
In [5] an analysis of the transient dynamics for GD resulting in a larger generalization error. A quantitative
was carried through for smalh, since this allowed an study of these effects and their impact on the above
analytical expression for the symmetric fixed point forscaling relations will be the subject of future work [7].
the idealized situation wher@ = C (in practiceQ > C In the presence of output noise the learning rate must
even for very small learning rates). Such an analysibe annealed in order to achieve zero generalization error
is not possible for NGD because the dynamics neveasymptotically and it is known that NGD is asymptotically
approaches this fixed point (the Fisher information matrixoptimal, in terms of the covariances of the student-
becomes singular whe@@ = C). In any case, a smaly  teacher weight deviations (the quadratic estimation error),
analysis will be of limited value since it is “diffusion” with n = 1/«, saturating the Cramer-Rao bound and
terms in the dynamics (which are quadraticyy) which  equaling in performance even the best batch methods
set the learning time scale and determine the optimal and]. However, the quadratic estimation error has no direct
maximal learning rate during the symmetric phase. Innterpretation in terms of generalization ability. In order
order to obtain generic results for larger learning rateto determine the asymptotic generalization error decay we
we therefore apply a recent method for obtaining globallyapply recent analytical results for the annealing dynamics
optimal time-dependent learning parameters within theof GD [11] (again for realizable isotropic tasks) in order
present framework [9]. This is achieved by a functionalto compare the asymptotic generalization error for NGD
optimization of the total change in generalization errorwith the result for GD. We find that the asymptotic
with respect to the learning rate. We obtain the optimakesult for NGD is indeed optimized by choosing= 1/«
learning rates for both GD and NGD in order to compareand takes a very simple forne; ~ Ko?/2a V T. This
optimal performance for both methods. The maximalequals the universal asymptotics for optimal maximum
learning rate, above which the student weight vectotikelihood and Bayes estimators which depend only on
norms diverge or the symmetric fixed point becomeghe learning machine’s number of degrees of freedom
stable, is typically of the same order. [6]. NGD is therefore asymptotically optimal in terms of
Figure 1(a) compares the optimal performance of NGDboth generalization error and quadratic estimation error.
(solid line) and GD (dashed line) fok = 10, T = 1 In Fig. 2 we compare the prefactor of the generalization
and zero noise, indicating a significant shortening of theerror decay for NGD and optimal GDe{ = o?€/ ).
symmetric phase for NGD (the inset shows the optimaFigure 2(a) shows the result fat = 1 as a function of
learning rate for NGD). Figure 1(b) shows the time K, indicating a linear scaling for both methods (there are
required for NGD to reach a generalization error ofslight deviations for GD). In Fig. 2(b) we compare the
1074K as a function oK (for 7 = 1). The learning time decay prefactors for each method as a functionTof
is dominated by the symmetric phase, so that these resukshowing how the difference diverges d&sis reduced.
provide a scaling law for the length of the symmetric This can be explained by examining the asymptotic
phase in terms of task complexity. We find that theexpression for the Fisher information matrix. For lafige
escape time for NGD scales &2, while the inset shows the diagonals of this matrix ar@(1/+/T ) and equal (for
that the optimal learning rate within the symmetric phasdarge N) while all other terms are at moét(1/T), so that
approaches a decay & 2. Scaling laws for GD were the Fisher information is effectively proportional to the
determined in [10], showing &®/° law for escape time identity matrix in this limit and NGD is asymptotically
and a learning rate scaling & ~5/3 within the symmetric  equivalent to GD. For small' the diagonals ar&(7?)
phase. The escape time for the adaptive GD rule studiedhile the off diagonals remain finite, so that the Fisher
in [10] scales ask>/?, which is also worse than for information is dominated by off diagonals in this limit.
NGD. The impact of output noise on the symmetric phaséHowever, it should be noted that the optimal learning rate
dynamics is not analyzed here although we can makdecay prefactor for GD will not generally be known, so
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cially for smallT. We note here that the optimal learning
rate during the symmetric phase decays more rapidly with
K than one might expea priori (9sym ~ K %) and in
practice it may prove difficult to predict learning parame-
ters giving optimal transient performance. An important
...................... o task is therefore to determine robust learning strategies
N it o4 with minimal dependence on arbitrary parameters. NGD
satisfies this criterion at late times, since it is known that
] ~ m ~ 1/a is optimal asymptotically but is still dependent
FIG. 2. Prefactor for the asymptotic decay of the generalizagp, good parameter choice at earlier times.

tion error: (a) shows the prefactor f@r = 1 as a function of
K for optimal GD (circles) and NGD (crosses) while (b) shows M.R. and D.S. were supported by EPSRC Grant

how the prefactor for optimal GD (larg&) decays towards NO. GR/L19232.
K /2 (which is the prefactor for NGD) ag increases. The in-
set to (b) shows the GD result on a log-log scale.
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