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Natural gradient descent is an on-line variable-metric optimization algorithm which utilizes
underlying Riemannian parameter space. We analyze the dynamics of natural gradient descent
the asymptotic regime by employing an exact statistical mechanics description of learning in two-
feed-forward neural networks. For a realizable learning scenario we find significant improvements
standard gradient descent for both the transient and asymptotic stages of learning, with a slower
law increase in learning time as task complexity grows. [S0031-9007(98)07950-2]
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Optimization of a parametrized probability distribution
to approximate some unknown underlying distribution in
stanced by a set of examples is an important interdis
plinary problem which recurs in various settings. On-lin
optimization, which is carried out by modifying the pa
rameters iteratively in response to a stream of exampl
is of particular importance as it is arguably the metho
of choice for large systems and nonstationary tasks. O
of the most popular on-line optimization methods is st
chastic gradient descent on some cost function. Over
years, many attempts have been made to devise prac
alternative methods which will provide an improved pe
formance over the entire learning session (i.e., not on
asymptotically).

Natural gradient descent (NGD) was recently propos
by Amari as a principled alternative to standard on-lin
gradient descent (GD) [1]. When learning to emulate
stochastic rule with some probabilistic model, e.g., a fee
forward neural network, NGD has the desirable properti
of asymptotic optimality, given a sufficiently rich mode
which is differentiable with respect to its parameters, a
invariance to reparametrization of our model distributio
These properties are achieved by viewing the parame
space of the model as a Riemannian space in which
cal distance is defined by the Kullback-Leibler divergenc
[2,3]. The Fisher information matrix provides the appro
priate metric in this space. If the training error is define
as the negative log likelihood of the data under our prob
bilistic model, then the direction of steepest descent in th
Riemannian space is found by premultiplying the err
gradient with the inverse of the Fisher information matrix
this defines the NGD learning direction. In practice w
require knowledge of the input distribution in order to de
termine the Fisher information matrix. Yang and Ama
discuss methods of preprocessing to obtain a whiten
Gaussian process for the inputs [3]. If this is possib
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then, when the input dimensionN is large compared to
the number of hidden unitsK, inversion of the Fisher in-
formation matrix for a two-layer feed-forward network re
quires onlyOsN2d operations, providing an efficient an
practical algorithm.

In this Letter we investigate the properties of NG
beyond the asymptotic regime using a nonlinear mo
which may be regarded as a probabilistic two-layer fee
forward neural network. Such models are of significa
importance given their ability to approximate any co
tinuous input-output mapping to an arbitrary degree
accuracy [4]. We quantify the benefits of NGD using
recent statistical mechanics framework which allows
exact solution to the dynamics asN ! ` for fixed K [5].
In particular, we consider a realizable learning scena
and apply a site-symmetric ansatz which simplifies t
dynamical equations and allows us to obtain results
arbitrary task complexity and nonlinearity. For this sp
cial case we show that trapping time in an unstable fix
point which often dominates the training time is signifi
cantly reduced by using NGD and exhibits a slower pow
law increase as task complexity grows. We also find th
asymptotic performance is greatly improved, with the ge
eralization performance of NGD equaling the univers
asymptotics for batch learning [6].

We consider a mapping from an input spacej [ RN

onto a scalarfJsj d ­
PK

i­1 gsJT
i j d, which defines a soft

committee machine (we call this the “student” network
where gsxd is some sigmoid activation function for th
hidden units,J ; hJij1#i#K is the set of input to hidden
weights, and the hidden to output weights are set to o
We choose a Gaussian noise model for outputz given input
j which is parametrized byJ,

pJsz j j d ­
1p

2ps2
m

exp

(
2fz 2 fJsjdg2

2s2
m

)
. (1)
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The Fisher information matrix is then defined,

G ­
Z

dj psj d
Z

dz pJsz j j d f=J logpJsz j j dg

3 f=J logpJsz j j dgT. (2)

With gsxd ­ erfsxy
p

2 d and an isotropic Gaussian in-
put distributionpsj d ­ N s0, Id we find a particularly
simple expression forG ; Ays2

m with A in block form,

Aij ­
2

p
p

Dij

(
I 2

1
Dij

fs1 1 QjjdJiJT
i

1 s1 1 QiidJjJT
j

2 QijsJiJT
j 1 JjJT

i dg

)
, (3)

where Dij ­ s1 1 Qiid s1 1 Qjjd 2 Q2
ij and Qij ;

JT
i Jj.
In order to analyze the dynamics of NGD we nee

to specify the function being learned. A sequence
independently drawn inputsjm: m ­ 1, 2, . . . are labeled
by a “teacher” network corrupted by Gaussian noise,

pBsz m j jmd ­
1

p
2ps2

exp

(
2fz m 2 fBsjmdg2

2s2

)
. (4)

Here,fBsjmd ­
PM

n­1 gsBT
n jmd defines the teacher net-

work which may differ in complexity from the student
Because of the flexibility of this mapping [4] we can rep
resent a variety of learning scenarios within this fram
work. The weight update at each iteration of NGD is the
given by

J
m11
i ­ J

m
i 1

h

N

KX
j­1

d
m
j A21

ij jm, (5)

whered
m
i ; g0sJT

i jmd ffBsjmd 2 fJsjmd 1 rmg, rm is
zero-mean Gaussian noise of variances2, and the learn-
ing rateh is scaled by the input dimension. Notice tha
knowledge of the noise variance is not required to execu
this algorithm.

The Fisher information matrix can be inverted usin
the partitioning method described in [3] and each bloc
is some additive combination of the identity matrix an
outer products of the student weight vectors,

A21
ij ­ aijI 1

KX
k­1

KX
l­1

Gkl
ij JkJT

l . (6)

Using the methods described in [5] we derive equatio
of motion for a set of macroscopic order paramete
JT

i Jj ; Qij, JT
i Bn ; Rin, and BT

n Bm ; Tnm, measur-
ing overlaps between student and teacher weight v
tors. These order parameters are necessary and suffic
to determine the generalization erroreg ­ k 1

2 ffJsjd 2

fBsjdg2lj [5]. We define the generalization error to b
the expected error in the absence of noise; the predict
error contains an additive contribution proportional to th
5462
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noise variance. The equations of motion are coupled fir
order differential equations for the order parameters wi
respect to the normalized number of examplesa ­ myN ,
and we can integrate them numerically in order to de
termine the evolution of the generalization error (furthe
details will be given elsewhere [7]). As for GD, a typi-
cal learning scenario is often characterized by trapping
one or more unstable fixed points in which the genera
ization error remains at a constant nonzero value wh
the student adapts slowly because of an inherent symm
try between different permutations of its hidden node
Figure 1(a) shows an example of the generalization err
evolution for NGD (solid line) and GD (dashed line). No-
tice that the approach to the plateau, or symmetric pha
is slower for NGD. We find that a very brief initial stage
of GD (to a . 1) improves performance considerably
Eventually, small perturbations due to the random initia
conditions lead to an escape from the symmetric pha
and convergence towards zero generalization error. If t
teacher is corrupted by noise then the learning rate mu
be annealed at late times in order for the generalizati
error to decay.

Although our equations of motion are sufficient to de
scribe learning for arbitrary system size, they numbe
1
2 KsK 1 1d 1 KM so that the numerical integration soon
becomes rather cumbersome asK andM grow and analy-
sis becomes difficult (the complexity of inverting the
Fisher information matrix also grows with increasingK).
To obtain generic results in terms of system size we ther
fore exploit symmetries which appear in the dynamic
for isotropic tasks and structurally matched student an
teacher (K ­ M and T ­ Tdnm). This site-symmetric
ansatz is rigorously justified only for the special case o
symmetric initial conditions and further investigations ar
required to determine the validity of this approximation
in general for large values ofK (fixed points other than
those considered here have been reported [8] and it

FIG. 1. In (a) the generalization error is shown for optima
NGD (solid line) and optimal GD (dashed line) forK ­ 10 (we
defineã ­ 1022a). The inset shows the optimal learning rate
for NGD. In (b) the time required for optimal NGD to reach a
generalization error of1024K is shown as a function ofK on a
log-log scale. The inset shows the optimal learning rate with
the symmetric phase. In both (a) and (b) we usedT ­ 1,
zero noise and initial conditionsR ­ 1023, Q ­ Uf0, 0.5g and
S ­ C ­ 0. A brief stage of GD is used before NGD is
started.
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g-
unclear whether or not their basins of attraction are ne
ligible). Simulations of the GD dynamics forK up to
10, with random initial conditions, show good correspon
dence with the symmetric system. In this case we defi
g-

-
ne

four new order parameters viaQij ­ Qdij 1 Cs1 2 dijd
andRin ­ Rdin 1 Ss1 2 dind (here,dij denotes the Kro-
necker delta). For this simplified system symmetries su
gest the following form for the tensorG in Eq. (6):
Gkl
ij ­ g1dijdikdil 1 g2sdikdil 1 djkdjld 1 g3sdikdjk 1 dildijd 1 g4dkldij 1 g5dikdjl

1 g6djkdil 1 g7sdjl 1 dikd 1 g8sdjk 1 dild 1 g9dkl 1 g10dij 1 g11 . (7)
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The inversion of A then reduces to solving an11-
dimensional linear system to determineg. At the cost
of some loss in generality we therefore obtain a mu
simplified dynamical system with complexity independe
of K.

In [5] an analysis of the transient dynamics for G
was carried through for smallh, since this allowed an
analytical expression for the symmetric fixed point fo
the idealized situation whereQ ­ C (in practiceQ . C
even for very small learning rates). Such an analy
is not possible for NGD because the dynamics nev
approaches this fixed point (the Fisher information mat
becomes singular whenQ ­ C). In any case, a smallh
analysis will be of limited value since it is “diffusion”
terms in the dynamics (which are quadratic inh) which
set the learning time scale and determine the optimal a
maximal learning rate during the symmetric phase.
order to obtain generic results for larger learning rat
we therefore apply a recent method for obtaining globa
optimal time-dependent learning parameters within t
present framework [9]. This is achieved by a function
optimization of the total change in generalization err
with respect to the learning rate. We obtain the optim
learning rates for both GD and NGD in order to compa
optimal performance for both methods. The maxim
learning rate, above which the student weight vect
norms diverge or the symmetric fixed point becom
stable, is typically of the same order.

Figure 1(a) compares the optimal performance of NG
(solid line) and GD (dashed line) forK ­ 10, T ­ 1
and zero noise, indicating a significant shortening of t
symmetric phase for NGD (the inset shows the optim
learning rate for NGD). Figure 1(b) shows the tim
required for NGD to reach a generalization error
1024K as a function ofK (for T ­ 1). The learning time
is dominated by the symmetric phase, so that these res
provide a scaling law for the length of the symmetr
phase in terms of task complexity. We find that th
escape time for NGD scales asK2, while the inset shows
that the optimal learning rate within the symmetric pha
approaches a decay ofK22. Scaling laws for GD were
determined in [10], showing aK8y3 law for escape time
and a learning rate scaling ofK25y3 within the symmetric
phase. The escape time for the adaptive GD rule stud
in [10] scales asK5y2, which is also worse than for
NGD. The impact of output noise on the symmetric pha
dynamics is not analyzed here although we can ma
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some qualitative observations. For low noise levels th
is no noticeable effect on the length of the symmet
phase, or on the order parameters and generalization e
within this phase. For larger noise levels the symme
phase increases in length and the student norms incre
resulting in a larger generalization error. A quantitati
study of these effects and their impact on the abo
scaling relations will be the subject of future work [7].

In the presence of output noise the learning rate m
be annealed in order to achieve zero generalization e
asymptotically and it is known that NGD is asymptotical
optimal, in terms of the covariances of the stude
teacher weight deviations (the quadratic estimation err
with h ­ 1ya, saturating the Cramer-Rao bound a
equaling in performance even the best batch meth
[1]. However, the quadratic estimation error has no dir
interpretation in terms of generalization ability. In ord
to determine the asymptotic generalization error decay
apply recent analytical results for the annealing dynam
of GD [11] (again for realizable isotropic tasks) in ord
to compare the asymptotic generalization error for NG
with the result for GD. We find that the asymptot
result for NGD is indeed optimized by choosingh ­ 1ya

and takes a very simple form:eg , Ks2y2a ; T . This
equals the universal asymptotics for optimal maximu
likelihood and Bayes estimators which depend only
the learning machine’s number of degrees of freed
[6]. NGD is therefore asymptotically optimal in terms o
both generalization error and quadratic estimation er
In Fig. 2 we compare the prefactor of the generalizat
error decay for NGD and optimal GD (eg ­ s2e0ya).
Figure 2(a) shows the result forT ­ 1 as a function of
K, indicating a linear scaling for both methods (there a
slight deviations for GD). In Fig. 2(b) we compare th
decay prefactors for each method as a function ofT ,
showing how the difference diverges asT is reduced.
This can be explained by examining the asympto
expression for the Fisher information matrix. For largeT
the diagonals of this matrix areOs1y

p
T d and equal (for

largeN) while all other terms are at mostOs1yT d, so that
the Fisher information is effectively proportional to th
identity matrix in this limit and NGD is asymptotically
equivalent to GD. For smallT the diagonals areOsT2d
while the off diagonals remain finite, so that the Fish
information is dominated by off diagonals in this limi
However, it should be noted that the optimal learning r
decay prefactor for GD will not generally be known, s
5463
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FIG. 2. Prefactor for the asymptotic decay of the generaliz
tion error: (a) shows the prefactor forT ­ 1 as a function of
K for optimal GD (circles) and NGD (crosses) while (b) show
how the prefactor for optimal GD (largeK) decays towards
Ky2 (which is the prefactor for NGD) asT increases. The in-
set to (b) shows the GD result on a log-log scale.

that these results provide only an upper bound for t
performance of GD. In practice NGD can be expecte
to provide even greater improvement over GD.

To summarize, we have solved the dynamics of NG
using a statistical mechanics framework which is exa
for large input dimension. Using a site-symmetric ansa
which resulted in a reduced dimensionality system a
lowed us to determine generic behavior in terms of ta
complexityK and nonlinearityT . An analysis of the tran-
sient was made possible by using a recent method for
termining globally optimal learning parameters [9]. Fo
the optimized system we find that trapping time in th
symmetric phase scales asK2, which is an improvement
over both GD and the adaptive algorithm considered
[10]. Asymptotically we find that NGD saturates the un
versal bounds on generalization performance and provid
a significant improvement even over optimized GD, esp
5464
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cially for smallT . We note here that the optimal learning
rate during the symmetric phase decays more rapidly w
K than one might expecta priori (hsym , K22) and in
practice it may prove difficult to predict learning parame
ters giving optimal transient performance. An importan
task is therefore to determine robust learning strategi
with minimal dependence on arbitrary parameters. NG
satisfies this criterion at late times, since it is known tha
h , 1ya is optimal asymptotically but is still dependen
on good parameter choice at earlier times.
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